CANADA - NWT

MINERAL DEVELOPMENT AGREEMENT

Giant Yellowknife Mines Limited Yellowknife Division Recovery Improvement Project

Volume 1

L-A-64

-

Canada-NWT

Mineral Development Agreement

Northern Technology Assistance Program

Giant Yellowknife Mines Limited Yellowknife Division Recovery Improvement Project

Volume 1

No. SC-265237

March 1990

Prepared by: G.B. Halverson Mill Superintendent

CANMET Scientific Authority:

M.J. Stefanski Physical Scientist

GIANT YELLOWKNIFE MINES LIMITED Yellowknife Division

Recovery Improvement Project #SC-265237

VOLUME 1

March 1990

Prepared By:

G.B. Halverson Mill Superintendent

TABLE OF CONTENTS

<u>Page</u>

TITLE	Volume 1	1
TABLE OF CONTENTS	2	
INTRODUCTION	3	
STATEMENT OF WORK	4	
SUMMARY	7	
CONCLUSION	14	
(PHASE I) GIANT REPORT	Volume	1
(PHASE II) SURFACE SCIENCE WESTERN REPORT	Volume	2
(PHASE III) LAKEFIELD RESEARCH REPORT	Volume	3

INTRODUCTION

In the spring of 1989 Giant Yellowknife Mines Limited and the Government of the Northwest Territories entered into a contribution agreement through a Canada - N.W.T. Economic Development Agreement (EDA) and specified under a Northern Technology Association Program (NTAP).

This agreement was for financing a program called the Gold Recovery Improvement Project. The objective of this program was to increase recoveries in the milling of refractory ore.

The project was subdivided into several phases which were to be done sequentially. Phase I was sample gathering, preparation, and distribution to the various labs. Phase II was an in depth mineralogical investigation into the gold association of the Giant ore. Phase III was bench scale testing of the Giant ore to increase recovery. Phase IV was to pilot test any potential results obtained by bench scale testing. Phase V was outside the scope of the program but was to install and commission any new process derived from this project.

The results contained herein are the efforts of several groups who completely analyzed the Giant ore searching for ways to increase recovery.

Appendix A

STATEMENT OF WORK

1. <u>Introduction</u>

During the past 41 years of operation, Giant has utilized several metallurgical processes to recover gold from its refractory ore. The metallurgical steps include crushing, grinding, flotation, roasting cyanidation, merrill-crowe precipitation, electrostatic precipitation and baghouse collection. These processes result in an overall recovery of 86 percent.

This relatively low recovery is due to the fact that the Giant ore is "refractory" (where most gold is invisible and difficult to recover by cyanide leaching). Increasing the recovery by 4% would diminish the cost of mining and milling per kg of gold bullion, also roughly by 4%. This could improve Giant's competitiveness.

Since in the Northwest Territories, other properties contain refractory ore as well (Nerco-Con, Noranda/Getty, Tundra) results of this project, when published, will be of benefit to many of them.

The thrust of an R&D program from the Canada/NWT Northern Technology Assistance Program (NTAP) would be to increase recovery utilizing either improvements in the current process or new available technology. The choice of technologies to be tried will depend on the results of the mineralogical tests. A more detailed program of work for each phase of the project will be established and submitted for the approval of the Scientific Authority and the Management Group after results from the previous phase are available.

This project will herein be called "Gold Recovery Improvement Investigations".

2. <u>Objectives</u>

The results of the investigations will allow implementation of proved technology to enhance the recovery of gold from the Giant operations. This will eventually increase mining activity and employment in the NWT, raise Giant's competitiveness and help other NWT mines to overcome problems in the milling of refractory ores.

3. Scope of Work

Phase One of the project was completed in 1988/89. The remaining work to be done can be broken into several phases as follows:

Phase 2: Mineralogical investigation to determine the mineralogical distribution of gold in a head and tailing sample from Giant Yellowknife.

The objectives are as follows:

- 1. To identify the minerals and determine their proportions in the samples.
- To identify the sulphide mineral(s) which concentrate(s) the "invisible" gold by quantitative ion probe microanalysis.
- 3. To determine a mineralogical balance for gold in the composite sample.
- 4. To examine the tailings sample and determine the minerals and their proportions.
- 5. To determine the process mineralogy of gold for the samples and provide suggestions how gold recovery may be improved int he context of the current processing procedures or with the use of alternative technologies.

Phase 3: Bench scale testing to optimize recovery of Giant's current process as well as test new technology.

Phase 4: Pilot testing of the processes identified in Phase 3 which give increased recovery.

Phase 5: Implementation of the Gold Recovery Improvement Investigation.

4. <u>PY Requirements</u>

Phase	2	12	man	weeks
Phase	3	30	man	weeks
Phase	4	12	man	weeks

5. <u>Budget</u>

Phase	2	-will cost an estimated \$30,000 to comple	ete,
		including manpower and laboratory costs.	-
Phase	3	-will cost an estimated \$70,000 to comple	ete,
		including labour and laboratory costs.	•
Phase	4	-will cost and estimated \$50,000 to comple	ete,
		including labour, equipment and reagents.	·
Phase	5	-implementation will be internally funded	bv
		Giant.	

6. <u>Timetable</u>

Phase	2	April-June 1989	
Phase	3	May-August 1989	
Phase	4	September-October	1989
Phase	5	1990	

7. <u>Investigators</u>

Phase	1	Giant personnel		
Phase	2	Western University		
Phase	3	Lakefield Research		
Phase	4	Research Productivity Council or Coastec		
		Research depending on results obtained from		
		Phase 3.		
Phase	5	Giant personnel		

SUMMARY

The results of the program has led Giant into several areas of further research. One is upgrading of the scavenger concentrate utilizing column flotation which could improve overall recoveries by 1%. Potential increases in carbon plant recovery are possible by use of lime to remove arsenates which lock up cyanidable gold. Cyanidation of mill tailings indicated higher recoveries of 2% overall but proved to be uneconomical in the mill and detrimental to conventional recoveries at the Tailings Reclaim Plant.

The testwork has shown that a 4% increase in recovery is not an economic reality and the milling operation is performing efficiently with only minor recovery increases being possible. The program has shown however, the importance of mineralogical research into gold analysis to understand the application of unit processes for recovery. The identification of gold association down to 100 angstroms allows for the rationale of our current process and verifies the previous thinking that gold in arsenopyrite is in the form of solid interstitial replacement on a molecular level where an arsenic atom is replaced with a gold atom.

The following conclusions have been summarized by the mineralogical and bench scale testing work:

- 1.0 <u>MINERALOGICAL</u> (Phase II)
- 1.1 Feed and Concentrate
 - Gold is concentrated in two minerals: native gold and arsenopyrite.
 - The average silver content of the native gold is
 6.9 wt%.
 - The average submicroscopic gold concentration in arsenopyrite is 299 ppm.
 - Native gold contributes 38.7% of the assayed gold, arsenopyrite is 59.7%, and pyrite only 1.6%.

The majority of the native gold is liberated coarse grained and 67.7% wt floats in the Maxwell cell and rougher concentrate. Over 97% of the native gold is recovered. 10.7% of the native gold is with quartz, 9.8% in pyrite and 12.4% with arsenopyrites.

- Of the associated native gold, two forms are lost to the tailings; relatively coarse grained combined with quartz (high tails), and combined with fine grained aresenopyrite (low tails).
- The fine grained arsenopyrite (avg. 325 mesh) is more enriched in submicroscopic gold (495 ppm) compared to the coarser grained arsenopyrite (153 ppm) (avg. 150 mesh).
- The fine grained arsenopyrite floats slower and accounts for 75.5% of the contained gold in the scavenger concentrate.
- Of the gold lost to tailings, the fine grained arsenopyrite accounts for 80%.
- These results lead to the following potential recovery improvements which are; recover the coarse grained gold associated with quartz either by direct cyanidation or finer grinding and recover more of the fine grained arsenopyrite also by finer grinding.

1.2 Roasting

- In roasting the submicroscopic gold in arsenopyrite accounts for more that 90% and native gold with arsenopyrite is 3%. Pyrite contributes 6.4% of the gold.
- Submicroscopic gold in arsenopyrite is in solid solution and is inhomogeneously distributed.
- The ares of high gold concentration (>1000 ppm) are located in the outer zones of the arsenopyrite grains.
- Some calcine particles have a sintered outer layer which significantly reduced permeability and locks colloidal gold.
 - Gold is lost to the calcine residue by:
 - within most impermeable maghemite particles (regrind will not help)
 - 2) in the permeable core of goethite/scorodite particles and sintered coating (regrind will improve recovery)
 - 3) in the sintered coating (regrind will have some effect).

Gold recovery improves by regrinding of permeable particles with sintered coatings.

1.3 <u>Tailings Material</u>

- Gold in the current tailings and calcine residue is in the following forms:
 - 1) Native gold combined with quartz
 - 2) Submicroscopic and native gold with fine grained arsenopyrite
 - 3) Colloidal gold in maghemite particles
 - 4) Colloidal gold in more permeable calcine particles
 - 5) Colloidal gold in sintered rims of calcine particles
 - 6) Some soluble gold salts

1.4 Gold Distribution

	The foll of mill	owing gold distribution analysis is on a feed:	sample
	a)	Submicroscopic gold in arsenopyrite	59.7%
		Submicroscopic gold in pyrite	1.6%
		Native gold associated with quartz	4.0%
		Native gold enclosed in fine grained	
		arsenopyrite	2.6%
		Native gold combined with fine grained	
		arsenopyrite	0.2%
		Native gold enclosed in coarse grained	
		arsenopyrite	0.7%
		Native gold combined with coarse grained	
		arsenopyrite	1.3%
		Native gold enclosed in pyrite	2.4%
		Native gold combined with pyrite	1.4%
		Native gold liberated	26.1%
			100.0%
	b)	Gold associated with arsenopyrite	64.5%
		Gold associated with pyrite	5.4%
		Gold in a liberated form	26.1%
		Gold associated with quartz	4.0%
			100.0%
	The follo	owing gold distribution is on a normal tion tailings:	sample
•		Submicroscopic gold in arsenopyrite	60.9%
		Submicroscopic gold in pyrite	1.7%
		Cyanidable gold	37.4%

- The following gold distribution is on samples of flotation concentrate combined: Submicroscopic gold in arsenopyrite 59.5% Submicroscopic gold in pyrite 2.1% Cyanidable gold 38.4%

2.0 <u>BENCH TESTING</u> (Phase III) Lakefield

Full diagnostic testing was done on eight various samples which include chemical analysis on sized fraction and gold association testing. This work verified the mineralogical work and identified where the gold was associated for methods of possible increased recoveries.

Based on this work and mineralogy the bench testing concentrated on grinding - flotation and grinding - cyanidation. The following summaries were made.

2.1 Grinding

- 67.6% of the gold in the calcine residue occurs in the 24-74 micron fraction.
- 2.9% of the gold in the dust treating residue occurs in the -9 micron fraction.
- 55.5% of the gold in the concentrate/calcine products occurs in the 24-74 micron fraction.

2.2 Gold Distribution

- The cyanidable gold content rises from 43.7% in the roaster feed to 81.8% in the transfer dust and 86.4% in the roaster calcine.
- The calcine residue still had 23% available gold.
- The hot cottrell dust residue has 85.6% of the remaining gold locked in as arsenates.
- The flotation tailings have 38.8% available gold.
 - The classifier overflow has 30.9% available gold.

2.3 <u>Flotation</u> <u>Grind/Float</u>

- Gold and sulphur recovery is rapid in the first seven minutes and then tends to flatten out. This indicates a long flotation time is required for maximum recovery and relates to fine grained arsenopyrite after regrind. Microscopic analysis will identify surface problems with the arsenopyrite.
- Gold recoveries of 95.3% were achieved with a sulphur recovery of 91.6% and pyrite recovery of 98.0% and arsenopyrite recovery of 92.0%.
- Gold recovery is linear to both arsenopyrite and pyrite recovery although the ratios are 1.0 and 0.4 : 1.0 respectively.
- To get a 97.5% gold recovery will require a 97.5% arsenopyrite recovery and 98% pyrite recovery.
- The dependence on recovery is directly related to arsenopyrite flotation.
- A series of grind/flotation tests were done and the results indicate that recovery is more dependent on flotation time rather than grind and extensive grinding does not increase recovery significantly.
- Pulling a hard float decreases the grade dramatically but only marginally increases recovery.
- To get maximum recovery without grade suffering will require cleaning of scavenger concentrate.
- Further analysis indicates a 97% gold recovery requires 99% sulphur recovery. The pyrite recovery was as high as 99% but arsenopyrite recovery remained at 92% to 95% maximum.

2.4 <u>Reagents</u>

- Soda ash addition showed no effect and is uneconomical.
- Copper sulphate addition point has not effect on overall recovery.

Page -11-

- Use of sodium silicate proved to lower recovery when used.
- Use of Aerofloat 208 showed no effect on overall recovery as native gold is all floated readily with xanthate.
- 2.5 Flowsheet Development
 - The best analysis of this testing indicated slow pulling rates, scavenger concentrate cleaning and combining cleaner concentrate with rougher concentrate for a final product. Finer rougher grinding did not improve recoveries and a 2nd stage grind gives the best results. Ultra fine grinding did not improve recoveries.
 - This led the way to column cell flotation testing for scavenger cleaning. This feed is ideal with a silica gangue and mainly arsenopyrite sulfide concentrate.

2.6 <u>Cyanidation Testing</u> 2.6.1 Mil<u>l Feed</u>

 Very consistent recoveries at 52% gold recovery at 90%
 -200 mesh. This is higher than earlier tests of 38% by Lakefield and Surface Science.

2.6.2 Tailings

- Gold recovery by cyanidation is dependent on arsenopyrite present. The higher the arsenopyrite recovery on flotation the lower the arsenopyrite to tailings and higher recoveries on flotation and cyanidation of tailings.
- Fine grinding had no effect on cyanidation recovery.

2.6.3 Feed/Conc/Tailings

- This indicates free native gold floats primarily in the rougher concentrate.
- Gold in the scavenger concentrate and tailings is not primarily associated with free native gold.

2.6.4 Calcine Residue

- Finer grinding increased the recovery from 17.4% to 32.8% and to 46.1% with grinding up to 96% -10 micron.
- Gold recovery by gravity concentration 4.5% by Mozley concentrating and 27.7% by Wilfler concentrating 50% of the residue. Both results were extremely poor.

CONCLUSIONS

This extensive program did not yield a significant increase in gold recoveries of 4% which was the target, but did identify minor recovery increases. This leads to the conclusion that the recoveries being obtained by Giant Yellowknife Mines are the best obtainable with present technology and economics. Testing did show some promise in flotation circuit optimization and calcine residue grind optimization to obtain minor recovery increases. A pilot plant test on column flotation is being carried out by Lakefield to complete Phase IV of the project and finalize the research.

The program has been a success in the area of refractory ore knowledge and importance of mineralogical work on ore. This program has completely defined the association of gold in the refractory Giant ore. The gold analysis was followed through the process to identify gold association in flotation/ roasting/ and cyanidation unit processes, as well as techniques to recover the gold.

The work done by Surface Science was confirmed by both Giant and Lakefield testing and showed clearly the importance of understanding the nature of the gold in the ore to identify potential problems and solutions to milling. Analysis from Optical Microscopy/Scanning Electron Microscopy and Ion Probe Microanalysis can help future potential mines in the Northwest Territories to successful operations. This report identifies the basic understanding and handling of refractory gold ore and has application for reference for current and future operations in the Northwest Territories.

GIANT YELLOWKNIFE MINES LIMITED Yellowknife Division

Recovery Improvement Project #SC-265237

<u>Phase I</u>

VOLUME 1

March 1990

Prepared By:

G.B. Halverson Mill Superintendent

Page -1-

TABLE OF CONTENTS

<u>Page</u>

•

TITLE	1
TABLE OF	CONTENTS
ABSTRACT	
SUMMARY	4
PROGRESS	REPORTS
TESTWORK	
1.	Roaster Cyanidation Testwork
2.	Sample Preparation for Lakefield
3.	and Surface Science
4.	Carbon Analysis
	Cyanidation of Mill Tailings Testwork107
5.	Flotation Mass Balancing and Sampling for
	Column Flotation

ABSTRACT

During the period January 1989 to March 1990, a testwork program was initiated through a Canada - N.W.T. Northern Technology Association Program (NTAP). The majority of this work was carried out by Surface Science Western and Lakefield Research. Sample preparation was done by Giant and during the course of the program several tests were carried out by Giant in conjunction with the program.

The objectives of the program were to allow implementation of proved technology to enhance the recovery of gold from the Giant operation. This would eventually increase mining activity and employment in the N.W.T., and raise Giant's competitiveness and help other N.W.T. mines to overcome problems in the milling of refractory ores.

The Giant program included:

- a) Verification of results obtained at Lakefield
- b) Cyanide roaster products under various conditions to increase recovery
- c) Cyanide #3 thickener underflow to reduce sliming to the roaster
- d) Specific sample preparation for Surface Science Western to accelerate the program and identify gold association
- e) Carbon analysis work for knowledge of activated carbon loading at Giant
- f) Cyanidation of mill tailings combined and separated
- g) Flotation circuit mass balancing and sample collection for column flotation pilot testing at Lakefield.

SUMMARY

The Recovery Improvement Project started in January of 1989 and is essentially complete as of March 1990. Giant initiated testwork on roaster material in an attempt to increase recoveries down stream of the roaster. During this time period samples were collected from various locations in the Giant milling process (refer to Figure 1). These samples included:

- 1) Flotation Feed
- 2) Flotation Tails
- 3) Calcine Residue
- 4) Roaster Feed
- 5) Transfer Dust
- 6) Roaster Calcine
- 7) Hot Cottrell Dust
- 8) Dust Treatment Residue
- 9) Baghouse Dust
- 10) Gold Loaded Carbon
- 11) Maxwell Cell Concentrate
- 12) Rougher Cell Concentrate
- 13) Scavenger Cell Concentrate

A detailed milling flowsheet (refer to Figure 2) shows the complexity of the ore milling at Giant and the need to analyze a wide range of samples in an attempt to increase recoveries.

The samples were distributed to Lakefield Research and Surface Science Western to complete Phase II and III of the project. In order to narrow the area of bench scale testing, Giant continued to wait until Phase II was complete before proceeding to Phase III.

The mineralogical work required sample screening and diagnostics which were provided by Lakefield and Giant. Analysis proceeded slowly at Western University and by September the gold association testwork on flotation feed, tails and concentrate were completed. At this point it was decided to start on bench scale testing at Lakefield. Initial reports from Surface Science allowed devising of a test program to improve recoveries. By November the mineralogical work was 75% complete and interesting results were being obtained by cyanidation at Lakefield. December marked the completion of the mineralogical work and a final report was issued by the end of January 1990. During at Lakefield concentrated on December, work grinding and flotation with marginal successes. Lakefield completed the program in early March with the exception of a mineralogical study on flotation tailings from fine grinding and a pilot scale test on a sample of scavenger concentrate.

Mill Process and Unit Functions

Orientation

Figure 1: SIMPLIFIED MILL FLOWSHEET

3

State Barris Martin State

......

4

Progress reports were compiled after periods of significant progress by the research labs. As results were obtained, Giant consulted with Surface Science and Lakefield to direct testing on promising work. Two areas of interest were cyanidation of flotation tailings and combined tailings, and also flotation cleaning to optimize the flotation circuit. Cyanidation tests commenced at Giant to confirm Lakefield tests and to study detailed economics and effects for full scale application. Tests indicated that cyanidation of the flotation tails and combined tails were not economic although recoveries were on the order of 2%.

The flotation cleaning flowsheet development led to a short plant test to mass balance the flotation circuit and obtain a large sample of scavenger concentrate to conduct column flotation work. This work showed a potential increase of 0.5% recovery and a potential higher sulphur grade for optimum roaster recovery.

The following is a summary of results of Giant's testwork done during the project.

- 1.0 Roasting
 - There was some indication that maximum cyanidation recoveries were obtained after 1st stage roasting. This was later disproved by detailed sampling and testing by Giant and Lakefield. Recoveries improve by 5% in the 2nd stage roaster.
 - Higher roaster temperatures showed a drop in recovery of approximately 5% at 1100 degrees F = 90.1% recovery and at 975 degrees F = 91.7% recovery. This testwork confirmed the maximum recoveries at 925 degrees F for both stages.
 - Tests were done to minimize over roasting in the 1st stage and keeping the 2nd stage water above 2 gpm. This gave excellent results and showed the main control was to keep the roaster feed sulphur above 20% for the best results.
 - Tests were done at roasting temperatures below normal at 840 degrees F and 900 degrees F and results showed 925 degrees F was the best operating temperature, at 840 degrees F = 86.2% recovery and 900 degrees F = 89.8% recovery.

To increase roaster feed sulphur grade, a test was conducted on cyaniding #3 thickener underflow. This material contains fines from flotation concentrate and contains less sulphur. Results indicated recoveries of 58% gold recovery but the high head grade was suspect.

2.0 <u>Diagnostics</u>

- Cyanidation of the classifier overflow achieved a 39.6% recovery. Recoveries were consistent in three size fractions.
- Cyanidation of flotation tails achieved 50% 53% recovery. Recoveries were the same for finely ground tails and "as is" cyanidation of tails. This started the thinking of potential recoveries by cyaniding tails in the mill or at the Tailings Retreatment Plant.
- Cyanidation tests on the calcine residues gave a 95.5% recovery with optimum roasting conditions.
- Four concentrate samples were cyanided and 1st Maxwell Cell = 23%, 2nd Maxwell Cell = 32%, rougher concentrate = 29% and scavenger concentrate = 25%. Finer grinding of the maxwell concentrate yielded 35% and 36% recoveries respectively and indicated gold enclosed in sulphide minerals.
- Carbon was analyzed by spectra analysis. It identified elements loaded onto carbon but no standards were developed to check concentrations. Arsenic absorbs the deepest into the carbon and then antimony and then gold is closest to the surface. This may explain why arsenic at 2000 ppm in solution has not fouled the kinetics of gold adsorbsion/desorbsion in the carbon plant.

3.0 <u>Tailings</u>

- Cyanidation of mill tailings showed recoveries of 60.1%/63.3% and 79%, but it was felt some contaminants of Treminco ore which is free milling was still present in the tailings. Further testing showed 56.2% gold recovery on mill tailings.
- Cyanidation of flotation tailings gave recoveries of 52.3% and 51.7%.

Detailed testing was done on samples of flotation tails and mill tailings combined in proportion with TRP tailings. The combination of the two showed a decrease in recovery and a high reagent consumption rate. It was decided not to add the tailings to the Tailings Reclaim Plant because of the fouling characteristics of the material.

4.0 Flotation

Plant sampling and testing in February showed tails could be lowered to 0.013 oz/T and the scavenger concentrate would require cleaning. This test was repeated on two occasions. Combined with high heads of 0.31 the recovery was 97.2% and 96.3% with a 0.25 head grade.

Tel: 403/873-6301 • Telex: 034-45514 • Fax No: 403/873-2980

Yellowknife Division

September 22, 1989

Mr. Marek Stefanski Scientific Authority FAX: (613) 992-9389

Dear Mr. Stefanski:

Please find the following progress report on the Gold Recovery Improvement Project. No written reports have been received as yet but the following is a result of telephone conversations.

a) Work done at Surface Science: Dr. Stephen Chryssoulis 🚽

The gold association testwork is complete for the flotation feed, tails and concentrate samples.

There has not been any progress on the gold association 'testwork on the roaster calcine material. Delays with the ion implantation process is the cause.

b) Work done at Lakefield Research: Inna Dymov

The diagnostic testwork for the roaster calcine and hot cottrell dust samples is complete. The cyclosizer testwork is also complete. I am awaiting the results possibly by next Tuesday.

Should you require further information on the above please call or fax me.

Yours truly,

GIANT YELLOWKNIFE MINES LIMITED

Brad Starcheski Metallurgist

BS/sj

c.c. G.B. Halverson

G I A N T Yellowknife Mines Limited

MEMO TO: G. Halverson

FROM: B. Starcheski

DATE: October 30, 1989

SUBJECT: PROGRESS REPORT ON GOLD RECOVERY ENHANCEMENT PROJECT

The following is a summary of the mineralogical study of the gold association in Giant's flotation circuit. It is essential to know the gold association in order to devise flowsheet changes to improve recoveries. The study on the roaster calcine samples was not complete at the time of our meeting with Dr. Chryssoulis, October 20, 1989.

There was four major mineralogical associations determined for the visible gold;

- 1) Enclosed/combined with pyrite
- 2) Enclosed/combined with coarse grained argenopyrite
- Enclosed/combined within fine grained arsenopyrite or within arsenopyrite-quartz particles
- 4) Liberated

Within the arsenopyrite group it was found that the arsenopyrite exists in two forms, coarse grained >20 um and fine grained. The composition of the visible gold is native gold with an average Ag content of 6.9%.

The study also determined the characterization of the visible gold in the classifier O/F, high flotation tails, low assayed flotation tails and the four flotation concentrates.

A) Classifier Overflow

The coarse liberated gold is the major association. Fine grained gold is associated with fine grained arsenopyrite and $quart\pi$. This association accounts for 5-10% of the total. Cyanidation tests revealed that thirty-nine percent of the gold in the overflow could be recovered by cyanidation.

B) High Grade Flotation Tails: .019 oz/T

There was a number of small gold grains enclosed in time grained arsenopyrite-quartz particles. The visible gold was also found combined with quartz and these grains were quite large, 600 um.

C) Low Grade Flotation Tails: .014 oz/T

There was small gold grains enclosed in fine grained arsenopyrite-quartz particles which was also found in the high grade tailings. No quartz-gold grains were found.

The gold loss appears to occur by encapsulation within fine grained arsenopyrite-quartz particles in both high and low grade tails. Cyanidation tests indicate that 50% of the gold can be recovered.

D) Concentrates

The first and second maxwell cell concentrates have the visible gold associated with the coarse grained arsenopyrite. The rougher concentrate has 80% association with fine grained and 20% with coarse grained arsenopyrite. The scavenger concentrate gold is associated with the fine grained arsenopyrite. Cyanidation tests at Giant revealed the following results:

	CYANIDATION	RECOVERY
1st Maxwell Conc.	23%	
2nd Maxwell Conc.	32%	
Rougher Conc.	29%	
Scavenger Conc.	20%	

The study also characterized the invisible gold in the previous four samples. The major association of invisible gold was arsenopyrite with a very slight 1.5% contribution from pyrite. The following table illustrates the breakdown of the invisible gold in the, coarse grained and the fine grained arsenopyrite.

COARSE GRAINED	FINE GRAINED
(%)	(%,)
25	75
14	36
18	02
75	25
72	2.8
24	76
12	8 8
	(%) 25 14 18 75 72 24

CONCLUSION:

From the results of the gold association we can now devise a test programme to improve the recoveries. Lakefield has been awaiting these results to begin their testing schedule. The focus of the present test program is to improve gold recovery as opposed to improving concentrates. The following schedule has begun at Lakefield.

1) The first test is a lab scale of the present flowsheet with the addition of cyanidation tests on feed, tails and concentrates. From this we can hope to determine the distribution of gold that is amenable to cyanidation.

2) The second test is the current flowsheet with the addition of a tertiary grind to 90%m -200 Mesh. The product would then be floated and the tails assayed then cyanided. This would indicate how the finer liberation size affects the recovery.

3) The third test would utilize the present flowsheet but the scavenger concentrate would be pulled quite hard in order to float as much gold as possible. The sulfide grade of this concentrate would be low so a means of upgrading would be utilized such as cycloning and/or a cleaning cell. Presently we can't pull too hard as it adversely affects our concentrate feeding the roaster.

4) The fourth test would incorporate jigs to recover the large grains of visible gold prior to flotation.

From the results of these tests at Lakefield, we can modify the present flowsheet and run a plant trial.

Brod Starches A

Brad Starcheski Metallurgist

BS/sj

Page 13

Tel: 403/873-6301 • Telex: 034-45514 • Fax No: 403/873-2980

Yellowknife Division

November 2, 1989

Mr. Marek Stefanski Scientific Authority CANMET/Ottawa FAX: (613) 992-9389

Dear Marek:

Re: Progress Report #3 "Gold Recovery Improvement Project"

Late in October, Brad Starcheski and myself were able to gain significant headway by visiting Lakefield Research and Western University.

Dr. Stefen Crysoullis is 75% complete with this project and has completed the study of our flotation circuit. Please find attached a progress report by Brad and Dr. Crysoullis' progress report and some Lakefield tests. With this information we were able to get Lakefield started on bench scale testwork for possible recovery improvements by 1) cyanidation, 2) finer grinding, 3) concentrate recycle/cleaning. We have sent a two ton sample of crusher feed to MPSI to do SAG Mill Amenability by batch testing as a stand alone item.

The mineralogical investigation should be complete and a report made by December 15, 1989. The Lakefield testwork including calcine work should be done by the end of December and reporting in January.

One of the outcomes of this program was identification of significant gold recovery by cyanidation of our tailings. A program to cyanide our tailings through the Tailings Reclaim Plant is being overseen by Doug Bartlett of Giant. He is looking at the cynergistic effects of the tailings on the TRP plant before going to full scale application this spring. This project has a potential value of \$1.2 million per year before costs.

Page 14

PAGE /2

We should look at getting together to discuss this work by January/90. I could arrange something during the CMP meeting in January if this is okay with you.

Should you require further information, please call or fax me.

Yours truly,

GIANT YELLOWKNIFE MINES LIMITED

S Habre

G.B. Halverson Mill Superintendent

GBH/sj Attach.

c.c. B. Starcheski? S. McAlpine

Page 15

GIANT Yellowknife Mines Limited

MEMO TO: G. Halverson

FROM: B. Starcheski

DATE: November 25, 1989

SUBJECT: LAKEFIELD WORK - PROGRESS REPORT

Lakefield has done a series of preliminary flotation tests as per the outlines sent to them.

We were hoping to determine the flotation recovery vs TEST A: grind size and the cyanidation of the tails vs the size of the tail particles.

TEST 21: First test done -- head .336 oz/T, tail .023 oz/T

Grind	Flot.	Sulfur %
<u>-200m</u>	<u>Rec.</u>	Conc
61	78	23.5
83	89	20.1
88	92	17.1
94	93.9	16.9

TEST 22-25: head .269 oz/T, tail .027 oz/T

	Flot.	Sulfur	Cyanidation
<u>Grind</u>	<u>Rec.</u>	<u>%</u>	Rec.
61	72	20.6	35.5
83	83	16.6	32.6
88	89	13.4	36.9
94	91.3	11.5	32.9

The finer grind improved flotation recovery of the Au from 89% - 91%. The S recovery was only marginally increased 94% -96.7% when the grind went from 83% to 94%. This was evident in both tests.

Lakefield will repeat this set. The cyanidation recovery remained around 32% - 35%.

<u>TEST B</u>: Cleaning of a rougher concentrate. By going to a cleaning stage the sulfur in the concentrate increased from 17% to 23% and 13% to 21%. In test T19 the scavenger tail was refloated to see the effect. There was a 2% increase in Au recovery. Sodium Bicarbonate was used a pH modifier in T20 and the Au recovery was at 94.7% with a tail of .017 oz/T. The pH of T20 was 9.0.

> Lakefield will repeat T19 to ensure repeatability. Also I've asked them to try a few more cleaning stages if possible.

<u>TEST C</u>: Normal flotation flowsheet but with cyanidation tests on the 3 streams: feed, conc, tail. They will begin this next week.

Brad Starcheski

61:01	68 61. 42.11

SENT BY:Xerox Telecopier 7020 111-24-89 ;11:59AM ; Lakefield Research→

Page 17

			and the second secon						T							1					T				-							-	-	
								25			1726 channa			******	24					23			22			-				,		21		AN JSB
			-			÷	-	as 1-21							as T-21					as T-21			as T-21								100 g/t A343/350	135 g/t CuSO4	1/0	encelher
	1_4				94.3				L				88.1						82.7	61.4			61,4						94.3	88.1	82.7	61.4	mesh	,
Head (calc)	14 min Rougher Tall	12 min Rougher Tail	9 min Rougher Tail (6 min Rougher Tail	14 min Rougher Cond	12 min Rougher Cond	9 min Rougher Conc	6 min Rougher Conc	Head (calc)	12 min Rougher Tail	8 min Rougher Tail	6 min Rougher Tail	12 min Rougher Cont	9 min Rougher Conc	6 min Rougher Conc	Head (calc)	9 min Rougher Tail	6 min Rougher Tail	9 min Rougher Conc	Emin Rougher Conc	Head (calc)	6 min Rougher Tail	6 mini Rougher Conc	Head (calc)	14 min Rougher Tail	12 min Rougher Tail	9 min Rougher Tail	8 min Rougher Tail	14 min Rougher Con	12 min Roughar Con	9 min Rougher Conc	6 min Rougher Conc		100000
100.0	85.2	87.6	90.2	92.7	14.8	12.4	9.8	7.3	100.0	88.3	90.6	92.5	11.7	3.4	7.5	100.0	90,4	92.5	9.6	7.6	100.0	91.8	8.2	100.0	88.0	88.6	90.2	92.1	12.0	11.4	8 .6	7.9	38	5.0
0.76	0.12	0,14	0,19	0.20	4.47	5.14	6.03	6.94	0.76	0.12	0.17	0,26	5,60	6,46	6.92	0.75	0.17	0.26	8.35	6.96	0.76	0.17	7.35	0.89	0.10	0.11	0.15	0.26	6.67	6.92	7.62	8,17	As	
1.83	0.16	0,18	0.24	0,36	11.50	13.40	16.60	20.60	1.82	0.11	0.16	0.28	14,80	17,80	20.90	1.89	0.18	0.29	18.00	21.50	1.86	0.19	20.60	2.10	0.08	0.09	0.14	0.27	16.90	17.70	20.10	23.50		for television
1.51	0.11	0.12	0.15	0.24	Ð.55	11.2	14,	17,6	1_50	0.06	0.09	0.17	12.4	15.1	17.9	1.56	0.11	0,18	15.3	18.5	1.54	0,12	17.5	1.72	0.04	0,05	0.07	0,16	 	14,7	16,83	20	Spy(calc)	¥.
9.22	0.94	1.21	13,7	2,79	56.9	65.6	78,7	91,9	10.12	0.96	1.47	2.95	79,4	93.6	98.8	9.43	1.36	2.48	85.4	94.5	9,23	1.67	94	11.50	0.80	1.02	1_43	2.71	90	9 3	104		₹	•
100.0	13,4	16,3	22.9	33,7	86,6	83.7	77.1	66.3	100.0	13,9	20,1	31,9	86.1	79.9	6 8,1	100.0	20.1	31.2	79.9	68,8	100.0	20,6	79.4	100.0	9,5	10.9	15,5	27.3	90.5.	89,1	84,5	72.7	A 9	
100.0	7.4	8.7	31.6	18,0	92.6	91.3	88.4	82.0	100.0	ε ές	æ.	14.1	94.7	91.9	6.58	100.0	8,6	14,1	91.4	85.9	100.0	9.4	90.6	100.0	3.3	4.0	6,0	11.8	96.7	56.0	94.0	88.2	S	
100.0	<u>6</u> .	.7.1	2,0 2	14,6	93.9	92,9	90.B	85_4	100.0	5 5	5.4	10,3	96,5	94_6	7.68	100.0	8. 2	10 .S	8.66	89.4	100.0	7.0	93.0	100.0	2.0	2.4	မ မ	¢0 ,4	98.0	97.6	96,1	91.6	Spv (calc)	nonnainsin
100.0	8 .7	1 5	10.7	28.0	91,3	8 8.5	£,£8	72.0	100.0	8.4	13.2	26.9	91.6	86.8	73-1	100,0	13,0	24.3	87.0	75.7	0.001	36.6	83.A	100.0	çn 	7.9	11.2	21.0	93,9	92.1	88-8	78-2	Ž	

9 <u>9</u> 0.	SHA NO
1	5
	Flotation Test Condition and Results
	Condition
	and Re

END OL DOCNWENL ***

SENT BY:Xerox Telecopier 7020 ;11-24-89 ;12:00PM ; Lakefield Researcn→

Page 18

					NO								, 1	19								-15							Test No
A la a tan a tan	q	50 g/1 CuSO4 60 n/t A343/350	50 g/t A343/350	85 g/t CuSO4	35 kg/t Na2CO37			Hendelen Scar i au	Doffaniad Come Tail		60 n/t A343/350	50 of CuSO4	50 alt A343/350	es pri Cusoa				ſ	60 a/t A343/350	50 pt CuSO4	50 g/t A343/350	85 g/t CuSO4						a/t	Reagents
-					08-09							80.0		60,0						80.0	•	60.0					82.0	100	× -200
	Head (calic)	Scav Tail	Cleaner Fail	Scar Conc Kowyh	2	Head Scar I ally		Scar Tail 2	Shav Cran 2	Head (railc)	Scav Tail	Cleaner Tail	Scar Cone Rough	Cleaner Conc	Head (calc)	Rougher Tailing	14 min Rougher Conc	11 min Hougher Cond	8 min Rougher Conc	7 min Rougher Cone	6 min Rougher Conc	5 min Rougher Conc	Head (calc)	Rougher Tailing	20 min Rougher Cond	15 min Rougher Cond	10 min Hougher Conc		Products
	500.0	88.1	4.3	5.61	7.0	30.Z		E 619	1.9	100,0	90.2	3,0	9.7	6.7	100.0	91.7	19.3	16.0	14.2	13,2	12,3	8.3	100.0	74.0	26.0	22.0	16.7	*	Weight
	0.76	90 <u>-</u> 0	0.72	8.00	4,02	30.10	0.00	80.08	78.0	0.79	0.10	1,38	7.16	9.78		1	,	ı	ĩ	I	•	ſ		•	1	•	•	ÅS	AS
	1,68	с. БС	1.3N	13.10	20.00	00 BU	220	0.00	0,82	1.75	60.0	2.13	17.10	23.90	2.03	0.21	9.84	11.50	12.90	13,70	14.30	20,20	2.61	0.07	9,90	11,60	14.80	Ş	Assays; 🏹 gr
	1.35	U.VJ	1.5	2 -		18.0	0 02	0.05	0,5	1.4	0.05	1.54	14.0	19.7	1		,	۲	•	•		ţ		1	,	•	ŀ	Spy(calc)	E E
	9.35	(1017	, , , ,	4 7 2 0	1.	113	2	2	10.4	9,35	0.97	12.9	86.9	121	8.72	1.	42.9	51.1	56.7	59.7	60_4	80,5	10.36	0.68	38,0	44.3	55.8	Au	
	100.0	0.0	n # n -	+	2	8 4		V	2.0	100.0	11.2	5,3	8.8	83.4		(6) ₋	,	\$	1	1	ı	•		1	•	•	AS	-
	100.0	۲, U	5 ¢		1 20	94.0	A A A	3.7	0,9	100.0	4,6	Э.7 Г	95.4	91.6	100.0	8_3	91.7	0.16	L'06	2.68	86,8	82.3	100.0	2.0	98.0	97.3	94.8	U	
	100.0		0 () i			94.8	5.1	4.2	0.9	100.0	5.1	9,1	94.9	91.8		,	,	A	•	1	1	1	1	ŧ	,		t	Spy (calc)	
	100,0		רת בי	3 (DA 7	91.1	9.4	7.2	N.N N	100.0	<u>0</u> ,4	. N	90,6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.0	5.0	49.0		92.2	3 5 5 5	5 × ×	76.3	100.0	4.9	95.1	94_0	0.05	M	

J more T12-25 J more T12-25

1	
1	دە
1	-
1	8
I	ŝ
Į	1
ł	ର
ł	-
l	Ť
1	2
I	

1, 1

Cyanidation Test Results

Sample	Test No	Grind	모	Reagent	I Cons, kg/t	% Rec'y	Residue	Head(calc)	Head (calc) Head (direct)
		% -200mesh		NACN	8	Au	g/t Au	git Au	g/t Au
Flot Feed	7	50.5	11.0	0.20	0.60	30.9	7.23	10.50	9.90
Fot Tail	œ	84.6	11.0	0_08	0.22	38.8	0.60	0.98	0,73
Mill Feed		90,8	11.0	1_05	0.74	51.4	4.63	8+1- 53 -148	9.75 ,285
Mill Feed		90.8	8.5	1.23	0.00	(51.4)	4.78	9.83.282	9.75 ·255
6 min Ro Tail(T-22)		61.4	10.0	0.80	0.16	35.5	1.07	j.02.59°1	
9 min Ro Tail (T-23)		82.7	10.0	0.80	0.22	32.6	0.97	1.44.0 ⁴²	1.36
12 min Ro Tail (T-24)	24A	88.1	10.0	0.78	0.22	96-9	0.59.017	0.94 -ox2	0,96
14 min Ro Tail (T-25)		35.0	10_0	0,82	0.22	32,9	0.65.019	0.97.028	0.94

SENT BY:Xerox Telecopier 7020 (11-24-69 (11:59AM) Lakefield Research→

81:01 6861.42.11

г.ч

Page 19
G I A N T Yellowknife Mines Limited

TO: G. Halverson

FROM: B. Starcheski

DATE: December 7, 1989

SUBJECT: PROGRESS REPORT: GOLD RECOVERY ENHANCEMENT PROJECT

The gold association work is complete at Surface Science. I am awaiting a final report from Dr. Chryssoulis who is away until the third week in December. I hope to have the report by the end of December.

The testwork at Lakefield is coming along guite well. They have run some flotation tests as per our guidelines and have received some promising results.

The test series to determine flotation recovery versus liberation size has illustrated higher recoveries at finer liberation size. Lakefield is presently performing tests to show the repeatability of the results. The results of the first three tests can be seen in Figure 1.

The test series to determine the effects of cleaning a low sulfur grade concentrate are also underway. They have been able to produce a cleaner concentrate at 30% sulfur from a rough/scavenger concentrate of 13%. The gold recovery however was poor and this may force us to recycle the cleaner tails to recover the gold.

There has been some testwork started on the calcine samples such as fine grinding gravity separation. The results from the preliminary tests were not very promising. I am waiting to receive the gold association results from Chryssoulis before initiating a test programme.

The completion date for the flotation work is December 31, 1989, and for the calcine samples January 30, 1990. The costs update from Lakefield is \$14,489.49 which covers research and analytical charges. I have not received a bill from Surface Science as yet.

B. Starcheski Metallurgist

BS/sj Attach.

G I A N T Yellowknife Mines Limited

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: December 21, 1989

SUBJECT: PROGRESS REPORT ON GOLD RECOVERY ENHANCEMENT PROJECT

Over the month of December quite a few flotation tests were performed at Lakefield and this report is a summary of those tests.

The biggest thing that sticks in my mind is why can't we lower the tails below .015 oz/T. During the course of this testwork there has been only two (2) tests out of eleven (11) which came close to .015/.016 oz/T. The rest have been all over the place. The gold recoveries have ranged from 90%-96% but there has not been anything higher. I was hoping to be able to bring the tails down to .010 - .011 oz/T.

The one positive result so far is the idea of cleaning. It looks very promising to upgrade a low sulfur grade concentrate. Some of the main results are listed below.

- The affect of finer regrind sizes shows an increase of 93% - 95%.
- 2) The affect of primary grind size increases the gold recovery from 91% to 96%, the sulfur recovery increases from 95% to 98%. But the grades of both are substantially lower in the concentrates.
- 3) Cleaning of a 5% S scavenger concentrate to a cleaner concentrate of 35% S. The gold loss in the clean tails was <u>1.86 oz/T</u> which would indicate a recycling of the cleaner tails.
- 4) The presence of Aeroflot 208 did not improve the free gold recovery.

<u>Results:</u>

TEST A: Affect of regrind size on recovery.

The liberation size has a marginal affect on the flotation recovery. Figure 1 shows the grade/recovery curves for the tests done in this series. T15 is a basis on which the other tests are compared to. T15 was a normal flotation test following the circuit parameters. T21, T25, T26 are all shifted to right and upward which would indicate the trend we hoped to see. T21 and T26 were at higher head grades and this would account for part of the shift. T26 was run longer and the gold recovery increased from 93% to 95% which would indicate an influence of longer flotation, retention time in the circuit. The retention time would be affected by tonnage surges which are present in the mill. T33 shows a higher Au recovery but at the expense of grade. The concentrate was 39% wt which is quite high but the final tails were at .013 oz/T which is encouraging. We may possibly be looking at pulling all the concentrates hard then cleaning them all.

TEST B: Cleaning of low grade concentrate.

Table B contains the results for this series of tests. From Table B it is clear that we can produce a high grade sulfur concentrate from a low grade concentrate. T34 shows a scavenger concentrate at 5% S being upgraded to 35% S. The gold losses are high so the cleaner tail would have to be recycled possibly to the cyclopak.

TEST C: Cyanidation of flotation products.

This test series is at a lower priority than A and B so there is a small quantity of data available. The following cyanidation recoveries were achieved:

Rough Conc.	54%
Scav Conc.	40%
Scav Tails	38%

The rougher and scavenger recoveries are somewhat higher than the ones from Chryssoulis' study. The presence of free gold would be the major cause. The scavenger tail recovery falls in line with Chryssoulis' study but is quite a bit lower than what I've got on plant samples. The plant samples reveal a large discrepancy in the calculated and assayed head grades of 30%. With the assays being the lower values. If one was to use the assayed heads the recoveries would drop from 50% down to 35%.

TEST D: Affect of Aeroflot 208 on the flotation of free gold.

A set of tests were run using Aeroflot 208 to try and float the free gold. There was not significant advantage found. Table D and Figure 2 give a representation of the data. TEST E: Affect of primary grind on flotation recovery.

The primary grind was varied at 53, 56, 64, 72% -200m in order to determine the affects of recovery. The data is contained in Table E and graphed on Figure 3 for the gold and Figure 4 for the sulfur. From the data it appears that finer primary grind increases the recovery of both gold and sulfur. Gold from 91% to 96% Sulfur from 95% to 98%

The drawback of the finer grind is that the concentrates are very low grade. The finer grinds produced more gangue which floated off thereby dropping the Au and S grades. UT CERIL A. A ATTACT OF THE SERVATIVE SERVATION AND SERVAT

Table A.

×

mt Aca		: Proquete	i to da Porte	r mi	55AV %,	ai ta	: 2 D.	istribu	tion	
	n in services States and services	1	: 7m		. É	: A.C	i AS		: Au :	
	1	4	:		1	1	:	1 2	: 1 ! 1	
		16 min R Conc		: 3 . 17	ಕ್ಷಿ ಕಿಂಗ್ ಕಟ್ ಕಟ್ಟು ಮತ್ತು ಸುಖ್	: : 4		38.2	1 78.2 1	
		10 min A Conc) Zelad	 	104	1 64.5	1 124	: 88.8	
and a second		112 min R Conc	i i ka se		17.7	: 93	1 89.1	96	e com a e	
	ښه ژ	114 min R Conc	· · · · ·	1 1.67	: .6.C	:	: 80.8	96.7	: 03.9 :	
	1 3	16 min R Taii	a an tha An tha an an	: () <u>a 1210</u>	0.27	: 2.71	1 27.3	11.0	1 21.0 1	
		(2 min k Tell	e a sis antista e sta	i i ten u tenut		1.40	i entre da En actividada	; 5	a and and a second a	
		and a second of the second	in i si Luga da				: :0.0			
						0.43		ing and		
	а. •						4		i	
A MARKA		and the second	0.000	s an	in a di	i i i sul' L'Al a sul	(: 1.00	100 1	
	1	۶			:	:	1		i i	
i suit iiii suit			2.0		1		l bo-C			
and a second		19 min R Conc		0.03			1 7 77 - 1 1 7 7 6 2	. 88.4	1 83.3 1	
1		lik min 8 Cont	i	1 2414		65.6	r co.Z	: 01.3	88.5 '	
	94	114 min N Corr		: 4.47	1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: 55.9	06.6	92.6	: 91.3	
and the second se		ić min k fali	i™an a niy uZulu u Z	: 0.20	1 0.06	2,79	: 30.7	: 18	1 28 1	
		19 min & Tail	90.2	1 0.29	: 0.24	13.7	i men cir alaala a	11.5	16.7	
		112 min 8 Tail	1 07.6	{ () _a j.a.	: o.18	e e engel A a alla da	1.0.3	: 8.7	11.51	
er transformer de tra	•	lle min R Tail	e en dar one E barkar e da) (), a (2)	0.16	0.94	113.4		8.7	
· · ·		E HEAD CALC	: :00	i 1 0.70) : 1,80	/ ! 1.22	: 1 100	: 100	: 100 :	
		1	:		1	e stat allere ellere L	,			
126	51	:6 ain A Conc	0.8	t "Y n i Z n di sili			79.0	: '90 . G	: 75.4 :	
:	13			i in an Luin Antain				,	1 22.9 1	
	88	112 min S Conc	i la di			75.0	88.2	95.7	1 85.6 1	
		lia min R Conc		: 5.03		71.9	90.2		: 92.9 :	
		116 min R Conc		· ::-			92.6	99.1	95.i	
					i (j. či) Vinata		21.7		1 24.6 1	
Ţ		19 min K Tail		1 0.10			14.9	5.8	1 17.1 1 17.1	
1		112 min 8 Tail		· 0.11	0.09	:	11.0	4.3		
		114 min (Tai)		: 0.09			9.8			
		li6 min R fail		1 0.07 :						
		n na haan ah han ah ha	527°F # 2	1 0.07	l Nifa Nifalio I	i va Gali i	/ a ***	∖ufa uf	і ти і і	
:		E SEAD CALC :	1.002	1 0.0	1.92	10.5	100	100	100	
	61	list A Cont		:						
			anta anta Alata ar≱	: 3.1 I		40	90.2	<u>96</u>	91.5	
1				i i i i i i i i i i i i i i i i i i i						
		l4th R Conc	04.C			26.5 1	94.8			
			CO. 2				98.1 H			
1		list R Tail	83.8				21.2 !			
1		Example R Tail 1	70.3				9.8 1			
		iGrd R Tail		: 0.09 ; : 0.07 ;						
461 8										
i .				(0.06)						
1 1 1		radon ny renalal i F	ova (g	:0.048 :	0.00 i	U.43 i	3.9 ;	1.6	2.8	
4)		HEAD CALC ;	100	: : 0.75 ;	e Ria 1942 - P	9.48	100 ;	100	100	

DOT CERIZE &: Affect of cleaning on the Cultur in the Concentrate

Test No:		;Products		w t			. بسر ۲	BAV		% D	istrio	· · · · · · · · · · · · · · · · · · ·
and the set	· ·2008			vy c V			- 422 F	meny ini	ar e Alt	la kal lantiig	i S	u u u u u . 1 - Au
	interest that the second se	•		14	:	···· . /	•		1		. й +	e china. E
· • • • •	SO	elean conc		÷.7	1	0.70	:		i 1 + 1 + 1 + 1 1			1 83.
		Scav Conc	÷	2.7	;	1.16	ţ		: 86.9		105.4	: 00.
		(Clean Tail	:		;	1.00	:	2.10	a an		1 3.7	1
	: 1	IScav fail	:	so.ž	÷	<u>.</u> .	;	0.09	: 0,27		: 4.6	1 2
	ŧ	: HEAD CALC	÷	100	ł	0.29	ł	1.75	. n. enet L'actual		: :00	s ing I and
	ł	1	÷		i					1	1	}
Refloated	Scav	CCAV Conc2		are a cat	ì	$O_{2} \omega Z$	÷	Q. Q.1	1 100 4		10.2	т ст 1
Fail	•	IScav Tail2	:	00.3	÷		:	0.08	z v 17402 V Sza z vuz	i i i in - Zanda	1 3.7	. Z.
	;	Head Scavi	÷	100 a 12	ł	() e d.		0.0 <u>0</u>			4.6	1 0.
	:	1 !	÷		i		1			;	:	1
	•								:			
		-Green Goor				12 a 32 di		iz O Li Co	· · · · ·	``	. j. ()4	111
		illemv (appe		i a z	,	•	i	s dia di		<u>.</u>		; 'ją.
an an an an Angela ann an Angela An Ann an Ann an Angela		Clean (al:	:	4.3	÷		ł		2.9		: 3.4	i ("Sa
		Starv Saits	;	idda i	i	0.05	;	\circ .co	0.58	್ಷ ಬಿಟ್ಟ್ ಗೆಡೆ. ಇದರೊಂದಲ್	1 2. 6	i EE ! viit u
	2				!		1		1	4	ł	1 1
	1	HEAD CALC	ţ	ΤΟÖ	i	O.76	í	1.68	9.05	100	1 100	L TO
	· · · · ·	а 	i		ł		ł			1	1 1	1
29 (T19)			:		1	11.3	ł	29.8	315		187.5	176.
		list Clean Conc	ł		Ē	9.72	i	20.8			190.9	1 8
2 Cleaning:		Rougn Conc	i	13.8	i	5.47	i	13.4			:98.6	91.
Stages		2nd Clean Tail	ì	1.3	i	C. 19	ł	4.3	20.3		: 3.4	4.
		list Clean Tail	·			in an∕Z	i	ata		10.6	· / · /	10.
1	l i	Rough Tail		86.5	ł	0.09	1	0.03	0.9	943	11.4	(S.
		HEAD CALC		100	;		i.	a en a) 	
		i i calentar cernales I		an san san	:	0.81	i	1.84	d.3	100	: 100	: 149
34		Cho Clean Conc	:	······	;	· • •,	1		. 48		;73.8	· 70.
3 Cleaning:		ling Gleen Conc				یند کر (2) کی او بیند لینک میں او	1		.41.4		181.4	73.
Stages		list Clean Conc	;	9.1	:	8.10 	1	16.9	72.0		184.7	(/ ul/s ("7
		-Kouca Conc	•	33.7	1		1		na Ciri		198.2	1
		lord Clean Tai:		0.4	;	7.36	:	13.6	67.9	لية ملك من التامي أسبعات	1 2.8	
		Cond Clean Fall	i		:		:	i tura tura tura in a sa s	ا در الادريان ا رزا	್ಷ ಬೇಕ ಬಹೆ - ೧೯೯೯ - ೧೯೯೯ - ಬಹಿ ಸಹಿತ	1 3.4	9.1 1
		lst Clean Tail	ł		1	0.72	•	0.99 1	6.6		113.5	19.
1		Rouan Tai:	:			0.05	::	2.049 I		بله ها است. ۲۰۰۰ : ۲۰۰۰ : علیہ	1 1.8	
1 1			;		1	es di testinadi	;	e a "a" i ay" - i i i		11 Jan	4	
		HEAD CALC	:	100	:	0.77	:	1.01	0.82	100	: 100	100

TABLE B

lej läile (; Gotak flotation () pysamet Gvanisation (; Thorysty

TABLEC.

Page 28

,

BET :	- (<u>.</u>) .:			19 S	;		÷ ==	Bav A		Z 17		in i Za A		striou	17.	107	;Cya
		200	ha 1 1 - 1	¥.	;	AU	;	- 2		ÂЦ	÷	AS.	÷	9	:	Au	lRec
		:	r 1						;		i				1		÷
1			i nan (bung :					a the a tai in a tai atus nu≷n∎ intus		60.Z	4			82.3	1	78.2	÷
			10 min - Cana					14 J	÷	$\langle \gamma O \rangle_{a} \ll$:	66.B	ł		1
,		i 30	- 67 min R Care -	n star sta Arnal ar ain	1		:	33.Z	÷	33./	÷		;	89.2	1	90.E	i
1		ł	- 10 min 2 Cone 1		1											92.2	
			il min d'Ocne:	1.6				n an an Tha an Air									<u>.</u>
ļ		:	114 min v conct	: 12 m				۰									i
		i	Rough Hail .	01.7	·												1
		1 }			;		1		;		÷		,		;		1
		ŧ	I HEAD CALC :	100	;			2.03	;	8.72	;			100			:
		1											;		÷		
30		: SO	Rougner Conc :									76.4	;	88.4	:	79.0	
		1	Gcav Conc :	in a star	;	1.87	-	2.44	:	34.4	;	1949 - 1	:	::: (2)	•	13.1	
and and a second se		1	Combined Conc:	13.7	÷		÷	10.4	:	29 A	:	ing ang	:	- 10 a - 12 - 1442 - 17	÷	92.9	
		80	Scav Fails	46. B	; ; ;).oZE	:	() (i7	:	4 77	÷		ì			کہ تھیںکہ کی یہ γ∼∽ باہ ت	
						~ 0 \. 7 \		nan an nan y		w/w / /	•	tad in Aas	1	star star	i i	/ # .1.	i na katika na katika N
A NUMBER OF CONTRACTOR OF		:	(CAD) AND	-00				÷	'	· .	!		:		1	<	1
						na el Cal		te in suitsuit								. Na tat	,
5			•						·		Ţ						•

L' di sermeta di sire s Americano o dan tram Lore.

TABLE D

. Stive Algebeakeresieveestres.wri

est to:	•	YOURCER		17		. 33	84				÷	<u>.</u>	7.911		
		an anna a Murt a' t		٠.	·		1.3							in (d	
100		et sound de la		· ····	· ·		** * * * ***		. X + 4		and and		. · ‡		
1		o) o Centra d		in si u	2 - A		1.22	;	 	:	ان میراد ۲	,			86.2
		LCAV LONG	. 1	<u> </u>						i	· ····		9617	tur e tur	93.2
lerofio:		jeav done	· · ·	2			ing the second				uiu a tur			•	97.8
icia di Cit		ú ca ∀ skont		···· · ·	الله و المراجع . محمد المراجع المراجع .		ی ۲۰ سند از ۲۰		 		+		99.3	· ·	98.9
		Scav Fail		<u>.</u>	· · · · · · · · · · · · · · · · · · ·		0.07	1	0,40						
						÷				:					1
		SAD SAL		200					ina katur Lana katur				.20 a	0.0	
			,			:			264.				:		:
		O ex Conc 🕾		· •		;	20.0	;	:11 a m	÷	<u>.</u>		·····	المراجع المراجع	:
Inner		te est service and		<u>1</u> 1					نى ئىد بەشتىش			ł		:	86
		VIAV 1280		··					· / w				96		91.1
ene sere		128 8 12 - 1286					0.60		····				98,5		
		KIER KART		÷ .		:	:						18.9		
		. 1022 311					114.07	:	· · · · · · · ·				ain a suit		
i i						+		:							
		ELEAD CALC		. 1382	1	÷		i	Ver die state	÷	2.00	÷	. 00 :	100	
)								;	1267						
		O EN LONG 1		i e La		:	i Ca C	:	69. U	;	67.4		01.71		
anzéero	. di	0 sR Come 2	i	5.0	4 1444				20.7				9018		
1:2 4 Q		19cav conc		in a la	:					1					
		Scav Conc	, 	il y da	یا است. میداند است ا	i	0.64		alan d	i			•	i a i	a1.4
a gyndynawrae		WCEV CORC	·		1.200										A8.7
As we determine the	ţ	:Scav Tali		7 .											:
		i				÷					-	•		=	
r en en le	I	THEAD CALC		LOO	e sa e	;	i a si a di a se ata						()	1. 2. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	·

and an arrest of Chromotopic and the state of the

TABLE E

		·PAcances ·	8 G		eeav (a/ 7	1 A. 12	· · · · · · · · · · · · · · · · · · ·				
	ana ang sang sang sang sang sang sang sa	:			· -							
		· · · · · · · · · · · ·			-							
··· ·												
		No. 1997 August Angeles and August Au		t a that								
		R Coma J										
		in theac			l I a Alb	·	· 35					
		an here a an a		- 1 0 1.222 - 2 0 1.222	- 13.40	: : : : : : : : : : : : : : : : : : :	. 88.6) (j44)	1 03.0			
:		a No Gaanaa 🗤		·	·	. Jirai	10. <u>.</u>					
i	I	HR Dall	7782 - J		an a	:	تنت . سر انت ا	4.6	در د. محسب ا			
:		· · · · · · · · · · · · · · · · · · ·										
		HHEAD CALC:	C	a a a a	1.03		- 100	: 100	1 20			
		• · · · · · · · · · · · · · · · · · · ·		1		1268						
40 1		iR Conc 1 .		8 3	:			# ?	1			
		iR Come 💷 i		i i u Ci	1 - 4 - Z	: 60m -	a Call 😳	i JGRB	1 76.7			
		IR Conc J :		12,72	1.04.5	: 96.J	46.C	: 93.4	: 38.5			
:		13 1055 - 1	1. A. C.	in a single second s	: · · <u>,</u> (_)		in the second	1 4 4 0	· 00.4			
1		IR Cane E -	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	in a sina. In a suite	: 7.7œ	i tea al San Canada	а. — т. — н. — н	1. 19				
		en fore e	ingra, and Sinan an I		· · · · · · ·		· · · · · · · ·					
					· ·		and a ' na a and					
		: EAD CALC:	1200			110	100	1.000				
						.210		•				
		18 Cone : :		÷	i 		1	ì	1			
i		iR Conc. :		1 - 10	1 (2)	(() , 4	1 62	1 /	1 71.3			
:		TR Cone 2 :		i <u>i</u>			l Charada Galada	1 191	- 03			
1		lR Conc →)				44 ,7	86.4	0.87	: 89.4			
:		18 Conc 5 :	24.5	s sin yan Ali a z ()	7 - 7 - 2	$\bigcirc 4.7$: 91.4	: 9814	12220			
:		ER Conc G E		1.1.20	ಕೆ ಎಂದು ಬೇಕೆಗೆ ಸ್ಮಾರ್ಷ ಮುಖ್ಯಮ್ಮ ಸ		· 93.4	: 127 a	. <u>၂</u> 4			
;		IN Tail	70.U	0.07	. 0.07	- 13 A.S.	6.0		er 2			
1 -		2		:								
i. r		HHEAD CALC:	C ANA	: 0.75			· 2.00	i vyňs Liter				
÷		1		± ;	• -	.267		1				
		tR Conc A -					;	1				
		ta na sana ang sa				e e Carlos	6.4.J	7 6				
1		(R Conr .)	и.: н	: 3.94			34.1		. 99.a			
		HR Conc A i	ala da ser a ser	n in sins a Sing the state	a de Jacobia	tani a a		i - Juli	i - i			
		lR Conc 5 l		: 2.61			1216					
1.4			an an an Sui stàite Alb									
1				10.083					: 3.9			
ļ		1			· · · · · · · · · · · ·		-rea Mi Tana" -					
:		READ CALCE	100	1.0.77	1 - 20 -	en en state de la composition de la com Composition de la composition de la comp	100	100	100			
						.274	· · · · · · · · ·					

Giant YELLOWKNIFE MINES LIMITED

TO: G.B. Halverson

CC: B. Starcheski

FROM: M.E. Goodfellow

DATE: January 27, 1989

SUBJECT: Roaster Product Cyanidation Testwork

Reventucator of sample sent to hakefield

Summary:

Testwork was conducted on samples of transfer dust and roaster discharge to verify gold cyanidation recoveries obtained on split samples sent to Lakefield.

The transfer dust samples which underwent standard cyanidation obtained the highest gold recovery at 92.24% Au after 24 hours of leaching. Lakefield results, obtained 94.5% Au after 24 hours leaching. The roaster discharge sampled obtained 91.84% Au while Lakefield test obtained 86.3% Au. The results of this gold testwork verify Lakefield's testwork of cyanidation recoveries. Further testwork is required to verify that single stage roasting is more efficient than two stage roasting in terms of gold recovery.

Purpose:

To verify gold cyanidation recovery results obtained by Lakefield Research on samples of roaster discharge and transfer dust and roast discharge samples.

Procedure:

Standard cyanidation tests were run on 2 - 200g samples of transfer dust and 1 - 200g roaster discharge sample. The procedure followed is attached. No prewash was conducted on one sample of transfer dust (TD1). The Winchester acid bottles were rolled uncapped for the entire 48 hour test.

Page 34

CYANIDATION TESTWORK

A) <u>STANDARD METHOD</u>

- 1. Weigh 2 200g samples for duplicate cyanidation testwork.
- 2. Wash and filter each sample with 500 1,500 mL water.
- 3. Retain filtrates for the Au and As assay. Assay for Fe also if filtrate is highly coloured.
- 4. Weigh the wet filter cakes to determine their moisture content and place in a Winchester acid bottle. Pump with tap water to 33% solids. If the sample is dry, pulp with 400 mL of tap water.
- 5. Add lime (CaO) to raise the pH to 10.5.
- 6. Add 10 lb/ton sodium cyanide (NaCN) for calcines and concentrates.
- 7. Roll sample for 1.0 hour.
- 8. Withdraw samples to check pH to 10.5. Add sodium cyanide to maintain a free cyanide strength of 1.0 lb/ton for calcines and concentrates.
- 9. Roll samples for a further 23 hours. (24 hours total)
- 10. Follow Step 8 again but submit a sample (~60 mL) for the Au and As analysis. (if required)
- 11. Roll the samples for a final 24 hours for a total leach time of 48 hours.
- 12. Filter samples to separate pregnant solution.
- 13. Wash the filter cake with 1,000 mL tap water. Obtain a separate wash sample.
- 14. Assay both solution samples and solid residues for Au and As.
- 15. Determine the cyanide (NaCN) strength and pH for each pregnant solution.
- 16. Data and calculations for this testwork should be reported in the form CYANID.FRM.
- 17. All assays should be recorded in the mill testing assay report (MILLASSY.FRM).
- NOTE: The winchester acid bottles are rolled uncapped for the entire test.

Results:

Test and assay results are attached.

For the transfer dust sample with no prewash, gold recovery after 48 hours leaching was calculated to be 88.78% Au with a residue assay of 0.300 oz/ton Au. The calculated headgrade was 2.674 oz/ton Au. The assayed headgrade was 2.127 oz/ton Au. The calculated recovery after 24 hours leaching was 89.04% Au. For this sample 18.5 lb/ton CaO and 8.5 lb/ton NaCN were consumed.

For the transfer dust sample which was prewashed, gold recovery after 48 hours leaching was calculated to be 91.84% Au with a residue assay of 0.200 oz/ton Au. The calculated headgrade was 2.450 oz/ton Au. The assayed headgrade was 2.127 oz/ton Au. The calculated recovery after 24 hours leaching was 92.24% Au. For this sample 7.5 lb/ton CaO and 8.7 lb/ton NaCN was consumed.

The roaster discharge sampled achieved 90.68% Au recovery after 48 hours leaching with a residual assay of 0.21 oz/ton Au. The calculated headgrade was 2.255 oz/ton Au. The assayed headgrade was 2.303 oz/ton Au. The calculated recovery after 24 hours leaching was 91.26% Au. For this sample 5.0 lb/ton CaO and 8.65 lb/ton NaCN were consumed.

Conclusions:

- The transfer dust which had been prewashed obtained the highest cyanidation recovery at 92.24% after 24 hours leaching. The roast discharge sample achieved 91.26% Au after 24 hours leaching. Lakefield testwork on transfer dust achieved 94.5% Au recovery after 24 hours. Lakefield testwork on roaster discharge obtained 86.3% Au recovery after 24 hours.
- 2. The results of this testwork are slightly lower than the gold recoveries obtained from the samples sent to Lakefield. In both tests, the transfer dust material obtained a higher gold recovery than the roaster discharge sample. The gold recovery results obtained by Lakefield on roaster transfer dust and discharge samples are verified in this testwork.
- 3. Calculated reagent consumptions were as follows:

	CaO(lb/ton)	NaCN(lb/ton)
TD1(no prewash)	18.5	8.5
TD2	8.7	8.7
Rl	5.0	8.65
Trans. dust Lakefield	9.44	4.8
Roaster Disch. Lakefield	3.60	7.52

Page 37 For the testwork conducted at Giant, cyanide consumption was similar for all samples. Without the prewash stage, which is analagous to Giant's wash thickener, lime consumption doubles. In Lakefield testwork, less lime and cyanide were consumed.

4. Further testwork should be conducted on samples of transfer dust and roaster discharge material to verify that single stage roasting is more efficient than two stage roasting in terms of gold recovery.

Discussion

The results of this testwork verify the results obtained by Lakefield on samples of transfer dust and roaster discharge. Lakefield obtained slightly higher gold recoveries than the Giant testwork. Lakefield added oxygen to the samples by an air lance. No oxygen was added to the samples tested at Giant. The extra oxygen may acocunt for the higher recoveries obtained by Lakefield.

Further testwork is required to verify that single stage roasting is more efficient than two stage roasting in terms of gold recovery.

M.E. Goodfellow

M.E. Goodfellow Project Metallurgist

CYANIDATION TESTS

Page 38 Date of Test: November 21, 1988

le: TRANSFER DUST

Sample Code #: TD1

REF: CYANID1.FRM

Initial

Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 5.5	CaO = 1.45 g	pH = 10.0	pH = 10.0	pH = 10.1	рН =
I -200=	NaCN = 10.0 1b/t	CN = 2.10 lb/t	CN = 1.65 1b/t	CN = 1.50 lb/t	CN = 16/t
H2O = 400 mL	Other =	Tit = 10 aL	Tit = 80 mL	Tit = aL	Tit = mL
Other=	pH to 10.3	Other =	Other =	Other =	Other =
		Added 0.2 g CaO pH to 10.7	Added 0.2 g CaO pH to 11.0		

Sample Calculations:

		1	Gold		Arsenic						
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery				
Preg	422 mL	34.935 mg/L	14.743 mg	80.48 X	25.90 mg/L	10.930 mg	0.33 X				
Wash	1,000 mL	1.521 mg/L	1.521 mg	8.30 X	6.90 mg/L	6.900 mg	0.21 X				
Total	1,422 mL	11.437 mg/L	16.264 mg	88.78 X	12.54 mg/L	17.830 mg	0.54 X				
Residue	200 g	10.275 mg/L	2.055 mg	11.22 X	· 1.54 Z	3,280.000 mg	99.46 X				
Calc Head	200 g	91.595 g/t	18.319 mg	100.00 Z	1.65 X	3,297.830 mg	100.00 Z				
Assay Head	200 g	72.838 g/t	14.568 mg		1.44 %	2,880.000 mg					

Note: Preg (mL) = Preg + Tit

^-mple Test Outlines:

· CYANIDATION TESTS

Page 39

Date of Test: November 21, 1988

______Ie: TRANSFER DUST

Sample Code #: TD2

REF: CYANID1.FRM

Initial

	{				
Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 6.8	CaO = 0.45 g	pH = 9.9	рН = 10 .1	ρH = 9.7	рН =
X-200=	NaCN = 10.0 1b/t	$CN = 2.10 \ lb/t$	CN = 1.70 lb/t	CN = 1.30 lb/t	CN = 1b/t
H2O = 400 mL	Other =	Tit = 10 mL	Tit = 80 mL	Tit = mL	Tit = nL
Other=	pH to 10.6	Other =	Other =	Other =	Other =
		Added 0.2 g CaO pH to 10.9	Added 0.1 g CaO pH to 10.5		
1					

Sample Calculations:

					Gold						Arser	ic		
	Units	i	Assa	ay	Distribut:	ion	Recovery	,	Assay	,	Distributi	on .	Recover	y
Prevash	500	۹L	0.007	mg/L	0.003	шg	0.02	I	30.0	mg/L	15.000	mg	0.45	Z
Preg	422	۵L	33.908	mg∕L	14.309	ag	85.25	I	34.4	ng/L	14.517	лg	0.44	Z
Wash	1,000	nl	1.103	ag∕L	1.103	ag	6.57	Z	8.7	mg/L	8.217	mg	0.26	X
Total	1,922	nL	8.020	mg∕l'	15.415	ng	91.84	X	19.88	ng/L	38.217	ag	1.15	ž
Residue	200	g	6.850	mg∕L	1.370	ng	8.16	X	1.64	I	3,280.000	ng	98.15	Z
Calc Head	200	g	83.925	g/t	16.785	ng	100.00	X	1.66	X	3,318.217	мg	100.00	X
Assay Head	200	g	72.838	g/t	14.568	ng			1.44	Z	2,880.000	ng		

e: Preg (mL) = Preg + Tit

Sample Test Outlines:

CYANIDATION TESTS

Page 40

Date of Test: December 6, 1988

Jample: ROASTER DISCHARGE

Sample Code #: R1

REF: CYANID1.FRM

Initial

	}				
Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
рН = 6.7	CaO = 0.25 g	pH = 10.5	pH = 10.0	pH = 10.5	рН =
X-200=	NaCN = 10.0 1b/t	CN = 2.85 1b/t	CN = 1.75 16/t	CN = 1.35 1b/t	CN = 16/t
H2D = 400 mL	Other =	Tit = 10 mL	Tit = 80 mL	Tit = nL	Tit =
Other=	pH to 10.5	Other =	Other =	Other =	Other =
			Added 0.25 g CaO pH to 11.2		
4					

Sample Calculations:

			Gold							Arsen	ic			
	Units		Assa	ay	Distribut	ion	Recovery		Assay	,	Distributi	on	Recovery	y
Prewash	500	al	0.007	mg∕L	0.003	۵g	0.02	I	3.9	mg∕L	1.950	ng	0.06	X
Preg	413	۵L	29.592	∎g/L	12.221	۵g	79.13	Z	17.0	⋒g/L	7.021	mg	0.22	Z
Wash	1,000	۵L	1.781	mg/L	1.781	mg	11.53	Z	9.8	n⊈g/L	9.800	ng	0.30	X
Total	1,913	۵L	7.321	mg∕L	14.005	ag	90.68	Z	8.79	mg/L	16.821	mg	0.52	X
Residue	200	g	7.193	mg∕L	1.439	ng	9.32	Z	1.61	Z	3,220.000	mg	98.91	X
Calc Head	200	g	77.218	g/t	15.444	ag	100.00	z	1.63	X	3,255.592	мg	100.00	7
Assay Head	200	g	78.889	g/t	15.778	wa			0.46	z	92.000	мg		

e: Preg (mL) = Preg + Tit

Sample Test Outlines:

. . .

MILL TESTING ASSAY REPORT

SAMPLES FROM Transfer Dust DATE ASSAYED November 25-88

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	RPXSE	Cu
TD 1 Preg 24 Hour	1.05		14.6ppm		23.4ppm	162	
48 Hour	1.02		14.2ppm		25.9ppm	135	
Wash	.0444		2.7ppm		6.9ppm		
TD 2 Preg 24 hour	1.05		19.lppm	31.2pp	RRR ARR	136	
.48 hour	.99		21.Oppm		34.4	131	
Prewash	.0002		18.7ppm		30.0ppm		
Wash	.0322	,	3.8ppm		8.7ppm		
TD 1 Residue	.30 .30	· · ·	26.00%	5.19	1.64%	.12	
TD 2 Residue	.20 .20		27.25	7.04	1.64	.12	
n an							
			-				
							· · · · · · · · · · · · · · · · · · ·
, <u> </u>							
· · ·							
							;
					,		

MILL TESTING ASSAY REPORT

AMPLES FROM Testing

DATE ASSAYED December 9-88

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Rl Prewash	.0002		1.Oppm	- 1	3.9ppm		
Rl Preg-24 Hour	.936		38.4ppm	. <u></u>	26.6ppm		
48 hour	. 864		37.9ррп		17.0ppm		KP: 100
Wash	.052		4.7ppm		9.8ppm		
Residue	.21 .21		28.25	2.35	1.61	.18	
		· · ·					
· · · · · · · · · · · · · · · · · · ·							
	· · · · · · · · · · · · · · · · · · ·						
<u></u>							
	· ·	· · · · · · · · · · · · · · · · · · ·					
				<u> </u>			

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: February 14, 1989

SUBJECT: CYANIDATION TESTS ON LABORATORY ROASTED SAMPLES

SUMMARY:

Testwork was conducted on laboratory roasted roaster feed samples on February 7, 1989. The temperature for this test was 1100F. Duplicate cyanidation tests were conducted. The average gold cyanidation recovery after 48 hours leaching was calculated to be 90.10% Au. The average residue assay was 0.30 oz/ton and the average calculated headgrade was 2.83 oz/ton Au. The assayed headgrade of the sample was 2.46 oz/tn Au. The average reagent consumptions were 10 lb/ton NaCN and 6.0 lb/ton CaO.

B. Starcheski Plant Metallurgist

CYANIDATION TESTS

Page 44

Date of Test: February 7, 1989

Sample: ROASTER CALCINE ROASTED AT 1100F

Sample Code #: RC5

REF: CYANRCC.Fra

Initi	al							
Size	:	200.0) g	Reagents	l Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
рĦ	=	5.5	-	Ca0 = 0.50 g	pH = 10.8	pH = 10.2	рН = 9.9	рИ =
\$-200)=		-	NaCH = 10.0 lb/t	CN = 1.90 lb/t	CM = 1.40 lb/t	CM = 0.80 lb/t	CN = 1b/
H20	:	400		Other =	Tit = 10 mL	Tit = 10 mL	Tit = mL	fit = aL
Other	:=	· · · · · · · · · · · · · · · · · · ·	-	pH to 11.0	Other =	Other =	Other =	Other =
						Added .lOgms CaO to pH 10.8		N

Sample Calculations:

,				Gold					Arsenic	
	Units		Assay	Distribut	ion	Recovery	,	Assay	Distribution	Recovery
Prevash	1000	a L	0.020 mg/	L .020	ng	0.10	\$	mg/L	Rġ	1
Preg	370	aľ.	36.168 mg/	L 13.382	ng	79.70	\$	ng/L	EÇ	1
Vash	1,000	n L	3.391 mg/	L 3.391	ng	20.20	1	ng/L	∎g	\$
Total	2370	aľ.	7.086 mg/	L 16.793	ng	89.50	\$	∎g/L	ng	\$
Residue	188	g	10.446 mg/	L 1.962	ng	10.50	\$	\$	ng	\$
Calc Head	20 0	g	93.775 g/	t 18.755	ng	100.00	\$	\$	ng	\$
Assay Head	200	g	84. 255 g/	t 16.851	ng			\$	ng	

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

CYANIDATION TESTS

Page 45

Date of Test: Pebruary 7, 1989

Sample: ROASTER CALCINE ROASTED AT 1100F

Sample Code #: RC6

REF: CYANRCC.Frm

Initi	al							
Size	:	200.0) g	Reagents	l Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
₽Ħ	:	5.5	-	Ca0 = 0.50 g	pH = 10.8	pH = 10.0	pH = 10.0	рН =
\$-200	:		-	NaCM = 10.0 lb/t	CN = 1.70 lb/t	CM = 1.60 lb/t	CM = 0.95 lb/t	CN = 1b/t
H20	:	400		Other =	Tit = 10 mL	Tit = 10 mL	fit = mL	Tit = mL
Other	:		-	pH to 11.0	Other =	Other =	Other =	Other =
						Added .10gms CaO to pH 10.8		

Sample Calculations:

					Gold					Arsenic	
	Units		Assay		Distribut	ion	Recovery	,	Assay	Distribution	Recovery
Prevash	1000	nL	0.024 🔳	g/L	.024	ng	0.10	۲	∎g/L	∎g	\$
Preg	430	aL.	36.168 m	g/L	15.552	ng	85.70	۲	ng/L	ng	1
Vash	1,000	al.	2.569 🔳	g/L	2.569	ng	14.20	۱	∎g/L	ng	1
Total	2430	al.	7.467 m	g/L	18.145	ng	90.70	١	ng/L	ng	\$
Residue	185	g	10.104 ∎	g/Ľ	1.869	Rg	9.30	۱	1	Rg	1
Calc Head	200	g	100.070	g/t	20.014	ng	100.00	\$	\$	ng	٢
Assay Head	200	g	84.255	g/t	16.851	ng	849-i,, ¹ , i		\$	∎g	

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: February 14, 1989

SUBJECT: CYANIDATION TESTS ON LABORATORY ROASTED SAMPLES

SUMMARY:

Testwork was conducted on laboratory roasted roaster feed samples on February 7, 1989. The temperature for this test was 975F. Duplicate cyanidation tests were conducted. The average gold cyanidation recovery after 48 hours leaching was calculated to be 91.67% Au. The average residue assay was 0.24 oz/ton and the average calculated headgrade was 2.75 oz/ton Au. The assayed headgrade of the sample was 2.42 oz/tn Au. The average reagent consumptions were 10 lb/ton NaCN and 8.8 lb/ton CaO.

B. Starcheski Plant Metallurgist

CYANIDATION TESTS

Date of Test: February 7, 1989

Sample: ROASTER CALCINE ROASTED AT 975F

Sample Code 1: RC3

REF: CYANRCC.Frm

Initial					
Size = 200.0 g	Reagents	l Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 5.8	Ca0 = 0.75 g	pH = 10.3	pH = 10.0	pH = 10.0	рН =
\$-200=	NaCN = 10.0 lb/t	CN = 1.50 lb/t	CN = 1.10 lb/t	CM = 0.80 lb/t	CN = 1b/1
H20 = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = #L	Tit = nL
Other=	pH to 10.9	Other =	Other =	Other =	Other =
		Added .lgms CaO to pH 10.8	Added .lOgms CaO to pH 10.8		
				i i i	

Sample Calculations:

				Gold	l				Arsenic	
	Units		Assay	Distribut	ion	Recovery	!	Assay	Distribution	Recovery
Prewash	1000	a L	0.020 mg/	L .020	∎g	0.12	\$	∎g/L	ng	١
Preg	410	nĹ	34.113 mg/	L 13.986	ng	83.69	\$	∎g/L	n g	\$
Vash	1,000	n Ĺ	2.706 mg/	L 2.706	ng	16.19	\$	ng/L	ng	1
Total	2410	nĹ.	6.934 m g/	L 16.712	ng	90.92	\$	∎g/L	ng	ţ
Residue	191	g	8.734 mg/	L 1.668	rg	9.08	:	\$	ng	ł
Calc Head	200	g	91.900 g/	t 18.380	ng	100.00	\$	\$	ng	\$
Assay Head	200	g	82.885 g/	t 16.577	ng			\$	ng	<u>, (), ()) = (</u>

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

CYANIDATION TESTS

Page 48

Date of Test: February 7, 1989

Sample: ROASTER CALCINE ROASTED AT 975F

Sample Code 1: RC4

REF: CYANRCC.Frm

ze = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hra
= 5.8	Ca0 = 0.60 g	pH = 10.2	pH = 10.0	pH = 9.8	рН =
200=	NaCN = 10.0 lb/t	CN = 1.30 lb/t	CN = 1.15 lb/t	CN = 0.60 lb/t	CN = 1b/
0 = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = aL	fit = 1
her=	pH to 11.0	Other =	Other =	Other =	Other =
		Added .lgms CaO to pH 10.7	Added .10gms CaO to pH 10.8		

Sample Calculations:

				Gold					Arsenic	
	Units		Assay	Distribut	ion	Recovery	,	Assay	Distribution	Recovery
Prevash	1000	a L	0.020 mg/L	.020	ng	0.11	\$	∎g/l	∎g	\$
Preg	410	EL.	36.168 mg/L	14.829	ng	83.36	۱	∎g/L	∎g	\$
Vash	1,000	nL	2.940 a g/L	2.940	ag	16.53	\$	∎g/L	ng	\$
Total	2410	RĹ	7.381 mg/L	17.789	ng	92.41	٢	∎g/L	∎g	\$
Residue	190	g	7.706 mg/L	1.461	ng	7.59	٢	\$	∎g	\$
Calc Head	200	g	96.250 g/t	19.250	ng	100.00	٢	\$	∎g	\$
Assay Head	200	g	82.885 g/t	16.577	ng			\$	ng	

ste: Preg (mL) = Preg + Tit

Sample Test Outlines:

MILL TESTING ASSAY REPORT

SAMPLES FROM ______ Testing ______ DATE ASSAYED _____ February 13-89

Sample	Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
RC-:	3 Residue	.25 .26						
RC-4	4 Residue	.22 .23						
RC-	5 Residue	.30 .31						
RC-6	ó Residue	.29 .30						
RC (3 Prewash	. 0006		33.2ppm	<u> </u>			. <u></u>
	Preg	. 996						
	Wash	.079						<u></u>
RC 4	+ Prewash	¥.0006		35,9ppm				
	Preg	1.056						
	Wash	.086						<u></u>
RC S	5 Prewash	.0006		29,9ppm				
	Preg	1.056						
	Wash	,099			<u> </u>			<u> </u>
RE (5 Prewash	,0007		29,5ppm				<u> </u>
	Preg	1,056			<u></u>			
	Wash	,075						<u></u>
	<u></u>							
na 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 1937 - 19								
<u></u>	<u> </u>							
	······································							

W.L. Richardson

.....Assaye:

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: March 1, 1989

SUBJECT: Laboratory Roaster Testwork

SUMMARY:

Testwork was conducted on samples of Quench Tank discharge for February 3&6, 1989. Duplicate cyanidation tests were conducted. The average gold cyanidation recovery after 48 hours leaching was calculated to be 91.75% Au for Feb 6. The average residue assay was 0.19 oz/ton and the average calculated head grade was 2.29 The assayed headgrade of the sample was 2.53 oz/ton oz/ton Au. Au. The average reagent consumptions were 10 lb/ton NaCN and 2.5 lb/ton CaO. This sample was taken after the circuit had been run with the minimum water and airflow in the first stage. The average gold cyanidation recovery was 91.10% Au for the Feb 3 sample. The average residue was .26 oz/ton and the average calculated head grade was 2.82 oz/ton. The assayed head grade was 2.66 oz/ton Au. The average reagent consumptions were 10 lb/ton NaCN and 2.25 1b/ton CaO. The February 3 sample was taken at the start of the test run. Table 1 contains the operating data prior to the time of the two samples.

B. Starcheski Plant Metallurgist

CYANIDATION TESTS

Date of Test: February 20 , 1989

Sample: ROASTER CALCINE February 6, 1989 @ midnite

Sample Code #: RC1

REF: CYANRCC.Frm

Initial					
Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 6.5	CaO = 0.20 g	pH = 10.7	pH = 10.4	pH = 10.3	рН =
X-200=	NaCN = 10.0 1b/t	CN = 2.15 lb/t	CN = 1.60 1b/t	CN = 1.15 lb/t	CN = 16/t
H2O = 200 @L	Other =	Tit = 10 mL	Tit = 10 mL	Tit = @L	Tit = nL
Other=	pH to 11.0	Other =	Other =	Other =	Other =
			Added .05gms CaO to 10.8		

Sample Calculations:

				Gold			Arsenic				
	Units		Assay	Distribut	ion	Recovery	•	Assay	Distribution	Recovery	
Prevash	1000	۹L	0.017 mg/L	.017	ng	.10	I	mg/L	ng	I	
Prég	390	۵L	31.647 mg/L	12.342	ng	86.70	Z	s g/L	₽g	I	
Wash	1,000	۵L	1.884 mg/L	1.884	ng	13.20	I	#g/L	ag .	Z	
Total	2390	nL	5.959 mg/L	14.243	мg	92.00	X	mg/L	ng	Z	
Residue	190	g	6.508 mg/L	1.235	ng	8.00	Z	Z	ng	Z	
Calc Head	100	g	77.390 g/t	15.478	mg	100.00	Z	Z	∎g	Z	
Assay Head	100	g	86.652 g/t	17.330	mg			Z	ng		

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

Roc 91.75 ans. 2.530 nore 2.285 19 120 20 20 20

CYANIDATION TESTS

Page 52

Date of Test: February 20 , 1989

Imple: ROASTER CALCINE February 6, 1989 @ midnite

Sample Code #: RC2

REF: CYANRCC.Frm

Initial

Size = 200.0 g Reagents 1 Hour Roll After 24 Hrs. After 48 Hrs After Hrs pH = 6.5 CaO = 0.20 g pH = 10.4 pH = 10.4 pH = 10.3 pH = 10.3 pH = 10.3 $L-200=$ NaCN = 10.0 lb/t CN = 2.15 lb/t CN = 1.60 lb/t CN = 1.30 lb/t CN = $1b/t$ H2O = 400 mL Other = Tit = 10 mL Tit = 10 mL Tit = $$ mL Tit = $$ mL Other = pH to 11.0 Other = Other = Other = Other = Other = Added .05gas CaO to 10.8 In the second can be added to 10.8					T	
Image:	Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
H2O = 400 mL Other = Tit = 10 mL Tit = 10 mL Tit = mL Tit = mL Other = pH to 11.0 Other = Other = Other = Other = Other =	рН = 6 . 5	CaO = 0.20 g	pH = 10.4	pH = 10.4	pH = 10.3	рН =
Other= pH to 11.0 Other = Other = Other = Other = Other =	Z -200 =	NaCN = 10.0 lb/t	CN = 2.15 1b/t	CN = 1.60 1b/t	CN = 1.30 lb/t	CN = 16/t
Added .05gas CaO	H2O = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = mL	Tit = mL
	Other=	pH to 11.0	Other =	Other =	Other =	Other =
				-		

Sample Calculations:

					Gold			Arsenic				
	Units		Assay		Distributi	ion	Recovery		Assay	Distribution	Recovery	
Prevash	1000	aL	0.017 m	g/L	.017	æg	.10	Z	∎g/i	ag	I	
Preg	410	aL	32.058 m	g/L	13.144	ng	90.80	Z	∎g/l	a g	I	
Wash	1,000	aL	1.336 m	g/L	1.336	ag	9.20	I	∎g/L	ng	ĩ	
Total	2410	aL	6.008 m	g/L	14.480	ng	91.50	Z	∎g/L	ng	ĩ	
Residue	196	g	6.850 m	g/L	1.343	ag	8.50	Z	Z	ng	I	
Calc Head	200	g	79.115	g/t	15.823	₽g	100.00	7	Z	eg.	Z	
Assay Head	100	g	86.652	g/t	17.330	ng			Z	ag		

Note: Preg (mL) = Preg + Tit

pample Test Outlines:

CYANIDATION TESTS

Page 53

Date of Test: February 20 , 1989

ample: ROASTER CALCINE February 3, 1989 @ noon

Sample Code #: RC3

REF: CYANRCC.Frm

Initial

Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 6.5	CaO = 0.20 g	pH = 10.8	pH = 10.5	pH = 10.1	рН =
I -200 =	NaCN = 10.0 1b/t	CN = 2.25 1b/t	CN = 1.80 1b/t	CN = 0.95 1b/t	CN = 16/t
H2O = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = aL	Tit = mL
Other=	pH to 11.0	Other =	Other =	Other =	Other =

Sample Calculations:

				Gold					Arsenic				
	Units		Assay	Distribut	ion	Recovery		Assay	Distribution	Recovery			
Prevash	1000	۳L	0.034 mg/L	.034	ng	. 20	Z	mg/i	۵g	Z			
Preg	410	πL	39.867 mg/L	16.345	ng	90.30	Z	mg/L	#g	Z			
Wash	1,000	aL	1.713 mg/L	1.713	æg	9.50	z	#g/L	₽g	2			
Total	2410	лL	7.507 mg/L	18.092	ag	91.40	Z	mg∕i	∎g	Z			
Residue	195.5	g	8.734 mg/L	1.707	ag	8.60	z	Z	₽g	ž			
Calc Head	200	g	98.995 g/t	19.799	ag	100.00	X.	Z	۵g	ž			
Assay Head	100	g	91.105 g/t	18.221	ng			Z	ng				

Note: Preg (mL) = Preg + Tit

pample Test Outlines:

Roc 71-0 0-4- 2.660 0-0 2.614 126 00 -126 100 -125 100 M 0

CYANIDATION TESTS

Page 54

Date of Test: February 20 , 1989

Sample: ROASTER CALCINE February 3, 1989 @ noon

Sample Code #: RC4

REF: CYANRCC.Frm

Initial

Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 6.3	CaO = 0.20 g	pH = 10.9	pH = 10.3	pH = 10.2	рН =
I-200=	NaCN = 10.0 lb/t	CN = 2.90 lb/t	CN = 1.55 16/t	CN = 1.15 1b/t	CN = 16/t
H2D = 400 mil	Other =	Tit = 10 mL	Tit = 10 mL	Tit = mL	Tit = mL
Other =	pH to 11.0	Other =	Other = Added .05gms CaO to 10.8	Other =	Other =

Sample Calculations:

				Gold			Arsenic					
	Units		Assay	Distribut	ion	Recovery		Assay	Distribution	Recovery		
Prewash	1000	øL	0.034 mg/L	.034	ng	.20	X	ng∕L	#g	Z		
Preg	410	aL	37.401 mg/L	15.334	ng	89.80	X	∎g/L	ng.	ž		
Wash	1,000	aL	1.713 mg/L	1.713	ng	10.00	Z	∎g/l	ag	Z		
Total	2410	۵L	7.088 s g/l	17.081	ag	90.80	X.	ng/L	ag	Z		
Residue	194.5	g	8.905 mg/L	1.732	мg	9.20	Z	Z	ng	ĭ		
Calc Head	200	g	94.065 g/t	18.813	ag	100.00	I	Z	ag	z		
Assay Head	200	g	91.105 g/t	18.221	۵g			Z	ag			

Note: Preg (mL) = Preg + Tit

Jample Test Outlines:

MILL TESTING ASSAY REPORT

SAMPLES FROM ... Testing DATE ASSAYED February 23-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
RC-1 Prewash 6th	.0005						
Preg	.924				-		d
Wash	.055		<u> </u>		· ·		
RC-2 Prewash 6th	.0005						
Preg	.936						
Wash	.039						
RC-3 Prewash 3rd	.0010						[*]
Preg	1.164						
Wash	.043						
RC-4 Prewash 3rd	.0010						
Preg	1.092		-				
Wash	.050		-				
RC Head 3rd	2.63 2.00	2.66	26.25	3.40	1.68	.41	
RC Head 6th	2.38 3.05 2.17	2.53	28.25	3.59	1.71	. 44	
CR-1 6th midnight	.18 .21	19					
CR-2	.20 .20	.20					
CR-33rd Noon	.24 .27	•255					
CR-4 3rd	.,26 .26	,26					
· · · · · · · · · · · · · · · · · · ·							

W.L. Richardson

.....Assayer
Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: March 2, 1989

SUBJECT: Laboratory Roaster Testwork

SUMMARY:

Testwork was conducted on samples of laboratory roasted roaster feed. The samples were roasted at 840F and 900F. Duplicate cyanidation tests were conducted. The average gold cyanidation recovery after 48 hours leaching was calculated to be 86.19% Au for the sample roasted at 840F. The average residue assay was 0.38 oz/ton and the average calculated head grade was 2.60 oz/ton Au. The assayed headgrade of the sample was 2.55 oz/ton Au. The average reagent consumptions were 14.5 lb/ton NaCN and 5.25 lb/ton The sample roasted at 900F yielded a recovery of 89.80% Au. CaO. The average residue was .28 oz/ton and the calculated head grade was 2.61 oz/ton. The assayed head grade was 2.73 oz/ton. The average reagent consumptions were 11 lb/ton NaCN and 6 lb/ton CaO. Both samples exhibited pH's of 5.3 before lime addition. Previous testwork with similiar roasting conditions showed this acidic nature of the calcine. The recoveries were low and the reagent consumptions were high. This acidic nature was noticed in the mill calcine during the end of January. The calcine residues during this period were .27-.30 oz/ton. The roaster calcine was a reddish color during this time as well.

B. Starcheski

GIANT YELLOWKNIFE MINES LIMITED

CYANIDATION TESTS

Date of Test: February 22 , 1989

Sample: ROASTER CALCINE Roasted @ 840F

Sample Code #: RC1

REF: CYANRCC.Frm

Initial	-				
Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 5.6	CaO = 0.30 g	pH = 10.2	pH = 9.8	pH = 9.9	pH =
I -200 =	NaCN = 10.0 1b/t	CN = 1.10 1b/t	CN = 0.90 16/t	$CN = 0.80 \ 1b/t$	CN = 16/t
H2O = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = mL	Tit = nL
Other =	pH to 11.1	Other = Added .1gms CaO Added .2gms NaCN	Other = Added .10gms CaO to 10.7 Added .2gms NaCN	Other =	Other =
			Added .2gms NaCN		

Sample Calculations:

					Gold					Arsenic			
	Units		Units		Ass	ay	Distribut	ion	Recovery	1	Assay	Distribution	Recovery
Prewash	1000	aL	0.03	ag∕L	.030	۸g	.20	Z	∎g/L	ng	Z		
Preg	380	aL.	30.825	ag∕L	11.713	₽ġ	79.75	I	ag∕L	ng	ĩ		
Wash	1,000	aL	2.945	mg/L	2.945	ng	20.05	Z	∎g/L	ng	ľ		
Total	2380	۵L	6.171	@g∕L	14.688	ag	85.27	Z	eg/L	ធព្វ	Z		
Residue	190	g	13.357	@g∕L	2.538	ng	14.73	Z	Z	ng	Z		
Calc Head	200	g	86.13) g/t	17.226	۵g	100.00	X	X	∎g	Z		
.ssay Head	200	g	87.33	7 g/t	17.467	ng			X	∎g			

Note: Preg (mL) = Preg + Tit

2.55 2.600 2.55 2.600 .3.5 Nocio 14.5 Cal 5.25

CYANIDATION TESTS

Page 58

Date of Test: February 22 , 1989

Sample: ROASTER CALCINE Roasted @ 840F

Sample Code #: RC2

REF: CYANRCC.Frm

Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 5.8	CaO = 0.30 g	pH = 9.8	pH = 9.9	pH = 9.9	ρH =
X -200=	NaCN = 10.0 lb/t	CN = 1.05 1b/t	CN = 0.85 1b/t	CN = 0.80 1b/t	CN = 16/t
 120 = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = aL	Tit = sL
Other =	pH to 11.0	Other = Added .15gms CaO to 11.2 Added .2gms NaCN	Other = Added .10gms CaO to 11.2 Added .3gms NaCN	Other =	Other =

Sample Calculations:

				Gold					Arsenic				
	Units		Assay	Distribut	ion	Recovery	,	Assay	Distribution	Recovery			
Prewash	1000	۵L	0.031 mg/L	.031	ng	. 20	X	#g/L	ag	Z			
Preg	400	ลเ	33.291 m g/L	13.316	ng	83.10	Z	∎g/l	ng	7			
Wash	1,000	٥L	2.672 mg/L	2.672	ng	16.70	X	∎g/L	ag	2			
Total	2400	۵L	6.675 m g/L	16.019	۸g	87.10	Z	∎g/L	ag	I			
Residue	190	g	12.330 mg/L	2.380	ng	12.90	z	Z	ng	Z			
Calc Head	200	g	91.995 g/t	18.399	ng	100.00	Z	Z	ag	Z			
Assay Head	20 0	g	87.337 g/t	17.467	mg			Z	ng				

Note: Preg (mL) = Preg + Tit-

CYANIDATION TESTS

Page 59

Date of Test: February 22 , 1989

Sample: ROASTER CALCINE Roasted @ 900F

Sample Code #: RC3

REF: CYANRCC.Frm

Initial

Size = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 5.3	CaO = 0.35 g	pH = 10.2	pH = 9.8	pH = 9.9	рН =
X-200=	NaCN = 10.0 1b/t	CN = 1.25 1b/t	CN = 1.15 1b/t	CN = 0.90 1b/t	CN = 16/t
H2O = 400 mL	Other =	Tit = 10 mL	Tit = 10 mL	Tit = nL	Tit = aL
Other =	pH to 11.0	Other = Added .1gms CaO to 10.5	Other = Added .20gms CaO to 11.5 Added .2gms NaCN	Other =	Other =

Sample Calculations:

		Gold						Arsenic				
	Units		Assay	Distribut	ion	Recovery	1	Assay	Distribution	Recovery		
Prewash	1000	۵L	0.034 mg/L	. 034	ng	.20	Z	æg∕L	ng	Z		
Preg	410	٥١	34.113 mg/L	13.986	ng	83.80	z	@g/L	۵۵	I		
Wash	1,000	۵L	2.672 mg/L	2 .672	ng	16.00	7	∎g/L	۵g	Z		
Total	2410	πL	6.926 mg/L	16.692	#g	89.80	Z	mg/L	ag	Z		
Residue	190	g	9.933 ag/L	i .887	ag	10.20	Z	I	ng	Z		
Calc Head	200	g	92.895 g/t	18.579	ag	100.00	Z	Z	ng	1		
Assay Head	200	g	93.503 g/t	18.700	ag			Z	₽g			

Note: Preg (mL) = Preg + Tit.

120 Sasa 225 2.33 Calc 2,61 .28 NG 6 No to Min T

CYANIDATION TESTS

Date of Test: February 22 , 1989

Sample: ROASTER CALCINE Roasted @ 900F

Sample Code #: RC4

REF: CYANRCC.Frm

igents = 0.35 g	1 Hour Roll pH = 10.2	After 24 Hrs.	After 48 Hrs	After Hrs
= 0.35 g	pH = 10.2			
		pH = 9.8	pH = 9.9	рН =
N = 10.0 lb/t	CN = 1.30 lb/t	CN = 1.00 lb/t	CN = 1.00 lb/t	CN = 16/1
er =	Tit = 10 mL	Tit = 10 mL	Tit = mL	Tit = mL
to 11.0	Other = Added .1gms CaO to 10.8	Other = Added .10gms CaO to 11.0	Other =	Other =
1	er =	er = Tit = 10 mL to 11.0 Other = Added .1gms CaO	er = Tit = 10 mL to 11.0 Other = Other = Added .1gms CaO Added .10gms CaO	er = Tit = 10 mL Tit = 10 mL Tit = mL to 11.0 Other = Other = Other = Other = Other =

Sample Calculations:

	Gold							Arsenic				
	Units	Units Assa		Distribution		Recovery	1	Assay	Distribution	Recovery		
Prewash	1000	۵L	0.034 mg/L	.034	ag	.20	Z	mg/L	ng	Z		
Preg	340	aL	35.346 mg/L	12.018	ng	77.70	ĭ	mg/L	ng	Z		
Wash	1,000	٥L	3.425 mg/L	3.425	mg	22.10	Z	mg/L	ng	Z		
Total	2340	ml	6.614 mg/l	15.477	ng	89.80	Z	ag∕L	ag	Z		
Residue	190	g	9.419 mg/L	1.761	mg	10.20	z	Z	ng	Z		
Calc Head	200	g	86.190 g/t	17.238	۵g	100.00	Z	Z	a g	I		
Assay Head	200	9	93.503 g/t	18.700	ng			Z	ag			

Note: Preg (mL) = Preg + Tit

MILL TESTING ASSAY REPORT

		<u> </u>					
Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
RC Roast 840 19th	2.68 2.44 2.61 2.47	2.55	22.75	2.53	1.51	. 34	
RC Roast 900	2.64 3.08 2.51 2.71	2:73	22.75	2.33	1.12	. 26	
RC Roast 1000	2.63 2.53 2.58 2.75	2.62	22.75	2.02	.78	.24	
RC 1 840 Prewash	.0009		27.2ppm				
Preg	. 900						<u></u>
Wash	.086						
RC 2 840 Prewash	. 0009		27.0ppm				
Preg	.972						
Wash	. 090						
RC 3 900 Prewash	.0010		29,3ppm				
Preg	. 996						
Wash	.078						
RC 4 900 Prewash	.0010		29.6ppm				
Preg	1.032						
Wash	.100						x
CR1 JaingoF	.39 .39	,39					
CR 2	.36 .36	,36					
CR 3	.30 .28	.29					*****
CR 4 -	.2728	.27					anna ann an t-g-gachar an t-an-

W.L. Richardson

............

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: April 22, 1989

SUBJECT: Cyanidation of #3 Thickener U/F

SXIV

SUMMARY:

Testwork was conducted on #3 Thickener U/F. The average gold cyanidation recovery after 48 hours leaching was calculated to be 58.37 % Au. The average residue assay was .013 oz/ton and the average calculated head grade was .031 oz/ton Au. The assayed head grade of the sample was .018 oz/ton Au. The average reagent consumptions were 10.0 lb/ton NaCN and 0.50 lb/ton CaO. The sample appears to be a flotation tailings sample. Additional sampling indicates that the gold present is approximately 1.2 to 1.4 oz/t. Further tests will be performed to determine the cyanidation recovery of the gold.

100 low for head assay - reject

BH

B. Starcheski Plant Metallurgist

Page 62

CYANIDATION TESTS

Date of Test: April 5, 1989

7

Sample: #3 Thickener U/F

Sample Code #: Test1

REF: CYANRCC.Frm

Initial

Size = 100.0 g 1 Hour Roll Reagents After 24 Hrs. After 48 Hrs After Hrs pH = 9.2 CaD = 0.05 gpH = 11.4pH = 10.7 pH = 10.5рН = $CN = 5.10 \ lb/t$ I -200 = NaCN = 10.0 1b/t CN = 1b/t $CN = 4.2 \ lb/t$ $CN = 3.10 \ lb/t$ H2O = 200 mL Other = Tit = 10 mL Tit = --- mL Tit = ---- mL Tit = ۵L Other= pH to 10.7 Other = Other = Other = Other =

Sample Calculations:

				Gold					Arsenic	
	Units	i .	Assay	Distribution		Recovery	,	Assay	Distribution	Recovery
Prewash	1000	nL	0.017 mg/L	.017	ng	27.11	Z	m∘g/L	ng	ž
Preg	190	aL	0.151 mg/L	. 0287	ng	45.77	ž	. mg∕L	ng	ž
Wash	1,000	۸L	0.017 mg/L	.017	ag	27.11	X	@g∕L	ng	X
Total	2190	۳L	0.0286mg/L	.0627	ng	57.42	ĭ	ng/L	ng	ž
Residue	97	g	0.479 mg/L	.0465	ng	27.11	Z	Z	ng	Z
∩∍lc Head	100	g	1.092 g/t	.1092	ng	100.00	Z	Ĩ	ng	Z
nsay Head	100	g	0.617 g/t	.0620	mg			Z	۵g	

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

,

CYANIDATION TESTS

Date of Test: April 5, 1989

Sample: #3 Thickener U/F

Sample Code #: Test2

REF: CYANRCC.Frm

Hrs
·
lb/t
=

Sample Calculations:

				Gold			Arsenic				
	Units		Assay	Distributi	ion	Recovery		Assay	Distribution	Recovery	
Prevash	1000	۵L	0.017 mg/L	.017	ag	26.98	I	mg/L	mgʻ	X	
Preg	200	nL.	0.144 mg/L	.0290	ng	46.03	I	ng/L	ng	X	
Wash	1,000	ml	0.017 mg/L	.017	ng	26 .9 8	Z	⊈g/L	ng	X	
Total	2200	۵L	0.0286mg/L	.0630	۵g	59.32	z	ng/l	۵g	Z	
Residue	97	g	0.445 mg/L	.0432	ng	40.68	z	Z	ng	7	
Calc Head	100	g	1.062 g/t	.1062	ag	100.00	I	Z	ng	I	
Assay Head	100	g	0.617 g/t	.0620	ng			Z	ng	,,	

Note: Preg (mL) = Preg + Tit

Sample Test Outlines:

Page 64

 \bigcirc

Page 65

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing

..... DATE ASSAYED April 11-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
#3 Thick U/F	.020 .016		3.50	.45	.19	.07	
Test #1 Residue	.014 .014			.31			
Test #2 Residue	.013 .014			.32			
Test #1 Prewash	.0005						
Preg	.0044						
Wash	.0005						
Test #2 Prewash	.0005	· · · · · · · · · · · · · · · · · · ·					
Preg	.0042						
Wash	.0005						
			1				
							-

G I A N T Yellowknife Mines Limited

MEMO TO: G.B. Halverson

CC:

FROM: B. Starcheski

DATE: May 16, 1989

SUBJECT: CYANIDATION TESTWORK FOR MINERALOGICAL STUDY

Purpose

The purpose of the cyanidation testwork was to prepare samples for a mineralogical study at Surface Science.

The level of NaCN was kept high in order to achieve the maximum dissolution of gold.

Discussion

- The cyanidation of the classifier overflow showed that 39.6% of the gold can be leached out. There was no significant difference in the residue at the three sieve fractions. The residues ran around .150 oz/T as opposed to a head sample of .250 oz/T.
- 2) The cyanidation of the flotation tails illustrated a 50-53% recovery of the gold. There was no significant difference between the recovery using the pulverized and the unpulverized samples. This trend was evident for the .019 oz/T sample and for the .014 oz/T sample.

If one uses the 1988 figures based on 53% recovery that would indicate an increase of slightly over \$1 X 10^{6} /year. The tonnages that would be treated would be roughly 322,000 T. This may need some further investigation.

3) The cyanidation tests on the roaster calcine yielded a 95.54% gold recovery. The residues were .12 oz/T. There was no significant difference between pulverized and unpulverized samples.

2

<u>یں</u>۔

B. Starcheski Metallurgist

Sent to Western

MILL TESTING ASSAY REPORT

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	% Paşsing Screen
Classifier O'Flow -200	.25 .25		7.25	2.04	. 89	.08	80.6
-275	.42 .27		7.75	2.53	.88	.06	78.6
-325	.26 .26 .29		7.25	2.49	. 89	.06	80.8
			5				
· · ·							
	-						
•				•			
·····							

W.L. Richardson

.....Assayer

Nent to Western

MILL TESTING ASSAY REPORT

SAMPLES FROM

DATE ASSAYED April 26-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
CR 1	.124		28.50	4.02	1.30		
CR 5	.126		28.25	4.05	1.33		
HFT Pulverized	.010		5.25	.23	.02		•
unpulverized	.010	£	5.00	.24	.02		
-200 A Cyanided	.153		7.75	1.89	.79		
-275	.154 - 7	5303	7.00	1.99	.84		
-32 4 5	.151 .: 40	LILIN'S FOC.	5.75	2.02	.85		
				-			
· · · · · · · · · · · · · · · · · · ·							
				-			
· • • • • • • • • • • • • • • • • • • •							· · · · · · · · · · · · · · · · · · ·
20 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -							
······	· · · · · · · · · · · · · · · · · · ·						

W.L.Richardson

.....Assaye

lent to Western

MILL TESTING ASSAY REPORT

SAMPLES FROM _________Testing Special 0990-9355 _______ DATE ASSAYED April 28-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Flot Tails Head Unpulverized	.019 .019 .020			.25			
HFT Pulverized	.011 .010 .011			.23	.03		
LFT Head Pulverized	.014 .013 .014			.27	.03		
			-				
					-		
						-	•
]							

W.L. RichardsonAssayer

Sent to Westerni

· Page 71 ·

MILL TESTING ASSAY REPORT

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
HFT Unpulverized	.011			.15	.23		
LFT Unpulverized Head	,011	<u></u>		.12	.15		
CR Pulverized	.13		30.50	3.00	1.43		
RC Special	2.70 2.78 2.64 2.65		31.25	3.90	1.40	. 38	
		<u> </u>					
	·						
······································							<u></u>
· · · · · · · · · · · · · · · · · · ·							
<u></u>	-						
·		<u> </u>				- <u> </u>	

· · · · · · · · · · · · · · · · · · ·							

.....Assayer

Sent to Western.

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing Account #0990-9355 DATE ASSAYED April 24-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	% Passing Screen
Classifier O'Flow -200	.25 .25 .25		7.25	2.04	. 89	.08	80.6
-275	.42 .27		7.75	2.53	.88	.06	78.6
-325	.26 .26 .29		7.25	2.49	. 89	.06	80.8
······							

W.L. Richardson

.....

.....Assaye:

Lent to Western UNIV.

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing DATE ASSAYED May 2-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
lst- Maxwell Conc.	2.98 3.30 3.22		27.50	27.48	11.04		
2nd-Maxwell Conc	3.60 2.94 3.10		34.25	31.98	10.73		
Scavennger Conc.	.77 .74 .74		8.25	5.37	3.04		
Rougher Conc.	2.40 2.34	212,8	18.75	15.27	8.79		
LFT Pulverized & Cyanided	.007			.15			
LFT not Pulverized Cyanided	.007				.06		
CR Pulverized & Cyanided	11						
					-		
							- 14 M 2

W.L. Richardson

.

.....Assaver

< l. 's	
Soln's	L + to to
yania	attentests face science Noven 89.
por sur	face science
V	Moreh 87.

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing DATE ASSAYED September 27-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
-200 Preg A	.0425						
В	.0550						
-275 Preg A	.0490						
В	.0520						
-325 Preg A	.0485						
В	.0525						
		-					
	_						
y							
						· · · · · · · · · · · · · · · · · · ·	
	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -						

W.L. Richardson

.....Assayer

MILL TESTING ASSAY REPORT

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Mill Flot Tail	.015						
RC #1 Preg	. 840						
#2	.900						
<i>#</i> 3	, 840						
<i>‡</i> 24	.816						
<i>#</i> 5	.720						
<i>#</i> 6	.756						
RC Pulverized A Preg	,888						
В	,900						
CR #2 Preg	.852						
Preg Pulverized A	,0105						
В	,0080						
LFT Pulverized Preg A	.0046						- <u>, , , , , , , , , , , , , , , , , , ,</u>
В	,0040						
Unpulverized Preg A	,0035						
В	,0036						
HFT Pulverized Preg A	,0095						
В	,0087						
Unpulverized A	.0079						
В	.0060						

.

W.L. Richardson

.....Assayer

G I A N T Yellowknife Mines Limited

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: November 23, 1989

SUBJECT: GOLD RECOVERY ENHANCEMENT PROJECT

After our meeting with Dr. Chryssoulis it was decided to perform cyanidation tests on the four concentrate samples. The cyanidation recoveries were as follows:

1st Maxwell Cell - 23%
2nd Maxwell Cell - 32%
Rougher Conc. - 29%
Scavenger Conc. - 25%

I discussed the results with Chryssoulis and we decided to run another series just using the 1st and 2nd Maxwell Cell concentrates. These samples were fine ground at 100% -200 Mesh. and cyanidation tests were performed. The recoveries were as follows:

1st Maxwell Cell - 35%
2nd Maxwell Cell - 36%

The purpose of the finer grinding was to see if the gold that is associated in the finer particles could be liberated and thus be amenable to cyanidation. The increase in the cyanidation recovery in the second series of tests would indicate this.

B. Starcheski Metallurgist

CYANIDATION TESTS

Date of Test: October 24, 1989

le: 1st Maxwell Concentrate

le Code **#:** A

CYANRCC.Frm

tial					
2 = 100.0 g	Réagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
= 7.5	CaO = 0.30 g	pH = 11.5	pH = 10.0	рН =	ρH =
J Ú =	$NaCN = 20.0 \ lb/t$	CN = 1.5 lb/t	CN = 1.8 16/t	CN = 16/t	CN = 16/t
= 200 mL	Other =	Tit = aL	Tit = mL	Tit = mL	Tit = mL
:r=		Other =	Other =	Other =	Other =
(f)mentalyse					
-					

e Calculations:

- 			Gold			Arsenic	
s of much down with the	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery
ash	500 mL	.024 mg/L	.012 mg	0.79 %	mg/L	wg	-%
	210 mL	6.576 mg/L	.130 mg	90.68 %	mg/L	mg	7.
	500 mL	0.260 mg/L	0.130 mg	8.54 %	mg/L	mg	7.
I	1210 mL	1.259 mg/L	1.523 mg	18.88 %	mg/L	mg	7.
due	98 g	66.787mg/L	6.545 mg	81.12 %	×.	ng	7.
Head	100 g	80.68 g/t	8.068 mg	100.00 %	X	Rġ	ž
y Head	100 g	108.572g/t	10.857 mg		7.	ng	

CYANIDATION TESTS

Page 78

Date of Test: October 24, 1989

e: 1st Maxwell Concentrate

e Code #: 8

CYANRCC.Frm

ial

= 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
= 7.5	CaO = 0.30 g	рН =	pH = 10.0	рН =	рН =
)=	$NaCN = 20.0 \ 1b/t$	CN = 1b/t	CN = 1.5 1b/t	CN = lb/t	CN = 1b/t
= 200 mL	Other =	Tit = mL	Tit = nL	Tit = mL	Tit = mL
r =		Other =	Other =	Other =	Other =
				<i>i</i>	
	L				

? Calculations:

The second s			6old		Arsenic			
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery	
lsh	500 mL	.024 mg/L	.012 mg	0.51 X	ng/L	ng	. %	
	200 mL	10.275 mg/L	2.055 mg	87.93 %	ng/L	ng	7.	
	500 mL	0.538 @g/L	0.270 mg	11.55 %	mg/L	ng	X	
	1200 mL	1.948 mg/L	2.337 mg	26.71 %	mg/L	ng	X	
αε	98 g	65.417ng/L	6.411 mg	73.29 %	X	ng	7.	
Head	100 g	87.48 g/t	8.748 mg	100.00 %	X.	Ag	7.	
Head	100 g	108.572g/t	10.857 ng		X	mg		

CYANIDATION TESTS

Date of Test: October 24, 1989

Page 79

le: 2nd Maxwell Concentrate

le Code #: A

CYANRCC.Frm

ial

≥ = 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
= 7.3	CaO = 0.30 g	рН =	pH = 10.2	рН =	рН =
)0=	NaCN = 20.0 1b/t	CN = 1b/t	CN = 1.9 16/t	CN = 16/t	CN = 16/t
= 200 @L	Other =	Tit = aL	Tit = aL	Tit = mL	Tit = nL
		Other =	Other =	Other =	Other =
2 1	L.				
and the second se	L	•			

e Calculations:

T T THE PARTY AND A			Gold	[Arsenic			
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery -	
ash	500 mL	.021 mg/L	.010 mg	0.37 %	mg∕L	ng	ž	
	200 mL	12.741 mg/L	2.548 mg	93 . 95 %	mg/L	mg	7.	
vo and economic di averer Pro	500 mL	0.308 mg/L	0.154 mg	5.68 %	ag/L	ag	7.	
1	1200 mL	2.260 mg/L	2.712 mg	31.31 %	mg/L	ng	7.	
due	98 g	60.622mg/L	5.941 mg	68.66 %	7.	ng	7.	
Head	100 g	86.53 g/t	8.653 mg	100.00 %	7.	ag	X	
y Head	100 g	109.942g/t	10.994 mg		7.	ng		

CYANIDATION TESTS

Page 80

Date of Test: October 24, 1989

ple: 2nd Maxwell Concentrate

° ple Code **∦:** B

CYANRCC.Frm

	itial						
	ze =	100 . 0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
-	=	7.5	CaO = 0.30 g	рН =	pH = 10.4	 ρH =	рX =
	200=		NaCN = 20.0 1b/t	CN = 1b/t	CN = 3.4 16/t	CN = 1b/t	CN = 16/t
•] =	200 mL	Other =	Tit = mL	Tit = mL	Tit = mL	Tit = mL
	ier=			Other = .	Other =	Other =	Other =
	111						
	Control for the second second						
	1 March 11 Property						
	-						

a le Calculations:

1			Gold	[Arsenic			
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery	
wash	500 mL	.021 mg/L	.010 mg	0.35 %	ng/L	ng	Χ.	
≥g	200 mL	12.570 mg/L	2.514 mg	87.02 %	mg/L	mg	X	
h	500 mL	0.729 mg/L	0.365 mg	12.63 %	ag/L	ag	X	
al	1200 mL	2.407 mg/L	2.889 mg	31.87 %	mg/L	ng	X	
sidue	98 g	63.020mg/L	6.176 mg	68.13 %	7.	mg	X.	
c Head	100 g	90.65 g/t	9.065 mg	100.00 %	7.	mg	7.	
say Head	100 g	109.942g/t	10.994 mg		X.	AG		

CYANIDATION TESTS

Date of Test: October 23, 1989

e: Rougher Concentrate

e Code #: A

CYANRCC.Frm

çial

	= 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
	= 7.6	CaO = 0.30 g	pH = 11	pH = 10.0	рН =	рН =
-	10 =	NaCN = 20.0 1b/t	CN = 4.4 lb/t	CN = 1.2 lb/t	CN = 3.1 16/t	CN = 16/t
-	= 200 mL	Other =	Tit = mL	Tit = al	Tit = mL	Tit = aL
conceased in contraction of the last	<u>i</u> r=	pH to 11.2	Other =	Other =	Other =	Other =
and a second						
1 *****	19-21-0-0-0-0-0-0		i			
	1111110 - S.M. 1171 - S.L. 1171 - S.L. 1171 - M.M. 1171 - S.L.	1				

le Calculations:

Color and Color		l		Gold			Arsenic			
an a dal dela del de	Units		Assay	Distribu	tion	Recovery		Assay	Distribution	Recovery
lash	500 ml	-	.027 mg/L	.014	øд	.63	r	nç∕ì.	ağ	ž
	200 ml	-	8.631 mg/L	1.726	ng	. 80.28	X	mg/L	аq	X
	1000 0	nL	0.411 mg/L	0.411	ng	19.12	I	mg∕L	DĞ	X
1	1700 n	nL	1.265 mg/L	2.15	wā	29.49	X	mg∕L	តច្	ĩ
due	96 g]	53.43 mg/L	5.14	ng	70.51	z	ž	ωġ	Z
: Head	100	q	72.90 g/t	7.29	шğ	100.00	ï	ž	nğ	ľ
y Head	100	g	81.515 g/t	8.152	жğ			X	лg	

Page 81

CYANIDATION TESTS

•

Date of Test: October 23, 1989

Page 82

E ple: Rougher Concentrate

ple Code #: B

CYANRCC.Frm

itial

1					······································
ze = 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
= 7.3	CaO = 0.30 g	pH = 11.7	pH = 10.0	ρH =	рН =
200=	NaCN = 20.0 1b/t	CN = 4.5 1b/t	CN = 1.5 1b/t	CN = 3.1 lb/t	CN = 16/t
0 = 200 mL	Other =	Tit = mL	Tit = mL	Tit = mL	Tit = mL
her=		Other =	Other =	Other =	Other =
	1				

ple Calculations:

			Gold	1	Arsenic			
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery	
ewash	500 mL	.024 mg/L	.012 ng	.56 I	mg/L	₽ġ	ĩ	
5Ô	210 mL	8.220 mg/L	1.726 mg	80.96 I	mg/L	۵ġ	ĩ	
sh	500 mL	0.788 mg/L	0.394 ng	18.48 X	ag∕L	vā	ž	
tal	1210 mL	1.762 mg/L	2 .132 mg	29.01 I	mg/L	ng	ĭ	
sidue	97 g	53.77 mg/L	5.216 ng	70.99 I	Z	រាប្	I	
Ic Head	100 g	73.48 g/t	7.348 øg	100.00 X	I	៣០	ž	
say Head	100 g	81.515 g/t	8.151 mg		Z	ÐĞ		

CYANIDATION TESTS

Page 83

Date of Test: October 23, 1989

aple: Scavenger Concentrate

-

E ple Code #: A

: CYANRCC.Frm

pitial

ze = 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
-200=	CaO = 0.30 g NaCN = 20.0 1b/t		pH = 10.5 CN = 1.75 lb/t	pH = CN = 3.1 lb/t	pH = CN =
0 = 200 mL her=	Other =	Tit = mL Other =	Tit = sL Other =	Tit = mL Other =	Tit = mL Other =
	L				

ple Calculations:

			. Gold •			Arsenic			
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery		
evash	500 mL	.027 mg/L	.014 mg	2.09 I	mg/L		X		
5à	210 mL	2.466 mg/L	.518 mg	77.43 I	mġ/L	۵ä	ž		
sh	500 mL	0.274 mg/L	0.137 mg	20.48 I	mg/L	шġ	ž		
tal	1210 mL	0.553 mg/L	0.669 mg	25.32 I	mg/L	۵g	X		
idue	99 g	19.87 mg/L	1.973 mg	74.66 I	Z	mā	ž		
.c Head	100 g	26.42 g/t	2.642 mg	100.00 Z	I	ωġ	z		
say Head	-100 g	25.69 g/t	2.569 mg		Z	۵ġ			

CYANIDATION TESTS

Date of Test: October 23, 1989

Page 84

inple: Scavenger Concentrate

E ple Code #: B

: CYANRCC.Frm

nitial

ze = 100.0 g 1 Hour Roll Reagents After 48 Hrs. After Hrs After Hrs = 7.6 CaO = 0.30 gpH = 11.5 pH = 10.3 ρH = рН = CN = CN = -200= $CN = 4.5 \, lb/t$ NaCN = 20.0 1b/t $CN = 2.0 \ 1b/t$ 16/t 16/t Other = · 0 = 200 mL Tit = ---- mL Tit = --- mL Tit = ---- aL Tit = mŁ her= Other = Other = Other = Other =

% ple Calculations:

				Gold			Arsenic	
		Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery
	ewash	500 mL	.024 mg/L	.012 mg	1.87 2	ng∕L	m g	z
	5ġ	200 mL	2.466 mg/L	.493 mg	76.79 I	ng/L	u Č	X
1. }	ih	500 mL	0.274 mg/L	0.137 mg	21 . 34 I	ag/L	۵ġ	ž
•	tal	1200 mL	0.535 mg/L	0.642 mg	24.96 1	ng∕L	" BĜ	ž
ŕ	idue	96 g	20.21 mg/L	1.930 mg	75.04 X	Z	A g	ž
4	'c Head	100 g	25.72 g/t	2.572 mg	100.00 X	ž	a g	Z
	say Head	100 g	25.69 g/t	2.569 mg		Z	ng	

MILL TESTING ASSAY REPORT

AMPLES FROM Testing October 30-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As .	Sb	Cu
Loaded Fresh Carbon	16:19						
Reactivated Carbon	21.91						
Stripped Carbon	17.59						
lst Maxwell A Prewash	.0007						
Preg	.192						
Wash ·	.0076						
B Prewash	.0007						
Preg	.300			· ·			
Wash	.0157						
2nd Maxwell A Prewash	.0006						
Preg	.372				м. М.		
Wash	.0090						
B Prewash	•0007						
Preg	.367					<u> </u>	
Wash	.0213					· · · · · · · · · · · · · · · · · · ·	

W.L. Richardson

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing

DATE ASSAYED October 30-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Maxwell Conc 1A Residue	<i>s</i> 1.93 1.96						
1B	1.96 1.94						
2 A	1.77 1.79 1.76	_					
2 B	1.80 1.84 1.88						
					· · · · · · · · · · · · · · · · · · ·		
					·		
	-						
	· · · · · ·						
							·
	_						

٠

CYANIDATION TESTS

Date of Test: November 15,1989

3

,

ample: 1st Maxwell Concentrate

1

imple Code #: A

EF: CYANRCC.Fra

nitial

10					
ize = 100.0 g	Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
H = 7.3	CaO = 0.30 g	pH = 11.7	ρH = 10.7	рН =	рН =
-200=	$NaCN = 20.0 \ 1b/t$	CN = lb/t	CN = 4.6 lb/t	CN = 1b/t	CN = 16/t
20 = 200 mL	Other =	Tit = mL	Tit = aL	Tit = aL	Tit = mL
ther=		Other =	Other =	Other =	Other =
1	L				

mple Calculations:

			Gold			ļ	
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery
revash	aL	ag/L	ag	X	mg∕L	₽g	ï
reg	210 mL	12.638 mg/L	2.654 mg	84.71 %	mg/L	₽g	X
ash	500 aL	0.959 mg/L	0 .47 9 ng	15.29 %	∎g/L	∎g	۲
otal	710 mL	4.413 mg/L	3.133 mg	34.85 %	mg/L	∎g	%
∶sidue	95 g	61.650mg/L	5.857 ag	65.15 X	X	ng	x.
ılc Head	100 g	89.90 g/t	8.990 mg	100.00 X	X	۵g	X
ssay Head	100 g	115.080g/t	11.508 mg		7.	ng	<u> </u>

.

CYANIDATION TESTS

Date of Test: November 15,1989

Page 88

imple: 1st Maxwell Concentrate

1

aple Code #: B

F: CYANRCC.Frm

nitial

				4
Reagents	1 Hour Roll	After 48 Hrs.	After Hrs	After Hrs
CaO = 0.30 g	pH = 11.4	ρH = 10.7	ρH =	рН =
NaCN = 20.0 lb/t	CN = 1b/t	CN = 4.5 16/t	CN = 16/t	CN = 1b/t
Other =	Tit = mL	Tit = mL	Tit = aL	Tit = mL
	Other =	Other =	Other =	Other =
	CaO = 0.30 g NaCN = 20.0 lb/t	CaO = 0.30 g pH = 11.4 NaCN = 20.0 lb/t CN = lb/t Other = Tit = mL	CaO = 0.30 g pH = 11.4 pH = 10.7 NaCN = 20.0 lb/t CN = lb/t CN = 4.5 lb/t Other = Tit = mL Tit = mL	CaO = 0.30 g $pH = 11.4$ $pH = 10.7$ $pH =$ $NaCN = 20.0 lb/t$ $CN = lb/t$ $CN = 4.5 lb/t$ $CN = lb/t$ $Other =$ $Tit = mL$ $Tit = mL$ $Tit = mL$

: sple Calculations:

* - 111-00		[Gold		Arsenic				
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery		
evash	aL	ag/L	ag	X	∎g/L	∎g	7.		
reg	230 aL	13.871 mg/L	3.190 mg	89.43 %	ag∕L	ng	X		
.sh	.500 mL	0.753 ag/L	0.377 mg	10.57 %	mg∕L	ng	X		
tal	730 m L	4.886 ag/L	3.567 mg	37 .35 %	∎g/L	₽ġ	X		
≥sidue	96 g	62.335mg/L	5.984 mg	62.65 X	· X	₽g	X		
lc Head	100 g	95.51 g/t	9.551 mg	100.00 %	X	₽ġ	X		
isay Head	100 g	115.080g/t	11.508 mg		X	ng			

CYANIDATION TESTS

Date of Test: November 15,1989

8

,

E ple: 2nd Maxwell Concentrate

E .ple Code #: A

: CYANRCC.Frm

itial

ze = 100.0 g Reagents 1 Hour Roll After 48 Hrs. After Hrs After Hrs = 8.7 pH = 11.5 Ca0 = 0.30 gpH = 10:0 pH = ρH = 200= $NaCN = 20.0 \ 1b/t$ CN = --- 1b/tCN = 1.5 Ib/tCN = CN = lb/t 15/t Other = 0 = 200 mL Tit = ---- mL Tit = --- aL Tit = ---- aL Tit = ۵L Other = Other = her = Other = Other =

ple Calculations:

s a dought of furmers to			Gold		Arsenic				
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery		
ewash	500 aL	.031 mg/L	.015 mg	0.50 Z	ag/L	ag	X		
∃g	230 mL	11.200 @g/L	2.576 mg	85.33 %	mg/L	ng	X		
sh	500 mL	0.856 mg/L	0.428 ag	14.18 %	ng/L	۵g	X.		
tal	1230 mL	2.454 mg/L	3.019 mg	35.58 %	∎g/L	æg	X		
;idue	95 g	57.540mg/L	5.466 mg	64.42 %	7.	₽g	X		
ic Head	100 g	84.85 g/t	8.485 mg	100.00 %	X	۵g	7.		
iay Head	100 g	97.272g/t	9.727 ag		Z	۵g			

MILL TESTING ASSAY REPORT

i

AMPLES FROM Testing Nov 21-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
<u>1 st Maxwell cell A- Res</u>			28.75	29.6É	10.97	2.15 \$ \$\$ \$	
<u>1 st '" B-Res</u>	1.78 1.80 1.82 1.88	1182	29.50	30.33	9.74	2.13	
2 nd Maxwell Cell Res	1.70 1.70 1.64 1.70	1.60	26.75	33.93	9.64	2.05	
Roaster Feed	2.80 2.50 2.67 2.50	2.62.	24.75	21.29	8.94	.35	
				1			
				,			
				J			
				,			
				1			
· · · · · · · · · · · · · · · · · · ·							
	•			F.P	elechat	v	
						J	
				:			
				,			
				· · · · · · · · · · · · · · · · · · ·			
		www.committee.committee.committee.committee.committee.committee.committee.committee.committee.committee.commit	and the Community of Construction of Construct				

 $\left(\right)$

Page 91

MILL TESTING ASSAY REPORT

MPLES FROM _____Testing _____DATE ASSAYED Nov 17-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
st Maxwell A wash	.028			C S			
Preg	.369						
St Maxwell B wash	.022						
Preg	.405						
nd Maxwell Prewash	.0009						
₽? wash	.025						
Preg	.327						
· · · · · · · · · · · · · · · · · · ·	·						
							<u></u>
	•						
·)							
					<u></u>		
•							·
-				F.P	elechat	у	······

......

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing October 30-89

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Maxwell Conc 1A Fisidues	1.93 1.90 1.96						
18	1.96 1.94 1.82						
2 A	1.77 1.79 1.76						
2 B	1.80 1.84						
2 							
		<u></u>					
		······································					

,

W.L. Richardson

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: Stephen Chryssoulis

CC: G. Halverson

FROM: B. Starcheski

DATE: May 15, 1989

SUBJECT: Samples for Mineralogical Testwork at Surface Science

The attached sheet contains the results of the cyanidation testwork that was performed at Giant Yellowknife Mines in preparation for your mineralogical study.

The reason for the small amount of head sample was because two sets of tests were run. There was an error in the first test. I hope the sample size will be sufficient for your work.

The missing analysis for some of the samples will be forthcoming ie. Antimony on the classifier overflow samples. If you have any questions please call me.

Regards, Brad Start Brad Starcheski P.Eng Metallurgist

<u>Classif</u> D/- <u>Code</u> Page 94 02/T Av Fe S As is Sb weight Classifing O/F 25 7 25 2.2 ·88 108 ·813 Head sample -200 Mesh (dsist 2 275 Mesh "- 3 1.25 7.25 2.04 189 .08 .631. _, 25 7·75 2.53 .88 .06 643 325 Mesh " - 4 .88 .06 643 125 17.25 2.49 mided -200 Mesh _____ 153 7.75 1.89 .79 010 479 184 .09 475 154 7.0 1.99 -275 Mesh_6 -325 Mesh 7 .151 5.75 2.02 185 10 478 subtotal 4.18 h Flotation Tails High assayed plot tails • head sample 8 •25 913. 102 448 tpulverized but cyanded_1 •010 5.00 •24 1010 5.25 123 vergedt examided 10_ 506total_1.85. how assayed flot tails______ head sample______ ±014 - 127 · 03 240 1007 - 15 106 44-1007 - 15 06 47 subtotal 1.16 Av Fe 5 As 56 pulveuged beet cijamded_12_ verized + cyanded 13 Roaster Calcine head sample Cyanided as is (calcine residue) 15 <u>1.40,38</u><u>5.9</u> <u>1.30,041</u><u>2.2</u> <u>.69 31.25 3.9</u> Pulveuzed, then cyanided 16 younded, pulveuzed, cejanided 17 -13 <u>.43</u>486 subtotal 9,07

, Flotation CONCENTRATES. Page 95 Au Fe S As. - Weight inst Maxwell Cell 317 27.5 27.48 11.04 735 leand Maxwell Cell 3121 34,25 31.98 10.73 5.12 Röligher Canc. 2:38 18:75 15:27 8:79 400 Scavenger Conc. .75 8:25 5:37 3:04. 233 1.88 kg Totalweight____18.14k . _____ _____ _____ _____

Samples for Surface Science Western

ROASTER CALCINE

a) 6 - 500 g to be cyanided 2 - 500 g to be cyanided, pulverized, and then cyanided. b) Started 1:00 p.m. Sunday. 3720 + 3230 g Roaster Calcine as is 1700 g of Roaster Calcine to be pulverized then cyanided. <u>1:00 p.m. Sunday</u> (b) 500 g + 1 l water <u>11:30 a.m. Monday</u> CN-CR1 ph 6.7 12 ml--10.4 need 25 ml NaCN 10.5 + 3 ml 11.4 CR2 ph 6.9 12 ml--10.4 need 25 ml NaCN 10.5 + 3 ml 11.4 <u>10 lb/T PH</u> 500 q <u>CN</u> <u>After 48 hours</u> CR1 6.7 10.5 + 3 ml 11.4 25 ml 2.3 ____ 6.9 10.5 + 3 ml 11.5 25 ml 2.0 CR2 4.0 1:00 p.m. Monday After 48 hours RC pul A 500 gph 7.010.825 ml CN-8.5--11.43.0 CN-RC pul B 200 gph 7.111.310 ml CN-8.4--11.03.25 CN-

Page	97
------	----

<u> </u>				START 6:5	50 pm	48 F	IOURS
	Int. pH				CN-	рH	CN-
RC1	7.1	+12 ml	10.7	10.9		10.7	4.0
RC2	7.2	+12 ml	10.8	10.9	2.0	10.8	4.0
RC3	7.2	+12 ml	10.8	10.8	1.75	10.7	4.6
RC4	7.3	+15 ml	11.3	10.7	1.9	10.6	2.2
RC5 a b	7.0 6.9	6 6	10.8 10.9	10.2 +1 10.2 +1		10.1 10.4	3.5 3.4
RC6	6.9	12 ml	10.9	10.9		10.8	4.15

Flot Tails (High) - pulverized

A 500g	9.0	15 ml	10.8	10.1 +3	1.65	5.85
B 200g	9.0	15 ml	11.4	10.5		2.50

Flot Tails (High) - unpulverized

A 500g	7.8	12 ml	11.5	11.4	2.75	6.0
B 200g	8.0	8 ml	11.8	11.5	2.75	6.25

NB: LFT after pulverizing was dusty vs the HFT.

	Page	98
	raye	0

	Int. pH	After 17 hours	CN-	Maintain +13 lb/T	1	CN-
-200A (a)	8.3	11.5	3.05	10 ml	11.2	
A (b)	8.2	11.5	2.50	10 ml	11.3	
-200B (a)	8.3	11.1	5.00	8 ml	11.3	
B (b)	8.3	11.4	5.2	8 ml	11.3	
-275A (a)	8.3	11.5	4.3	9 ml	11.1	6.6
A (b)	8.3	11.5	5.05	8 ml	11.4	7.15
-275B (a)	8.3	11.2	5.65	8 ml	11.1	7.75
B (b)	8.3	11.5	4.8	9 ml	11.2	7.0
-325A (a)	8.3	11.2	4.75	9 ml	11.1	6.35
A (b)	8.3	11.2	4.65	9 ml	11.0	6.10
-325B (a)	8.3	11.3	4.35	9 ml	11.1	6.3
B (b)	8.3	11.5	4.65	9 ml	11.1	6.5

P	aq	е	9	9

		After pH	24 hours CN-	After pH	48 hours CN-
LFT A 500 g 8.0 (unpulverized)	11.8	11.8	2.8	11.5	4.25
LFT B 100 g 8.4 (unpulverized)	11.8			11.5	4.85
LFT B 100 g (pulverized)	11.2			10.1	2.35
LFT A 500 g 8.9 (pulverized)	11.2	11.6	2.4	11.3	5.75

CR (pulverized)

A	500 g	8.0+17 ml	10.9	11.0	2.5	10.8	4.15
В	100 g	8.1+5 ml	11.4	11.2	4.25	10.9	5.10

RESULTS:

REDULID:							
	Marking Code	oz/T Au	Fe	S	As	Sb	Weight kg
Classifier O/F Head Sample	1	.25	7.25	2.2	. 88	-	8.13
-200 Mesh (as is)	2	.25	7.25	2.04	. 89		6.31
-275 Mesh (as is)	3	.25	7.75	2.53	. 88		6.43
-325 Mesh (as is)	4	.25	7.25	2.49	.88		6.43
Cyanided -200 Mesh	5	.153	7.75	1.89	. 79		4.79
Cyanided -275 Mesh	6	.154	7.0	1.99	.84		4.75
Cyanided -325 Mesh	7	.151	5.75	2.01	.85		4.78
					SUBT	OTAL	4.18
FLOTATION TAILS High Assayed Flot Tail Head Sample	8			.25			9.13
Not pulverized but cyanided	9	.010	5.00	. 24	.02		4.48
Pulverized and cyanided	10	.010	5.25	. 23	.02		4.93
					SUBT	OTAL	1.85
Low Assayed Flot Tail Head Sample	11	.014		. 27	.03		2.40
Not pulverized but cyanided	12	.007		.15	.06		4.47
Pulverized and cyanided	13	.007		.15	.06		4.77
				* <u>.</u>	SUBT	OTAL	1.16
ROASTER CALCINE Head Sample	14	; 2.69	31.25	3.9	1.40	. 38	5.91
Cyanided (as is) Calcine Residue	15	.12	28.5	4.0	1.30		2.20
Pulverized/Cyanided	16	.12	28.5	4.0	1.30		4.86
Cyanided/Pulverized/ Cyanided	17	.11					4.83
					SUBT	DTAL	9.07
FLOTATION CONCENTRATE lst Maxwell Cell		3.17	27.5	27.48	11.04		7.35
2nd Maxwell Cell		3.21	34.25	31.98	10.73		5.12
Rougher Conc.		2.38	18.75	15.27	8.79		4.00
Scavenger Conc.		.75	8.25	5.37	3.04		2.33
					SUBTO	TAL	1.88
, 1					TOTAL W	/EIGHT	18.14

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: D. Bartlett

FROM: B. Starcheski

DATE: May 26, 1989

SUBJECT: Carbon Analysis

Please find the attached spectra analysis performed on a sample of reactivated carbon that was taken from our strip circuit. The analysis was also done on samples of fresh and loaded carbon but we haven't received a copy as yet.

I thought it may be of interest to the TRP, if you need your carbon analyzed in the future. It may help troubleshoot loading problems if a baseline was developed using the relatively fresh carbon that you have in your circuit.

The analysis will indicate what has loaded onto the carbon but presently Stephen can't quantitatively determine the amount of the species on the carbon. It wouldn't be too difficult once he developed some standards.

If you have any questions please give me a call or you can contact;

Dr. Stephen Chryssoulis Surface Science Western University of Western Ontario (519) 661-2173

B Starcheski

			Page 102
	The Surface	Science Laboratory,	The University of Western Onta
irface Science Wes	tern	Natural Sciences	Centre, London, Ontario N6A (519) 661-2
FA	CSINILE COMMU	NICATIONS COVER SI	HEET
TO FAX TELEPHONE NUMBER	r: <u>(403)</u>	873-2980	· · ·
PLEASE DELIVER THE ATT.	`		
NAME:		Irad	
COMPANY/INSTITUTION: ADDRESS:	Gian Yell	t YellowKyif owKnife_NW	e., Metallurgy T
PHONE NUMBER/EXT.:			
You will receive <u>3</u> entire transmission is Our operator can be rea	DOC received	, please contact	this cover sheet. If the us as soon as possible.
FROM:		Stephen L Ch	Nesoulis
ADDRESS:		- yang - so	<u></u>

Our FAX number is (519) 661-3486, and we are transmitting from a Konica 400 Fascimile

κατέρομαι σού

AdI oo

Surface Spectrum of reactivated carbon . Inorganic species readily identifyable: Na, Mg, Al, Ca, Fe, As, AsO, Sb and Au. . By probing lyto the carbon particle: first disappears the Au, then the Sb and last the As. Mercury was not identified on the surface

Mercury was not identified on the surface of this particle.

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Reactivated Carbon to Western University	6.29						
)							
· 					i		
3							
<u></u>							<u>, , , , , , , , , , , , , , , , , , , </u>

W.L. Richardson

..............

Giant YELLOWKNIFE MINES LIMITED

Page 107

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: June 6, 1989

SUBJECT: Cyanidation of mill tailings

SUMMARY:

Testwork was conducted on a sample of tailings. The average gold cyanidation recovery after 48 hours leaching was calculated to be 60.10% Au. The average residue assay was .039 oz/ton and the average calculated head grade was .098 oz/ton Au. The assayed head grade of the sample was .070 oz/ton Au. The average reagent consumptions were 10.0 lb/ton NaCN and 3 lb/ton CaO.

B. Starcheski Plant Metallurgist

CYANIDATION TESTS

Page 108

Date of Test: May 28, 1989

pple: Mill Tailings Ølscharge to the Northwest pond

iple Code #: Tails 1

: CYANRCC.Frm

itial

.ze = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
= 7.5	CaO = 0.30 g	pH =	pH = 11.2	pH = 10.9	рН =
200=	NaCN = 10.0 lb/t	CN = 1b/t	CN = 3.50 lb/t	CN = 3.10 lb/t	CN = 1b/t
":0 = 400 ∎L	Other =	Tit = 10 aL	Tit = si	Tit = #L	Tit = si
her =	pH to 11.1	Other =	Other =	Other =	Other =

ie Calculations:

				Gold					Arsenic				
L se en	Units	5	Ass	ay	Distribut	ion	Recover	,	Assay	Distribution	Recovery		
/ash		۹Ĺ		∎g/L		ng		z	∎g/L	∎g	I		
?g	360	aL	0.911	ag∕L	0.328	aŭ.	81.40	I	∎g/L	∎g	I		
Design of the second	1,000	aL.	0.075	∎ġ/L	0.075	ng	18.60	z	∎g/L	∎ġ	X		
al	1360	aL	0.297	∎g/L	0.403	ng	60.20	2	∎g/L	ng	Z		
due	199	g	1.336	∎g/L	0 .266	ng	39.80	2	Z	₽g	I		
Head	20 0	g	3.345	g/t	0.669	∎g	100.00	z	Z	n g	I		
iay Head	200	g	2.398	g/t	0.480	ng	······		I	ng .			

CYANIDATION TESTS

Page 109

Date of Test: May 28, 1989

ple: Mill Tailings Discharge to the Northwest pond

ple Code #: Tails 2

: CYANRCC.Fra

itial

ze = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
= 7.5	CaO = 0.30 g	pH =	pH = 11.2	pH = 11.0	ρH =
200=	NaCN = 10.0 1b/t	CN = 1b/t	CN = 3.60 lb/t	CN = 3.00 1b/t	CN = 16/t
""O = 400 mL	Other =	Tit = 10 mL	Tit = sL	Tit = aL	Tit = aL
er=	pH to 11.3	Other =	Other =	Other =	Other =
L. L					

le Calculations:

				601d					Arsenic			
	Units	i	Ass	ay	Distribut	ion	Recovery	,	Assay	Distribution	Recovery	
vash		۹L		#g/L		ag		Z	∎g/L	∎ą	I	
g	360	aL	0.904	eg/L	0.326	ng	81.30	Z	∎g/L	∎g	Z	
	1,000	٥L	0.075	∎g/L	0.075	s g	18.70	Z	∎g/L	ag.	Z	
al	1360	۸L	0.295	∎g/l	0.401	ag	60.10	z	∎g/L	∎g	ĭ	
ıdue	199	g	1.336	∎g/L	0.266	ag	39.90	z	I	ng	Z	
Head	200	ġ	3.345	g/t	0.669	Ħġ	100.00	z	I	∎g	I	
ay Head	20 0	g	2.398	g/t	0 .480	∎g			Z	A g		

7

Page 110

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing

1

..... DATE ASSAYED 31-89 May

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Tails Head	.070		8.25	.66	.19	.02	
Tails Residue #1	.039						
Tails Residue #2	.039						<u></u>
Tails Preg #1	.0266						
Wash	.0022						
Tails Preg #2	.0264						
Wash	.0022						<u> </u>
					-		
•							
		-					
<u>,</u>							
<u></u>							
<u> </u>							
							ingen en angelander en ange

W.L. Richardson

Giant YELLOWKNIFE MINES LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: July 18, 1989

SUBJECT: Cyanidation of Mill Tailings

SUMMARY:

Testwork was conducted on a sample of mill tailings the average gold cyanidation recovery after 48 hours leaching was calculated to be 63.28% Au. The average residue assay was .039 oz/ton and the average calculated head grade was .101 oz/ton Au. The assayed head grade of the sample was .071 oz/ton Au. The average reagent consumptions were 20 lb/ton NaCN and 3 lb/ton CaO.

The sample was taken on July 7, 1989 and may have had some tails containing Treminco residues. Another test will be done using the present tails. There has not been any Treminco ore milled since July 4, 1989.

B. Starcheski Metallurgist

CYANIDATION TESTS

Page 112

Date of Test: July 10, 1989

ample: Mill Tailings

Sample Code #: FT1

TEF: CYANRCC.Fra

Initial

,

Size = 100.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 7.5	CaO = 0.60 g	ρH =	pH =	pH = 10.2	pH =
I-200=	NaCN = 20.0 1b/t	CN = 1b/t	CN = 1b/t	$CN = 4.2 \ 1b/t$	CN = 16/t
H2O = 200 mL	Other =	Tit = #L	Tit = •L	Tit = aL	Tit = al
)ther=	pH to 11.2	Other =	Other =	Other =	Other =
	_				

Janole Calculations:

.

ngen filmen en regeligi er en fe				6o)	601d				Arsenic			
	Units	i	Assay	Distribu	tion	Recovery		Assay	Distribution	Recovery		
revash	500	aL.	.099 mg/L	. 049	#Q	22.90	z	∎g/L	∎ġ	I		
^p reg	200	.L	0.596 m g/L	0.119	∎ġ	55.61	2	∎g/L	∎ġ	X		
wash	50 0	∎L	0.092 m g/L	0.046	∎ą	21.49	1	∎ą/L	eğ.	Z		
otal	1200	#L	0.178 ∎g/L	0.214	٩ġ	61.49	z	∎g/L	nģ	I		
Residue	98	ġ	,1.37 ∎g/L	0.134	uğ (38.51	z	Z	s g	I		
lc Head	100	ġ	3.48 g/t	0 .348	ag	100.00	z	Z	∎ġ	Z		
* say Head	100	ġ	2.400 g/t	0.240	лġ			Z	ag.	·····		

CYANIDATION TESTS

Page 113

Date of Test: July 10, 1989

,

mole: Mill Tailings

Sample Code #: FT2

.....F: CYANRCC.Fra

nitial					,
fize = 100.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 7.7	CaO = 0.60 g	рН =	оН =	pH = 10.5	oH =
-200=	NaCN = 20.0 lb/t	CN = 1b/t	CN = 16/t	$CN = 4.3 \ 1b/t$	CN = 16/
H2O = 200 oL	Other =	Tit = aL	Tit = #L	Tit = eL	Tit = aL
ther=	pH to 11.2	Other =	Other =	Other =	Other =
And a second					

nole Calculations:

				Gold				Arsenic			
	Units	i	Assay	Distribu	tion	Recovery	,	Assay	Distribution	Recovery	
revash	500	#L	.099 mg/L	.049	ng	20.29	z	∎g/L	∎ą	I	
Preg	200	۹L	0.719 mg/L	0.144	ŋġ	59.02	Z	∎ą/L	∎g	X	
"ash	500	٩L	0.103 mg/L	0.051	∎ġ	20.90	2	∎g/L	∎Ģ	z	
)tal	1200	۹L	0.203 mg/L	0.244	nġ	65.07	z	∎ġ/L	∎g	X	
Residue	98	g	1.336 mg/L	0.131	ng	34.93	z	Z	∎g	Z	
lc Head	100	ġ	3.75 g/t	0.375	n g	100.00	z	Z	ng	X	
⁴say Head	100	ġ	2.400 g/t	0.240	ağ	<u></u>		Z	ng		

Giant		
YELLOWKNIFE	MINES	LIMITED

MEMO TO: G.B. Halverson

FROM: B. Starcheski

DATE: September 7, 1989

SUBJECT: Cyanidation of mill tailings

Further cyanidation tests performed on the mill tailings indicate that 78.98% recovery was achieved. The sample was taken from the mill discharge into the northwest pond. The assayed head was .026 oz/T Au. The calculated head was .053 oz/T Au. The residues from the testwork assayed to be .011 oz/T Au. Previous head samples taken indicated that the gold values in the mill tailings were at .070 oz/T. The higher values can be attributed to the presence of Treminco ore in the tailings.

Results from the test show that acceptable recoveries can be achieved with conventional tails. Further tests will be performed to verify this.

Starcheski Brad Metallurgist

CYANIDATION TESTS

Page 115

Date of Test: August 11,1989

amole: Mill Tailings

ample Code #: FT1

EF: CYANRCC.Frm

Initial

Size = 100.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
pH = 8.2	CaO = 0.20 g	pH =	pH =	pH = 10.	pH =
K-200=	NaCN = 10.0 lb/t	CN = 1b/t	CN = 1b/t	$CN^{-} = 2.50 \ 1b/t$	CN = 16/t
420 = 200 st	Other =	Tit = #L	Tit = mL	Tit = aL	Tit = mL
dther=	pH to 11.0	Other =	Other =	Other =	Other =
,					
1					

Sample Calculations:

				Gold		Arsenic				
	Units	I	Assay	Distribution	Recovery	Assay	Distribution	Recovery		
revash		s i	#g/L	øg	1	∎ġ/L	∎ġ	ž		
rea	200	aL.	0.363 m g/L	0.073 mg	64.03 I	∎g/L	∎g	I		
lash	50 0	n L	0.082 s g/L	0.041 mg	36.05 X	∎g/L	∎ģ .	Z		
otal	70 0	۹L	0.163 mg/L	0.114 mg	75.50 I	∎g/L	∎g	Z		
lesidue	98	ġ	0.377 m g/L	0.0369 mg	24.50 I	Z	∎ġ	Z		
lc Head	100	g	1.51 g/t	0.151 mg	100.00 Z	Z	∎ĝ	1		
say Head	100	g	0.890 g/t	0.089 ag		Z	ag	<u>, ,,,,,,,</u> ,,		

CYANIDATION TESTS

Date of Test: August 11,1989

Sample: Mill Tailings

ample Code #: FT2

EF: CYANRCC.Frm

Initial

size = 100.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
H = 8.2	CaO = 0.20 g $$ $NaCN = 10.0 lb/t$	ρH = CN = lb/t	рН =	pH = 10.7	рН =
20 = 200 eL	Other =		CN = 1b/t Tit = mL	CN = 2.30 lb/t Tit = mL	CN = 16/t Tit = mL
"ther=	pH to 11.0	Other =	Other =	Other =	Other =

ple Calculations:

	Gold				Arsenic					
	Units	Assay	Distribution	Recovery	Assay	Distribution	Recovery			
revash	al	∎g/L	• <u>a</u>	Z	∎ą/L	∎ą	I			
	190 mL	0.685 mg/L	0.130 m g	74.71 I	∎g/L	ng	Ĭ			
5h	500 mL	0.089 mg/L	0.044 mg	25.29 I	∎g/L	∎ġ	Ĭ			
otal	690 mL	0.253 m g/L	0.174 mạ	82.46 I	∎g/L	ag	I			
} idue	98 g	0.377 ∎g/L	0.0369 mg	17.54 Z	I	₽ġ	I			
;ə' Yead	100 g	2.11 g/t	0.211 ag	100.00 Z	Z	nğ	Ĭ			
A.Jay Head	100 g	0.890 g/t	0.089 ag		Z	eā -				

G I A N T Yellowknife Mines Limited

MEMO TO: G. Halverson

FROM: B. Starcneski

DATE: October 2, 1989

SUBJECT: CYANIDATION OF MILL TAILINGS

Cyanidation tests were performed on mill tailings on September 20, 1989. The cyanidation recovery after 48 hours was 56.2% Au. The calculated head assay was .032 oz/T. The assayed head assay was .015 oz/T. The results of this series of tests are consistent with the results of previous cyanidation tests done this summer.

Brad Starcheski Metallurgist

BS/sj

CYANIDATION TESTS

Date of Test: Sectember 20.1989

___ole: Mill Tailings

ple Code #: FT1

F: CYANRCC.Frm

nitial

1		r			
ze = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
1 = 8.5	CaO = 0.30 g	oH =	oH = 10.9	pH = 10.5	oH =
200 =	NaCN = 10.0 lb/t	CN = 1b/t	CN = 3.3 16/t	$CN = 2.9 \ 1b/t$	CN = 16/t
`] = 400 naL	Other =	Tit = #L	Tit = aL	Tit = aL	Tit = aL
`ther=	pH to 11.0	Other =	Other =	Other =	Other =
ŕ					

ple Calculations:

	Gold							Arsenic					
	Units	ľ	Assay	Distribu	tion	Recovery		Assay	Distribution	Recovery			
wash	1000 🖬	aL	.024 ∎g/L	.024	ağ	18.46	z	∎g/L	∎ġ	Z			
à	370	L	0.130 mg/L	0.048	∎g	36.92	z	∎g/L	₽ġ	ž			
sh	1000 🗖	L	0.058 ∎g/L	0.058	a ĝ	44.62	I	∎Ģ/l	∎ā	I			
- 11	2370 🖬	BL	0.055 mg/L	0.130	ag	59.35	z	∎g/L	aŭ	1			
< idue	200	ġ	.445 m g/L	0.089	₩ġ	40.65	z	Z	ng	Z			
are Head	200	ą	1.095g/t	0.219	ag	100.00	Z	z	∎Q.	2			
- Head	100	g	0.514 g/t	0.103	вŌ			Z	Đã				

CYANIDATION TESTS

Page 119

Date of Test: September 20,1989

ole: Mill Tailings

iple Code #: FT2

CYANRCC.Fra

itial

re = 200.0 g	Reagents	1 Hour Roll	After 24 Hrs.	After 48 Hrs	After Hrs
·} = 8.7	CaO = 0.30 g	pH =	oH = 11.0	oH = 10.6	oH =
00=	NaCN = 10.0 lb/t	CN = 1b/t	CN = 3.35 1b/t	$CN = 3.1 \ lb/t$	CN = 16/t
10 = 400 mL	Other =	Tit = aL	Tit = aL	Tit = mL	Tit = mil
er =	pH to 11.2	Other =	Other =	Other =	Other =
- The second sec					

__le Calculations:

				Gol	d		Arsenic			
house	Units		Assay	Distribu	tion	Recovery	1	Assay	Distribution	Recovery
lash	1000	aL	.031 ∎g/L	. 031	∎ġ	26.72	X	∎g/L	₩ġ	I
٦¢	380	æL	0.134 mg/L	0.051	WQ	43.97	z	mg/L	Đ	X
ווכ	1000	aL	0.034 mg/L	0.034	₽ġ	29.31	Z	∎g/L	₽ġ	I
Ì	2380	۸L	0.049 mg/L	0.116	яġ	52 .9 7	z	∎g/L	∎ą	X
idue	200	ą	.514 mg/L	0.103	ag	47.03	z	Z	u à	X
Head	200	g	1.095g/t	0.219	∎ġ	100.00	z	z	∎Ģ	Z
∷∍y Head	200	g	0.514 g/t	0.103	Bġ			Z	₽ġ	

G 1 A N T Yellowknife Mines Limited

MEMU TO: G. Halverson

FROM: B. Starcheski

CATE: December 15, 1989

SUBJECT: CYANIDATION OF FLOTATION TAILS

Cyanidation tests were performed on two separate flotation tails samples. The first test was performed November 27, 1989. The average cyanidation recovery was 52.33%. The calculated head grade was .025 oz/ton and the assayed head grade was .009 oz/ton. There is guite a discrepancy in this test so another test was run.

The second text was run December 6, 1989. The cyanidation recovery was 51.72%. The calculated head was .017 oz/ton and the residue was .0085 oz/ton. The assaved head was .011 oz/ton.

The same trend has shown in the cyanidation of the flotation tails (i.e.: The calculated heads have been 30% higher than the assayed heads). These is a serious problem in the determination of the gold in the flotation tails.

The cyanidation recoveries are in line with those of previous tests.

B. Starcheski Metallurgist

BS/sj Attach.

STANT YELCOWKNERE MINES COMPLET

DVANIDATION TESTS

					1818 CT 7887;	∿57e4	iber 17. 1909	Page 1
101	R:::::::	-1113						
s.e j	112 -:							
	AARE. 777							
1712:								
22 -		leagente -	1 -tur -til	l itter ol on≣.	-ftar	-15	After	.73
=	7,5	Ca0 = 0,30 g (9- • 110	ja = 10,8	jn =	-	, ox =	
:00=		Madh = 1000 toro	<u>()</u> = ();;;	13 = 1,2 .2.7	· _ · · · ·	l:/:	:	
=	14A _ 1 1.V 31	1:12: 1			·	 	· · · · · · · · · · · · · · · · · · ·	 FL
272			21387 -			-	leter e	
	!	1		:				,
	•			1 5	•			÷ 1
				I.				

i

ł

spie Calculations;

			2010		4756710				
			Distribution	iacoverv	-354¥	Distribution '	Recovery		
evasn '	32 '	12/2!	?ş	^v '		7 <u>0</u>			
G .	130 me -	(,108 ag/1)	, 224 - <u>-</u>	12:12 A			••••••••••••••••••••••••••••••••••••••		
	EAA LE 1	0.051 aşıt	0.0 26 sş	-5.57 š.		aŭ			
al '	590 mi j	0.067 seri	0.046 mg	61 ,33 ; ;	1ç/t	4g	U 1		
1342	98 g (0.295 mų/tļ	0.029 āģ	28.67 X ¦	w 1 	สีบี	τ		
: Head !	:00 ç:	0.750 g/t (0.075 aç		4 (3 1		ų Y		
iv dead ¹	100 - 1	0.225 g/t į	0.029 tç	1	¥ 1 : :	to			

i

CYANIDATION TESTS

vase of less vovember 17. 1913 - Page 122

.....

. Soir (19585105 (alle)

÷.

aale looe en FT**8** -----

1: 174A800.Fra

117131

......

	z i Azagente		'after 1 ma.	: After	sta ¹ After	73 '
- 7.5	1	ş - 38 = 11.0	GH = 10.0	25 =	 	······································
140 -	' MaCh = 20.0 1.	5/5 2V = 2/5	CN = 113 15/5		12/1 20 -	
	L Sther =	1	· · · · · · · · · · · · · · · · · · ·	; ; Tip =		: المحققة. المحقة.
`e? =		·	liner e		liter :	
				:	,	
	1 - -		•		1	
			т Т	, ,	4	
un continuitata		,	!	1 1 1	!	•

șie Calculations:

	i		n an an Carainte Carainte	•	-75enic				
	03115	455 3 ¥	Sistricetien .	lecovert i	÷ssav ;	Distribution .	SCINELA		
29835		mą/c		1	797E	Į			
- -	120 51	' 0.100 agri'		44,10 * 1	- ag/tl		v 4		
Ĩ.	500 au).048 mą/1').V24 5 <u>9</u> (55,91 1 1	ag/L	₹Ţ !	v 1		
al ;	680 mi	0.063 mạ/t	0.043 mg	-3.33 % [זסָין	5 <u>0</u>	ء ب		
1648	9 <u>9</u> ç	0.582 mç/t∣	0.056 mg	55.67 1	u h	Độ	4		
: 1880 '	:00	0.990 g/t	0.099 ag	100.00 1	¥ 1	uā (ž		
ay keaz (100 -	0.005 ç/; I	0.023 59		¥ 1	-ā ;			

MILL TESTING ASSAY REPORT

SAMPLES FROM Testing

..... DATE ASSAYED

November 30-89

. Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Preg Soln	.180						
FT Preg A	.0031						
WASH	.0015						
FT Preg B	.0031						
Wash	.0014						
, <u> </u>							
			1				
		-					
			·				
-							

W.L. Richardson

.....

.....Assaver

CYANIDATION TESTS

Page 124

Late of 1987; Dec.6 . 199

tien flotaside falle.

.a 1008 ti 774

101202030722

'a Calculations:

1				Pold		Areenic .				
a majana kana kana kana kana kana kana kana				listribution	' ecovery		Districution (Recovery		
¥ê	157	· <u>a:</u>	ağ/c!	· Q	······································	tạ/tị	ng !	:		
		130 ai	0.105 mg/L	.)20 ag	54.52 1	tạ/tļ				
4		: : ::::::::::::::::::::::::::::::::::	0.021 53761	1.011	1 <u>15.42</u> 1 1			ی بین میں		
-12) 590 at	. ^.045 ma∕t'	0 .03 1 	59.82 :	. <u>.</u>	ī.j ļ	¥ 1 - !		
-	ü2	98 ç	0.308 mg/t).030 aç	49.18 1	X	3Ç	ند ا ب ا ح . ا		
Ę	Head	100	0.510 g/t	0.061 sç	. 100.00 ; ;			- 1 1		
Ξ.,	Xead	100 g	0.377 g/t	0 .038 ag	i i	y i a	â î .	۰ ۱		

GIANE VECCOWKNIEL TINES CIMILED

CYANIDATION YESTS

Dage 125

Hoter Clotation Tails

sia Cope e: FTE

i IVANGOG Fra

:171ai

:e =		Reagente			After the	' After tra '
-		Ca6 = 1,00 g		III =C /	<u>.</u>	
 200=		, i	,	28 = 1.0 11/1		
1	190 mt -	Other =	110 = <u>a</u>	1:: =	· #L	
· <u>-</u> · -		· · · ·	Gther -		Conce a	liner -
					:	
1.00 million (1.00 million (1.					•	:
and a second		•				· · · · · · · · · · · · · · · · · · ·
ur	: 	1 1 1	•		1 	

gle Calculations:

}			Sold			Arsenic		
	Units Assau		013071200102	Recovery	ABSAV	31807101010	Escoveny	
EWSET.	:	\$ <u></u> 7/2		1			•	
	120 mi !	1.089 sort!		E2.00 % (aş/tİ	ŢĴ	¥	
-	500 mL .	0.027 #g/L	2.014	5.57 4	₫ġ/L.		ų	
	580 aL ;	0.044 aq/L	0.030 mg	52.53 . '	ağ/L	5 0	r 1	
: .010	98 g (0.274 mg/L	0.027 <u>5</u> ą	-7,37 %	¥ 	#D	ų 1	
ic Xead	:00 -:	0.570 g/t	0.057 mg	100.00 :	i V 1 2 i	υġ	ž	
i v Haad	120 și	91277 <i>-14</i> i	0.035 - <u>-</u>	: : :	· · · · · · · · · · · · · · · · · · ·			

MILL TESTING ASSAY REPORT

FT A Solid B FT Head FT Preg A Wash	.009 .008 .011 .0031	-		
FT Head FT Preg A Wash	.011,	-	 	
FT Preg A Wash				
Wash	.0031			
	.0006			
FT Preg B	.0026			
Wash	.0008			
	•			
				 _

GIANT YELLOWKNIFE MINES LIMITED MEMO TO : G. Halverson COPY TO : B. Wakabayashi, S. McAlpine FROM : B. Longmore DATE : Mar. 5, 1990 SUBJECT : Cyanidation of Mill Tailings Interim Report

Part One

Evanidation tests were performed on the following Mill Tailings; Flotation Tailings (FT), Calcine Residue Tailings (CR), Dust Treatment Residue Tailings (DTR), and a composite of all three (CT) in accordance with the Mill's through-put. A 24 and 48 hour leach test was done for each sample while varying the cyanide addition only.

ased on the 48 hour leach tests the calculated extractions were as follows; FT 38.41%, CR 12.23%, DTR 14.19%, and CT 21.48%.

he CR and DTR low extraction rates indicate that the Conventional Mill is ..andling these solids efficiently. The CR and DTR solids have already undergone one cyanidation and a further cyanidation at a lower cyanide ddition level (TRP mill cyanide addition is 0.85 lb/t) should not produce esults as good as the leach tests when cyanide additions were 6.8 lb/t. The accompanying solution with the CR and DTR solids contain undesirables such 's Sulphides, Thiosulphates and Arsenics. These undesirables are oxygen and yanide robbing which would hinder the TRP's cyanidation, gold absorption and enhance carbon fouling. Though the amounts of the solutions are small in 'omparison with the TRP's make-up solution, any extra contaminants are hwanted and unneeded. I believe it would be better to avoid processing the CR and DTR tailings at the TRP. Any further work involved to recover more of the gold from these tailing should be attempted at the Conventional Mill.

Daily extractions of DTR solids; best case, 20t/day x 0.24 oz/t x 14% x 95% gives 0.64 oz/day Daily extraction of CR solids; best case, 80t/day x 0.18 oz/t x 12% x 95% gives 1.64 oz/day Daily extraction of FT solids; best case, 1000t/day x 0.016 oz/t x 41% x 95% gives 6.2 oz/day Page 127
The Composite sample (CT) extractions were lower than the expected extraction rates of the combined individual samples (90% FT + 8% CR + 2% DTR) for both the 24 and 48 hour leach tests. This could reflect a poisoning from one or more of the samples involved on the other sample(s). Thus a composite Tailings sample was ignored and further testswork was carried out on the Flotation Tailings only.

Part Two

Further cyanidation tests were carried out with the Flotation Tailings and a TRP feed composite (hole 88-14). Separate tests were done on the Flotation Tailings and the TRP feed and a combination of the two tailings were used to produce a 10% FT plus 90% TRP sample and a 20% FT plus 80% TRP sample.

Based on 48 hour leach times calculated gold extractions were as follows; FT 34.38%, TRP Feed 36.62%, 10%FT 34.02, and 20%FT 32.63%.

Results indicate that with the addition of the Flotation Tailings to the TRP feed composite the extraction rates decrease. On comparing the dilution effect with the actual assayed and calculated head extractions the Flotation Tailings lowered the expected extractions by 5.3% - 7.7% and 2.4% - 3.5% respectively.

From these results it would be ill advised to add Flotation Tailings to the TRP feed as already lower than expected extractions occur and any further lecrease would be depremental. Please note these observations are based on one particular TRP composite hole.

	Yellowknife Mines Mill Leach Tests	
	Solid oz/t	Sol'n oz/t
Flot Head	0.016	
Flot Head 1	0.017	
Flot Head 2	0.014	
DTR Head	0.240	
CR Head	0.180	
Comp Head	0.016	
24 hr Flot	0.009	0.0032
24 hr Flot l	0.012	0.0040
24 hr Flot 2	0.010	0.0041
24 hr DTR	0.250	0.0102
24 hr CR	0.180	0.0101
24 hr Comp	0.019	0.0042
48 hr Flot	0.010	0.0033
48 hr Flot 1	0.014	0.0046
48 hr Flot 2	0.012	0.0045
48 hr DTR	0.200	0.0124
48 hr CR	0.160	0.0111
48 hr Comp	0.030	0.0040

Sample Dates Feb. 5, 1990 Feb. 13, 1990

	W eight Solids g	Volume Sol'n ml	% Solids	NaCN Added lb/t	End Free CN lb/t
24 hr Flot	168.5	340.9	49.43	6.78	4.4
24 hr Flot l	163.5	342.6	47.72	1.20	0.6
24 hr Flot 2	155.5	345.4	45.02	0.80	0.5
24 hr DTR	135.5	352.5	38.44	6.78	4.2
24 hr CR	156.5	345.1	45.35	6.78	3.5
24 hr Comp	155.5	345.4	45.02	6.78	4.4
48 hr Flot	178.5	337.4	52.91	6.78	3.9
48 hr Flot 1	162.5	343.0	47.38	1.20	0.6
48 hr Flot 2	166.5	341.6	48.74	0.80	0.35
48 hr DTR	132.5	353.5	37.48	6.78	3.6
48 hr CR	169.5	340.5	49.78	6.78	3.7
48 hr Comp	166.5	341.6	48.74	6.78	3.9

		Calc Head oz/t	Assay H ead oz/t	Assay Tail oz/t	% Extrac Calc	Page 131 % Extrac Assay
24 hr	Flot	0. 015	0.016	0.009	41.84	43.75
24 hr	Flot l	0.020	0.017	0.012	41.13	29.41
24 hr	Flot 2	0.019	0.014	0.01	47.67	28.57
24 hr	DTR	0.277	0.24	0.25	9.59	-4.17
24 hr	CR	0.202	0.18	0.18	11.01	0.00
24 hr	Comp	0.028	0.016	0.019	32.93	-18.75
48 hr	Flot	0.016	0.016	0.01	38.41	37.50
48 hr	Flot l	0.024	0.017	0.014	40.95	17.65
48 hr	Flot 2	0.021	0.014	0.012	43.48	14.29
48 hr	DTR	0.233	0.24	0.2	14.19	16.67
48 hr	CR	0.182	0.18	0.16	12.23	11.11
48 hr	Comp	0.038	0.016	0.03	21.48	-87.50

.

.

,

Giant Yellowknife Mines Conv. Mill Leach Tests Part 2

Sample Date Feb. 26, 1990

--TRP Feed Leach Tests (Hole 88-14 Composite) --Feb.26,1990 Flotation Tailings Leach Tests --TRP Feed plus 10 %, and 20 % Flot Tails Addition Leach Tests

	Solid oz/t	Sol'n oz/t
TRP-FLOT HEAD	0.014	
TRP-88-14 HEAD	0.082	
TRP-FLOT-24	0.013	0.0034
TRP-FLOT-48	0.013	0.0037
TRP-88-14-24	0.060	0.0227
TRP-88-14-48	0.057	0.0204
TRP-10FT-24	0.060	0.0192
TRP-10FT-48	0.058	0.0183
TRP-20FT-24	0.058	0.0177
TRP-20FT-48	0.056	0.0162

	Weight Solids g	Volume Sol'n ml	% Solids	NaCN Added lb/t	Page 133 End Free CN lb/t
TRP-FLOT-24	175	3 38. 6	51.68	1.00	0.5
TRP-FLOT-48	182.5	336.0	54.32	1.00	0.6
TRP-88-14-24	203.5	328.6	61.93	1.00	0.6
TRP-88-14-48	203.5	328.6	61.93	1.00	0.5
TRP-10FT-24	197.5	330.7	59.72	1.00	0.6
TRP-10FT-48	201.5	329.3	61.19	1.00	0.65
TRP-20FT-24	200.5	329.6	60.82	1.00	0.6
TRP-20FT-48	197.5	330.7	59.72	1.00	0.5
	Calc Head oz/t	Assay Head oz/t	Assay Tail oz/t	۶ Extrac Calc	% Extrac Assay
TRP-FLOT-24	0.020	0.0140	0.013	33.60	7.14
TRP-FLOT-48	0.020	0.0140	0.013	34.38	7.14
TRP-88-14-24	0.097	0.0820	0.060	37.92	26.83
TRP-88-14-48	0.090	0.0820	0.057	36.62	30.49
TRP-10FT-24	0.092	0.0752	0.060	34.89	20.21
TRP-10FT-48	0.088	0.0752	0.058	34.02	22.87
TRP-20FT-24	0.087	0.0684	0.058	33.41	15.20
TRP-20FT-48	0.083	0.0684	0.056	32.63	18.13

G I A N T Yellowknife Mines Limited

MEMO TO: G.B. Halverson

C.C.:

FROM: P.M. O'Hara

DATE: March, 1990

SUBJECT: FLOTATION CIRCUIT BALANCE AND COLLECTION OF SCAVENGER CONCENTRATE SAMPLE

On Feb. 13 and 14 the flotation circuit was sampled and metallurgical balances calculated (attached). On the 13th the circuit was run under normal operating conditions. On the 14th the circuit was run with the scavenger cells being pulled as hard as possible and all other cells being run under normal operating conditions. As a result the weight % of scavenger concentrate went from 0.4% on the 13th to 1.6% on the 14th and the distibution of gold increased slightly from 1.0% on the 13th to 1.1% on the 14th. For the 13th the assayed feed grade was 0.27oz/T with a final tail of 0.014 oz/T and on the 14th the assayed feed grade was 0.31 oz/T with a final tail of 0.013 oz/T.

Results from both days show that due to low sulphur content both the scavenger concentrate and the secondary rougher concentrate would benefit from futher cleaning. For the scavenger concentrate the sulphur grade was 4.3% on the 13th and 2.88% on the 14th. For the secondary rougher concentrate the sulphur grade was 6.71% on the 13th and 6.39% on the 14th.

A bulk sample of scavenger concentrate was collected on Feb 14th, 22nd and March 6th (200 - 300 kg). This sample was sent to Lakefield Research for column flotation testwork. Results from sampling on Feb. 22nd and Mar. 6th compared favorably with those on the 14th as shown below:

Date	Flowrate(tph)	Scav Au	/ Conc S	Assays As	Feed Grade	Flotation Tails
Feb 14	0.8	0.26	2.28	1.09	0.31	0.013
Feb 22	0.8	0.24	1.48	1.02	0.25	0.013
Mar 6	N/A	0.23	1.48	1.22	N/A	N/A

Scav Conc Scav Tails Calc Scav Feed Asyd Scav Feed	Pri Kough Conc Sec Rough Conc Calc Rough Conc Asyd Rough Conc Rough Tails Calc Rough Feed Asyd Rough Feed	Max Co Max Ta Ic #2 M Yd #2 M	#1 Max Conc #1 Max Tails Calc #1 Max Feed Asyd #1 Max Feed	Calc Feed Assayed Feed	#1 Max Conc #2 Max Conc Pri Rough Conc Sec Rough Conc Scavenger Conc Calc Flot Conc Asyd Flot Conc Final Tails	Product
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4400000 000000000000000000000000000000	4440 0000 00000	4 4 4 4 4 5 0 0 0	44 5.0 00	ម ម ម ម ម ម ម ម ម ម ម ម ម ម ម ម ម ម ម	ع ج
0.5 99.5 100.0	100.0 100.0	1.2 98.8 100.0	9.3 90.7 100.0	100.0	9.9 12.7 12.7 3	Ψ t X
10.730 10.014 10.018	13.480 11.250 12.086 12.630 10.017 10.051	12.040 10.052 10.076 10.071	12.700 10.071 10.316 10.270	0.327	12.700 12.040 13.480 11.250 10.730 12.487 12.620 12.620	A 5
0.03 0.03	116.82 6.71 10.50 114.32 0.23 0.43 0.31	17.64 0.26 0.27 0.29	21.71 0.29 2.29 2.79	2.79	121.71 117.64 116.82 6.71 4.33 119.17 119.02 0.07	ASSAYS
0.01 0.03	111.53 5.50 7.76 0.29 0.29 0.17	0.08. 20.08. 20.000 20.000 20.00 20.000 20.000 20.000 20.000 20.000 20.000 200	10.96 0.26 0.99	1.28 0.99	10.96 11.53 11.53 5.50 3.47 110.03 10.03 10.03	ມ ມ
3.73 14.06 17.79	26.68 42.65 20.16 17.16 52.52 52.52	26.07 53.55 79.62 74.03	289.80 74.03 363.83 310.50	376.31 310.50	289.80 26.07 26.68 15.97 3.73 362.25 381.65 14.06	Au
0.22 0.92	1 N 2 1 N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0400 0060 0080	30 20 20 20 20 20 20 20 20 20 20 20 20 20	28. 22. 09	23.30 2.25 1.29 0.86 27.92 27.92 27.92 0.70	UNITS/DAY
0.18 0.28	0.88 0.70 0.79 0.91 1.75	1.08 2.68 3.76 2.71	11.76 2.71 14.47 11.39	14.71 11.39	11.76 1.08 0.88 0.70 0.18 14.61 14.76 0.10	A m
21.0X 79.0X 100.0X	44.67 26.77 33.77 28.77 100.07	32.7X 67.3X 100.0X 100.0X	79.7X 20.3X 100.0X 100.0X	100.0X	77.0X 6.9X 7.1X 1.0X 1.0X 1.0X 1.0X 1.0X 1.0X 3.7X	Au
23.9X	28.92 19.22 28.92 19.22 24.62 100.02	45.72 54.32 100.02	88.5x 11.5x 100.0x	100.0X	81.42 4.52 97.52 96.82 2.52	STRIBUTION
63.8z 36.2z 100.0z	100.02 100.02	28.87 71.27 100.07	81.32 18.72 100.02	100.0X	80.07 7.47 6.07 4.87 1.27 1.27 1.27 1.27 1.27 1.27 1.27 2.37	ION

GIANT YELLOWKNIFE MINES LTD

TABLE 1 : METALLURGICAL BALANCE FEB 13/90

age 135

MILL TESTING ASSAY REPORT

SAMPLES FROM ... Testing February 18-90

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Flot Conc 13th	2.68 2.63	2.62		19.02	10.13		
Prime Rougher Conc -	3.54 3.42 3.47	3,4%		16.82	11.53		
Rougher Conc	2.68 2.61	2.63		14.32	10.29		
1st- Maxwell Conc	2.90 2.48	2.70		21.71	10.96		
2nd Maxwell Conc	2.01 2.06	2.04		17.64	8.48		
Sec. Rougher	1.25 1.24	1.25	-	6.71	5.50		
Scavenger Conc	.73.74	0.73		4.33	3.47		
#1 COF	.255 .255	0,255 70.	27	3.20	.91		
#2 COF	.29.29	D.28		2.37	1.06		
Rougher Feed	.051			.31	.17		
Rougher Tails	.017			.23	.09	· · · · ·	
#1 Maxwell Tails	.071			.29	.26	¢	
#2 Maxwell Tails	.052			.26	.26	<u> </u>	
Final Tails	014			.07	.01		
			· · · · ·				

Scav Conc Scav Tails Calc Scav Feed Asyd Scav Feed	Pri Rough Conc Sec Rough Conc Calc Rough Conc Asyd Rough Conc Rough Tails Calc Rough Feed Asyd Rough Feed	#2 Max Conc #2 Max Tails Calc #2 Max Feed Asvd #2 Max Feed	#1 Max Conc #1 Max Tails Calc #1 Max Feed Asyd #1 Max Feed	#2 Max Conc Pri Rough Conc Sec Rough Conc Scavenger Conc Calc Flot Conc Asyd Flot Conc Final Tails Calc Feed Assayed Feed	
40.9 41.7	444 NN11000 NN11000 WWV00N4	444 0,000 0,000	444 0000 0000 0000	44 20000000 00 20400440 00	
1.9 98.1 100.0	10082100 00644550	2.1 97.9 100.0	11.8 88.2 100.0	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N
0.013 0.013	12.760 11.130 12.217 11.870 10.015 10.046 10.053	1.770 0.055 0.091	12.680 10.076 10.394 10.310	1.770 1.770 1.130 0.260 1.680 1.680 1.680 0.310	
000N 000N 000 000 000	14.19 111.59 0.206 2.206	14.33 0.28 0.57	21.78 0.48 3.00	144.19 144.19 144.19 144.19 144.19 144.28 144.28 144.27 3.20 144.27 3.19 3.14	
	0.00 0.00 0.10 0.10 0.10 0.00 0.10 0.00 0.10 0.000000	0005 0005 0005 0005 0005 005 005 005 00	0.72 0.226 73	0.5 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
11 4 17 4 14 68	50 44 50 50 50 50 50 50 50 50 50 50 50 50 50	37.39 91.99 77.05	264.81 77.05 441.86 356.50	319 356 356 356 356 356 356 356 356 356 356	. Al
0N N 0 04 0 4 04 N 0	NNCN+01 NNCN+01 NNCN+02 NNCN+02 NNCN+02 NNCN+02 NNCN+04 NNCN+04 NNCN+04 NNCN+04 NNCN+04 NNCN+04	4.51 N & 4.9 N & 7 8 7 8 7	29.65 4.87 36.11	36 NB40433 55 N04333 N043333 N043333 N043333 N043333 N043333 N043333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N04333 N043 N04	1 1 11
0.20 0.29 29 29	N 1 0 1 0 0 0 6 N N 4 9 1 8 6 9 N 6 5 N	2.29 2.29 2.21 2.21	1 0 N N O 4 4 U 0 0 N O 0	10.00 10	A A
28.1X 71.9X 100.0X	56.5X 68.0X 95.6X 100.0X	40.6X 59.4X 100.0X	82.6X 17.4X 100.0X	80.9X 8.3X 5.7X 1.2X 97.2X 70.9X 2.8X 100.0X	DI
17.5% 82.5% 100.0%	60.02 13.52 108.22 100.02 100.02	52.1X 47.9X 100.0X	85.9x 14.1x 100.0x	80.72 8.22 0.82 1.22 94.52 76.32 100.02	BU
41.3X 58.7X 100.0X 100.0X	64.9X 11.7X 76.6X 112.8X 23.4X 100.0X 100.0X	38.22 61.82 100.02	79.6X 20.4X 100.0X	78.72 9.82 1.22 1.22 1.62 1.62 97.72 82.52 82.52 100.02	

GIANT YELLOWKNIFE MINES LTD

TABLE 1 : METALLURGICAL BALANCE FEB 14/90

.

Page 137

MILL TESTING ASSAY REPORT

SAMPLES FROM Test Work - Flotation DATE ASSAYED February 19-90

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
Flot Conc 14th	1.62 1.65	1.00		14.75	5.45		
lst Maxwell Conc	2.68 2.64	2.68		21.78	7.26		
2nd Maxwell Conc	1.76 1.78	1.77		14.33	5.81		
Rougher Conc.	1.80 1.93	1.87		10.23	6.04		
Primary Rougher Conc.	2.78 2.74			14.19	8.69		
Scavenger Conc.	.26 .26	0.25		2.28	1.08		
Sec Rougher Conc.	1.14 1.13	1.13		6.39	3.14		
COF #1	.26 .23	0.25 0.31		3.07	.77		
COF #2	055 075			3.21	.68		
Rougher Feed	.053			.71	.27		
Rougher Tails	.015		· · · · · · · · · · · · · · · · · · ·	.06	.03		
#1 Maxwell Tails	.076			.48	.25		
#2 Maxwell Tails	.055			.28	.20		
Final Tails	.013			.21	.03		
			a				
ganist - timet j _{ennen} , tenjetaranje <u>stato</u> t <u>e</u> tetanagen							
							ру ШШШЦУ(), — — — — —

N.L. Richardson Assayer

MILL TESTING ASSAY REPORT

Sample Number	Au Oz/Tn	Ag Oz/Tn	Fe	S	As	Sb	Cu
cavenger Conc Feb 22	nd .24 .24 .24	0.24		1.48	1.02		
COF #1	.25 .25	0.25					<u> </u>
#2	.25 .275	0,26					
Final Tails	.013	0.013					
							74 <u></u>
							<u></u>
· ·					,		<u> </u>
							
							and an an an and a second

W.L. Richardson

.....Assaver

MILL TESTING ASSAY REPORT

SAMPLES FROMFlotation Tests DATE ASSAYED March 7-90 Au Ag Sample Number Fe S As Sb Cu Oz/Tn Oz/Tn .265 .235 1.22 Scavenger Conc 6th 1.48 .185 . .

W.L. Richardson

Assayer