

Environment Canada

Environmental Protection Service

Environnement Canada

Service de la protection de l'environnement

A Report on Air Quality in Yellowknife, Northwest Territories

Surveillance
Report EPS-5-NW-77-55
Northwest Region
June 1977

ABSTRACT

Two gold mines, namely Giant Yellowknife Mines Ltd. and Con Mine Ltd. operate in the immediate vicinity of Yellowknife. Since 1950, studies, by various federal departments and individual researchers, have endeavoured to identify and quantify arsenic in the Yellowknife environment.

The objective of this report is to provide information on the quality of the ambient air in the Yellowknife area, with major emphasis being placed on the magnitude of arsenic present in suspended and settleable particulates. Sulfur dioxide and lead levels were also measured. The results indicate an average arsenic concentration of 0.08 micrograms arsenic per cubic meter of air and an average arsenic deposition rate of 10 pounds of arsenic per square mile per month. Further, the results also indicate that 24-hour total suspended particulate levels exceed the maximum acceptable National Air Quality Objective approximately 10% of the time whereas sulfur dioxide levels are basically within the maximum acceptable National Air Quality Objectives.

There is a need to clarify the significance of the arsenic levels measured with respect to its impact on the environment. In addition, an effective and accurate method for determining ambient concentrations of total arsenic needs to be identified.

The results of some previous studies by Health and Welfare have been provided for comparison purposes. Certain details regarding Giant Yellowknife Mines Ltd., such as the nature of the ore, the process and a chronology of air pollution control measures implemented, have also been provided for information purposes.

·

RESUME

Deux mines d'or, la Giant Yellowknife Mines Ltd et la Con Mine Ltd, sont en exploitation dans le voisinage immédiat de Yellowknife où, depuis 1950, plusieurs ministères fédéraux ainsi que des chercheurs ont tenté d'identifier et de doser l'arsenic.

L'objet du présent rapport est de fournir des renseignements sur la qualité de l'air ambiant de la région de Yellowknife; il met l'accent sur la quantité d'arsenic présente tant dans les particules en suspension que dans celles qui se déposent. Les résultats indiquent une concentration moyenne de 0,08 microgramme de cet élément toxique par mètre cube d'air et un rythme moyen de dépôt de 10 livres par mille carré et par mois. Ils rélèvent également que les concentrations de particules totales en suspension pour 24 heures dépassent la norme maximale acceptable, définie comme objectif national de qualité de l'air, environ 10 p. 100 du temps. Les concentrations de plomb et de dioxyde de soufre ont également été mesurées; celles de ce dernier composé sont conformes à l'objectif national.

Il est nécessaire, du point de vue des répercussions sur l'environnement, de préciser l'importance des concentrations d' arsenic mesurées et de trouver une méthode efficace et exacte d'en doser la présence totale.

Les résultats de certaines études antérieures du ministère de la Santé nationale et du Bien-être social sont fournies pour fins de comparaison.

Certains détails concernant le Giant Yellowknife Mines Ltd, comme la nature du minerai, le type de traitement et la chronologie des étapes de la lutte contre la pollution de l'air sont également donnés.

TABLE OF CONTENTS

		PAGE
ABSTRAC	T	i
RÉSUMÉ		ii
TABLE C	OF CONTENTS	iii
LIST OF	F TABLES	v
LIST OF	FIGURES	vi
CONCLUS	GIONS	vii
RECOMME	ENDATIONS	viii
1	INTRODUCTION	1
2	AMBIENT AIR MONITORING PROGRAM	2
3	SUSPENDED PARTICULATES	3
3.1	Sampling Procedure and Location of Sites	3
3.2	Sample Analysis	6
3.3	Results and Discussions	7
3.4	Conclusions	13
3.5	Recommendations	13
4	SETTLEABLE PARTICULATES	13
4.1	Sampling Procedure and Location of Sites	13
4.2	Sample Analysis	14
4.3	Results and Discussion	14
4.4	Conclusions	18
4.5	Recommendations	18
5	SULPHUR DIOXIDE	18
5.1	Sampling Procedure and Location of Sites	18
5.2	Results and Discussion	19
5.3	Conclusions	23
5.4	Recommendations	2.3

			PAGE
REFERENCES			24
APPENDIX I	GIAN	NT YELLOWKNIFE MINES LTD.	25
APPENDIX II	AND	FFALL STUDIES BY NATIONAL HEALTH WELFARE ARSENIC DEPOSITION RATES D - 1963	31
APPENDIX II	GIAN	ENIC EMISSIONS SUMMARY NT MINE, 1949 - 1974 MINE, 1950 - 1970	39
APPENDIX IV		O ROSE DATA FOR YELLOWKNIFE, NWT 5 - 1972	43
APPENDIX V		EF DESCRIPTION OF THE HIGH VOLUME PLER LOCATIONS	47
APPENDIX VI		PENDED PARTICULATE SAMPLING PROGRAM LITY ASSURANCE CHECKS	1 - 51
APPENDIX VI		COROLOGICAL CORRELATION OF ARSENIC CENTRATIONS GREATER THAN 0.5 ug As/	′m ³ 57
APPENDIX VI		EF DESCRIPTION OF DEPOSITION SAMPLI E LOCATIONS	ING 65
APPENDIX IX	•	LITY CHECK ON LABORATORY PROCEDURE OSITION RATE SAMPLES	FOR 69
APPENDIX X		AL AND ARSENIC DEPOSITION RATES ae - October 1975)	73
APPENDIX XI		ERAL DESCRIPTION OF SO ₂ MONITOR SIT	TE 77
APPENDIX XI	I METE CENT 1975	COROLOGICAL CORRELATION OF SO CON- TRATION GREATER THAN 0.17 ppm ² (1973	- 81

LIST OF TABLES

TABLE		PAGE
an	FREQUENCY DISTRIBUTION OF ARSENIC CONCENTRATIONS IN AMBIENT AIR	8
2	FREQUENCY DISTRIBUTION OF TOTAL SUSPENDED PARTICULATES IN AMBIENT AIR	9
3	FREQUENCY DISTRIBUTION OF LEAD CONCENTRATIONS IN AMBIENT AIR - 1975	10
4	FREQUENCY DISTRIBUTION OF TOTAL SUSPENDED PARTICULATES, ARSENIC AND LEAD IN AMBIENT AIR (FOR ALL STATIONS)	11
5	MEAN TOTAL DEPOSITION RATE BY STATION JUNE - OCTOBER 1975 (TONS/SQ MILE/MONTH)	16
6	MEAN ARSENIC DEPOSITION RATE BY STATION JUNE - OCTOBER 1975 (LBS/SQ MILE/MONTH)	17
7	ANNUAL SUMMARY OF SULPHUR DIOXIDE CONCENTRATIONS	20

LIST OF FIGURES

FIGURE		PAGE
1	TOPOGRAPHICAL FEATURES	4
2	OVERALL AMBIENT AIR SAMPLING SITES	5
3a 3b 3c	FIELD CONTAINER STAND APPARATUS WITH CONTAINER POLE APPARATUS WITH CONTAINER	15 15 15
4	${ m SO}_2$ HOURLY DATA CORRELATED WITH HOURS OF DAY (FOR ALL LOCATIONS)	21
5	SO ₂ HOURLY DATA GREATER THAN 0.17 CORRELATED WITH WIND VELOCITY	22

.

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

- 1. Annual geometric mean <u>arsenic</u> concentrations in ambient air (measured by the hi-vol method) were 0.08, 0.09 and 0.06 ug arsenic/m³ for 1973, 1974, and 1975 respectively.
- 2. Individual 24-hr <u>arsenic</u> concentrations in ambient air varied from less than 0.01 to 3.91 ug arsenic/ m^3 .
- 3. Approximately 10% of the time, 24-hr total suspended particulate levels for 1973, 1974 and 1975 exceed the maximum acceptable National Air Quality Objectives.
- 4. The maximum tolerable National Air Quality Objective for total suspended particulates was exceeded approximately 2% of the time.
- 5. For 1975, an annual geometric mean $\underline{1ead}$ concentration in ambient air of 0.03 ug $\underline{1ead/m^3}$ was recorded.
- 6. Lead levels measured are not considered significant in comparison to levels at other locations across Canada.
- 7. The amount of arsenic in the vapour state defied accurate determination due to limitations in sampling techniques.
- 8. An arithmetic mean of $11 \underline{tons}/sq$ mile/month was obtained as the total particulate deposition rate.
- 9. An arithmetic mean of 10 $\underline{1bs}/sq$ mile/month was obtained as the $\underline{arsenic}$ deposition rate.
- 10. Giant Mine is a primary and fugitive source of arsenic in settleable particulates.
- 11. Con Mine continues to be a source of fugitive arsenic emissions.
- 12. Annual arithmetic mean sulfur dioxide concentrations in ambient air $\underline{\text{do not}}$ exceed the $\underline{\text{maximum}}$ desirable National Air Quality Objective.
- 13. Hourly ambient sulfur dioxide concentrations occasionally exceed the maximum desirable National Air Quality Objective.
- 14. Hourly ambient sulfur dioxide concentrations <u>rarely</u> exceed the maximum acceptable National Air Quality Objective.

RECOMMENDATIONS

- 1. The question of identifying National Air Quality Objectives for arsenic should be referred to the Federal/Provincial Committee on Air Pollution.
- 2. An effective and accurate method for determining ambient concentrations of total arsenic needs to be identified.
- 3. Total suspended particulate levels occasionally exceed the maximum tolerable National Air Quality Objective, hence an investigation of the problem should be initiated soon with the intent of rectifying the situation.
- 4. The significance of historical and present arsenic deposition rates on the Yellowknife environment requires additional study Specific areas which need to be examined further include, accumulation in soils, quantities in spring run-off and effects on local vegetation.
- 5. Since measured sulfur dioxide concentrations in ambient air are basically within the maximum acceptable National Air Quality Objectives, it is recommended that the sulfur dioxide monitoring program in Yellowknife be terminated for the time being.

1 INTRODUCTION

The history of the Northwest Territories indicates that gold mining was responsible for opening the northern frontier to development. Two such mining operations, namely Giant Yellowknife Mines Ltd. and Con Mine Ltd. exist in the immediate vicinity of Yellowknife.

The Giant Yellowknife Mine is located on the north shore of Great Slave Lake, approximately three miles from the City of Yellowknife. It commenced production in 1948. It was initially owned and operated by Ventures Ltd. until 1962 when it became part of the Falconbridge Group of Companies. Air Pollution control measures were initiated in 1951, and refined over the period 1951 to 1962 to improve collection efficiency of arsenic emissions. Details regarding the nature of the ore, the process and a chronology of air pollution control measures implemented has been provided in Appendix I.

Con Mine Ltd. is located approximately half a mile south of the City of Yellowknife. Until 1970, the off-gases from their roasting operations were scrubbed and the arsenic bearing sludge was discharged to open pits. Since 1970, Con Mine has discontinued roasting operations, and hence their process is no longer a source of atmospheric arsenic emissions; however, the arsenic sludge pits and tailings disposal areas continue to be sources of fugitive arsenic emissions.

Since 1950 the Department of Health and Welfare (H & W) has conducted a number of studies to document the health implications of arsenic exposure on the local population; some of the studies related to arsenic concentrations in the ambient air. Baker and De Villiers of H & W in 1966 concluded that, while inhaled arsenical particulates may have a minor contributory role in the incidence and prevelance of respiratory diseases in Yellowknife, it was probably of less importance than other environmental factors (1).

The objective of this report is to document the quality of the ambient air in the Yellowknife area, with major emphasis being directed to identifying the magnitude of arsenic present in suspended and settleable particulates.

2. AMBIENT AIR MONITORING PROGRAM

As a result of public concern over the levels of arsenic in the air, water, and land environment around the Yellowknife area, H & W have carried out a number of studies over the past 20 years. Renewed interest in the ambient air levels of arsenic was expressed by H & W in 1973 and their concern was conveyed to the Department of Fisheries and the Environment (DFE). Existing information on ambient air levels of arsenic obtained from dustfall studies carried out during 1950-63 as well as stack emission information from Giant Mines for the period 1950-74 and from Con Mines for the period 1950-70 have been summarized under Appendices II and III, respectively.

In response to H & W's concerns, EPS on behalf of DFE initiated a 12-week study (March 12 - June 4, 1973) to obtain additional data on ambient air levels of arsenic in the Yellowknife area. A portion of the data obtained during this first phase of the study had to be invalidated because of analytical discrepancies. The study was reconstituted in April 1974 and data for the period April 21, 1974 to February 10, 1975 was obtained under Phase II. A separate survey to monitor ambient carbon monoxide levels in Yellowknife was conducted by EPS between January and May of 1975. It concluded that carbon monoxide levels in Yellowknife were well below the maximum acceptable National Air Quality Objectives.

Towards the end of 1974 EPS was planning a basic environmental survey in Yellowknife for the summer of 1975 including an expanded air monitoring program. The concerns raised by the January 8, 1975 CBC program "As It Happens" provided additional impetus to the commitment of resources. As a result, the Yellowknife Environmental Survey (YES) became a reality. During the initial phases of YES the need for an interdepartmental co-ordinating body was identified and hence the Standing Committee on Arsenic in Yellowknife was formed. It has representatives from DFE, H & W, DINA, NWT government, City of Yellowknife and from the mining industry. Specific areas on which emphasis was directed included: air quality, water quality, human health, industrial hygiene, fisheries, wild-life, soils and vegetation. Since a substantial amount of information was already available on human health, industrial hygiene, fisheries and water

quality from previous studies, the major emphasis under YES was directed towards obtaining information on air quality, wildlife, soils and vegetation. EPS undertook to implement a Giant Yellowknife stack emission survey, an expanded air monitoring project and an investigation of soils and vegetation.

Under the auspices of the Yellowknife Environmental Survey, the existing ambient air monitoring project comprising of three high volume (hi-vol) samplers was expanded into a network of nine sampling stations to monitor suspended particulates. In addition, a network of 22 dustfall jars was set up to monitor settleable particulates. Further, analyzers were set up at three different sites to monitor ambient concentrations of sulphur dioxide. The general topographical features of the Yellowknife area and the overall ambient air sampling sites have been depicted geographically in Figures 1 & 2 respectively.

3 SUSPENDED PARTICULATES

3.1 Sampling Procedure and Location of Sites

Suspended particulate matter was collected utilizing high volume (hi-vol) samplers, since most of the arsenic emitted to the atmosphere from the roasting operation was expected to be in particulate form (2). Since Con Mine had discontinued roasting operations in 1970, Giant Mine was the major source for the purposes of this study. An analysis of the wind data for the periods 1955-66 and 1967-72 indicated that the prevailing wind direction during the summer (May - August) is in the south to east quadrant, whereas during the winter (September - April) the prevailing winds are either from the northwest or the east. Wind rose information for Yellow-knife has been provided in Appendix IV. Having identified the source and prevailing wind directions, the location of sampling sites were chosen; the availability of electricity was an additional major constraint that had to be contended with. Brief descriptions on the locations of the high volume sampling stations have been provided in Appendix V.

Under Phase I of the study (from March 12 - June 4, 1973), high volume samples were randomly collected for 24-hr durations. The latter portion of the data obtained under this phase (April 27 - June 4, 1973)

FIGURE 2 OVERALL AMBIENT AIR SAMPLING SITES

had to be invalidated due to analytical discrepancies. Under Phase II of the study (from April 12, 1974 February 10, 1975), high volume samples were collected randomly for 24 hr, 72 hr, 96 hr, and 120 hr intervals, sometimes in conjunction with bubbler samples, in an attempt to quantify the proportion of arsenic trioxide in the vapour phase. Bubbler samples for the above varying durations were collected during the period May 23, 1974 to August 2, 1974. Under Phase III of the study (from February 11, 1975 to October 30, 1975) high volume samples were collected randomly for 24-hr durations. Since the bubbler samples under Phase II were inconclusive in qualifying the proportion of arsenic trioxide in the vapour phase a further attempt was made under Phase III to improve, by chemical means, the collection efficiency of the hi-vol method for total arsenic (particulates as well as vapour). The technique consisted of impregnating a hi-vol filter with a 10 percent solution of polyethyleneimine. The impregnated filter was dried and then placed in a two-layer hi-vol system with a porous fiberglass screen separating the regular untreated filter at the top from the impregnated filter at the bottom. Sixteen 24-hr samples were collected utilizing this sampling procedure.

3.2 Sample Analysis

Exposed hi-vol filters from Phase I of the study were initially analyzed for arsenic by the Chemistry Division of the Air Pollution Control Directorate in Ottawa, utilizing both x-ray fluorescence as well as Vasak and Sedivec (pyridine) techniques. Suitable aliquots of some of the samples were also analyzed by the EPS regional laboratory in Edmonton as a cross-reference.

Samples collected during the second half of Phase I, i.e. for the period April 27, 1973 to June 4, 1973, were directed to the EPS regional laboratory in Edmonton for analysis utilizing the Vasak and Sedivec (chloroform) method. Results obtained by the regional laboratory were inconsistent and did not compare well with results obtained by the Chemistry Division in Ottawa, and hence have been invalidated.

Exposed hi-vol filters from Phase II of the study were jointly analyzed for arsenic by Chemistry Division, Ottawa, and the EPS regional

laboratory in Edmonton, utilizing the Vasak and Sedivec (pyridine) technique. The Chemistry Division also conducted x-ray fluorescence determinations. The results between the two laboratories as well as between the two techniques employed, correlate well. Chemistry Division subsequently discontinued the more time-consuming colorimetric method, and hence only performed x-ray fluorescence determinations for arsenic. As indicated earlier, under the quality assurance program, a certain number of bubbler samples were collected, using impinger type bubblers containing 1% sodium hydroxide solution, in an attempt to quantify vapour phase arsenic concentrations. These samples were analysed by the Chemistry Division for arsenic utilizing both the Vasak and Sedivec (pyridine) and x-ray fluorescence techniques. The amount of arsenic collected in the bubbler samples was too small for accurate determination and therefore inconclusive.

Under Phase III of the study, exposed hi-vol filters were analyzed for arsenic under contractual arrangements by Northern Environmental Consultants of Edmonton, utilizing the x-ray fluorescence technique. Duplicate analyses were performed for each sample and the results obtained were highly consistent. In addition, approximately 10% of the samples were also analyzed by the EPS Regional Laboratory in Edmonton, utilizing the Vasak and Sedivec (pyridine) technique. The results of these quality assurance checks indicate a good correlation (see Appendix VI). As indicated earlier, sixteen 24-hr samples, utilizing the chemically impregnated filter, were collected in an attempt to increase the collection efficiency of the hi-vol method for total arsenic. These samples were analyzed by the EPS Regional Laboratory in Edmonton utilizing the Vasak and Sedivec (pyridine) technique. The results indicate that qualitatively collection efficiency is increased; however, quantitatively the data is inconclusive. The results have been summarized in Appendix VI.

3.3 Results and Discussion

A frequency distribution of the arsenic measurements from all three phases of the study has been presented in Table 1. The results show that elevated arsenic levels were detected more frequently at stations GT & GW which are in close proximity to Giant's roaster stack. This confirmed our assumption that Giant was the main source of arsenic emissions to the ambient air.

TABLE 1
FREQUENCY DISTRIBUTION OF ARSENIC CONCENTRATIONS IN AMBIENT AIR

- 8 -

		Number		uency Di	urrenc		(in ug As/m	a ³)
Station*	Year	of Samples		0.49 ug As/m ³	0.99	1000A 1000B 1000B 400B 400D 400B	Min	Max	Avg
	1973	17	8	7	2	0	<0.01	0.95	0.10
GT	1974	57	21	26	6	4	<0.01	1.34	0.12
	1975	80	- 51	25	2	2	<0.01	3.16	0.06
	1973	15	11	3	1	0	<0.01	0.70	0.06
AIR	1974	63	41	21	1	0	<0.01	0.52	0.06
	1975	80	71	6	0	3	<0.01	1.40	0.04
	1973	18	10	8	0	0	<0.01	0.42	0.09
NRHQ	1974	62	39	22	1	0	<0.01	0.54	0.08
	1975	78	64	13	1	0	<0.01	0.59	0.04
RT	1975	49	44	5	0	0	< 0.01	0.30	0.02
NT	1975	47	41	5	1	0	<0.01	0.53	0.03
FW	1975	45	35	10	0	0	<0.01	0.31	0.03
GW	1975	52	17	16	5	4	<0.01	0.62	0.13
GN	1975	43	36	6	- Comments	0	<0.01	0.61	0.02
NAPS	1975	50	43	7	0	0	<0.01	0.31	0.03

^{*} Please refer to Appendix V for Station identification and location. $**ug/m^3 = micrograms per cubic meter.$

Existing Air Quality Limits for Arsenic: (24-hour average)

British Columbia Objective 1.0 ug/m^3 U.S.S.R. Standard 3.0 ug/m^3 Czechoslovakia Standard 3.0 ug/m^3

NOTE: No national air quality objectives for arsenic have been developed. We are unaware of the criteria used in developing the B.C., U.S.S.R. and Czechoslovakia limits, hence the scientific validity of the limits is unknown.

TABLE 2 FREQUENCY DISTRIBUTION OF TOTAL SUSPENDED PARTICULATES IN AMBIENT AIR

Station	Year	Number of Samples	(No.	ency Distr of occurr >120 (ug/m ³)		Min	ug/m ³) Max	Avg
			(ug/m°)	(ug/m°)	(ug/m°)		2	
	1973	17	17	0	0	8	58	30
GT	1974	57	56	1	0	3	252	30
	1975	80	67	13	1	<1	622	34
	1973	15	15	0	0	11	114	37
AIR	1974	63	63	0	0	< 1	68	19
	1975	80	75	5	1	3	401	25
	1973	18	13	5	0	9	240	50
NRHQ	1974	62	51	11	0	7	249	46
	1975	78	60	18	5	5	488	51
RT	1975	49	45	4	0	<1	305	18
NT	1975	47	27	20	2	5	451	74
FW	1975	44	38	6	0	1	261	32
GW	1975	42	32	10	0	<1	296	32
GN	1975	43	41	2	0	<1	263	12
NAPS	1975	50	40	10	1	11	425	73

NATIONAL AIR QUALITY OBJECTIVES FOR SUSPENDED PARTICULATE MATTER

Maximum Desirable Level Maximum Acceptable Level

Maximum Tolerable Level

60 ug/m³ annual average 70 ug/m³ annual average 120 ug/m³ 24-hour average 400 ug/m³ 24-hour average

TABLE 3

FREQUENCY DISTRIBUTION OF LEAD CONCENTRATIONS IN AMBIENT AIR - 1975

Station	Number of Samples		Distribution Occurrences) >0.10 (ug Pb/m ³)	(i Min	n ug Pb/m Max	3) Avg
GT	50	47	3	<0.01	0.12	0.03
AIR	54	54	0	<0.01	0.08	0.03
NRHQ	49	43	6	<0.01	0.13	0.04
RT	49	49	0	<0.01	0.05	0.02
NT	47	45	2	<0.01	0.11	0.03
FW	44	43	1	<0.01	0.11	0.03
GW	42	42	0	<0.01	0.07	0.02
GN	43	43	0	<0.01	0.06	0.02
NAPS	45	44	1	<0.01	0.17	0.05

NOTE: Average lead concentrations in ambient air of $0.5~\text{ug/m}^3$ and maximum lead concentrations in ambient air of around $5~\text{ug/m}^3$ have been routinely measured at other locations across Canada. National Air Quality Objectives for lead concentrations in ambient air have not been developed.

TABLE 4

FREQUENCY DISTRIBUTION OF TOTAL SUSPENDED PARTICULATES, ARSENIC AND LEAD IN AMBIENT AIR FOR ALL STATIONS

Year	1973	1974	1975
Number of Hi-vol samplers	3	3	9
Total Suspended Particulates in Ambient Air (ug/m³)			
Number of samples <120 >120 >400 Min Max Avg Number of 24 hour samples collected	45 5 (10%) 0 9 240 39 50	170 12 (6.6%) 0 <1 252 32 182	428 85 (16.6%) 10 (2%) <1 622 39 513
Arsenic Concentrations in Ambient Air (ug/m³) Number of samples <0.1 0.1-0.49 0.5-0.99 >1.0 Min Max Avg	29 18 3 0 <0.01 0.95 0.08	101 69 8 4 <0.01 1.34 0.09	402 93 10 9 <0.01 3.91 0.06
Lead Concentrations in Ambient Air (ug Pb/m³) Min Max Avg Number of 24 hour samples collected			0.01 0.17 0.03 423

Further, each of the hi-vol samples collected under all three phases of the study was analyzed for total suspended particulates utilizing the gravimetric method. The data has been summarized in Tables 2 and 4. On reviewing Tables 2 and 4, one observes that the maximum tolerable National Air Quality Objective for total suspended particulates was exceeded approximately 2% of the time during 1975 and that the 24-hour maximum acceptable level was exceeded approximately 10%, 7%, and 17% of the time during 1973 1974, and 1975 respectively. These high levels are more indicative of fugitive sources of particulate emissions in the vicinity of the sampling stations, such as gravel roads, construction, open pit mining and tailings areas.

In addition, each of the hi-vol samples collected under Phase III of the study were also analyzed for lead using the x-ray fluorescence technique. The results have been summarized in Tables 3 and 4. The lead levels measured are not considered significant in comparison to other locations in Canada.

Results indicating arsenic concentrations in excess of 0.5 ug/m³ (micrograms of arsenic per cubic meter of air) have been studied in greater detail, and an attempt was made to correlate the results with wind speed and direction, temperature and cloud cover. The analysis with respect to wind direction clearly identifies Giant Mine as the major source. In addition, the meteorological information indicates that 97% of these higher arsenic concentrations occur during a cloudy or overcast day. Details have been provided in Appendix VII.

The use of the hi-vol sampler as an accurate and hence, representative method for determining ambient concentrations of total arsenic has been recently questioned by various researchers (3, 4, 5, 6, 7). Their concern is based on the assumption that inadequate consideration is given to the physical properties of arsenic compounds. Attempts at quantifying the amount of arsenic in the vapour phase, both through bubbler samples collected under Phase II as well as through chemically impregnated filter samples collected under Phase III, have failed to indicate the presence of significant amounts of arsenic in the vapour phase. Qualitatively, some of the arsenic does exist in the vapour phase; however, quantitatively the data is inconclusive (the results have been summarized in Appendix VI).

3.4 Conclusions

- 1. Annual geometric mean <u>arsenic</u> concentrations in ambient air (measured by the hi-vol method) were 0.08, 0.09 and 0.06 ug arsenic/m³ for 1973, 1974, and 1975 respectively.
- 2. Individual 24-hr arsenic concentrations in ambient air varied from less than 0.01 to 3.91 ug arsenic/ m^3 .
- 3. Approximately 10% of the time, 24-hr total suspended particulate levels for 1973, 1974 and 1975 exceed the maximum acceptable National Air Quality Objectives.
- 4. The maximum tolerable National Air Quality Objective for total suspended particulates was exceeded approximately 2% of the time.
- 5. For 1975, an annual geometric mean $\underline{1ead}$ concentration in ambient air of 0.03 ug $1ead/m^3$ was recorded.
- 6. Lead levels measured are not considered significant in comparison to levels at other locations across Canada.
- 7. The amount of arsenic in the vapour state defied accurate determination due to limitations in sampling techniques.

3.5 Recommendations

- 1. The question of identifying National Air Quality Objectives for arsenic should be referred to the Federal/Provincial Committee on Air Pollution.
- 2. An effective and accurate method for determining ambient concentrations of total arsenic needs to be identified.
- 3. Total suspended particulate levels occasionally exceed the maximum tolerable National Air Quality Objective, hence an investigation of the problem should be initiated soon with the intent of rectifying the situation.

4 SETTLEABLE PARTICULATES

4.1 Sampling Procedure and Location of Sites

Settleable particulate measurements on a monthly basis were initiated in June 1975 and concluded in October 1975. The program consisted of a network of twenty-two dustfall stations. The locations of the sampling sites were chosen taking into consideration criteria such as: wind rose data, location of high volume samplers, fugitive sources

and human activity. Brief descriptions on the location of these dustiall sampling stations have been provided in Appendix XI.

The sampling equipment at each site consisted of 7.3 quart nalgene container mounted either on a stand or a pole. Figures 3a, b, and c, depict details of the container and the mounting procedures. The containers were normally 4 to 6 feet above ground level, however security requirements at times necessitated higher elevations. Details with respect to elevation above ground level have also been provided in Appendix XI.

The settleable particulates collected in the containers were transferred into plastic bottles along with the washings and forwarded to the EPS regional laboratory in Edmonton for analysis.

4.2 Sample Analysis

In the laboratory, each sample was split into a soluble and an insoluble fraction utilizing filtration principles. The soluble fraction was subsequently placed in a steam bath and a solid residue was obtained on evaporation. The total deposition rate was then obtained by simple gravimetric analysis and has been expressed in terms of tons/sq mile/month.

The arsenic deposition rate was obtained by dissolving both the soluble and insoluble residues in 1% sodium hydroxide solution and subsequent analysis for arsenic utilizing the Vasak and Sedivec (pyridine) technique. The arsenic deposition rate has been expressed in terms of lbs/sq mile/month.

A quality check was conducted on the laboratory procedure adopted for the analysis of deposition rate samples. The results indicate good recovery for total particulates in samples. Further, the quality check indicates that while arsenic recovery is enhanced by drying at 25° C as opposed to drying at 105° C, the difference is not very significant. Details have been provided in Appendix XII.

4.3 Results and Discussion

The results obtained from the settleable particulates part of the program have been presented as raw data in Appendix XII. Total deposition rates have been summarized by station in Table 5. Arsenic deposition rates have also been summarized by station in Table 6. The re-

TABLE 5

MEAN TOTAL DEPOSITION RATE BY STATION
JUNE - OCTOBER 1975 (TONS/SQ MILE/MONTH)

Station	Arithmetic Mean	Geometric Mean
D1	5.87	5.50
D2	13.3	5.55
D3	9.02	8.62
D4	6.76	6.26
D5	21.5	19.2
D6	5.56	4.75
D7	7.60	6.05
D8	12.0	10.6
D9	2.77	2.19
D10	7.73	4.70
D11	7.44	6.32
D12	7.77	6.40
D13	3.37	2.41
D14	23.3	20.1
D15	45.3	10.3
D16	19.9	14.2
D17	11.8	4.89
D18	4.78	3.44
D19	2.72	2.38
D20	8.82	5.69
D21	9.32	4.74
D22	4.84	3.97
Overall Mean	10.98	5.98

TABLE 6

MEAN ARSENIC DEPOSITION RATE BY STATION
JUNE - OCTOBER 1975 (LBS/SQ MILE/MONTH)

Station	Arithmetic Mean	Geometric Mean
D 1	2.61	2.44
D 2	8.12	7.01
D 3	4.77	4.26
D 4	3.02	2.69
D 5	7.50	6.55
D 6	3.65	2.09
D 7	3.72	3.32
D 8	4.39	4.19
D 9	2.19	1.79
D 10	3.13	1.43
D11	7.12	6.42
D12	4.30	3.77
D13	2.50	1.52
D14	27.32	25.0
D15	31.94	25.0
D16	37.44	29.6
D17	9.42	8.22
D18	7.62	6.27
D19	4.42	4.28
D20	3.34	3.16
D21	33.88	8.87
D22	2.87	2.79
Overall Mean	9.79	4.83

sults indicate an overall average total deposition rate of 10.98 tons/ sq mile/month and an overall arsenic deposition rate of 9.79 lbs/sq mile/ month. On reviewing the arsenic deposition rates by station one observes that stations D14, D15 and D16 which surround Giant Mine are consistently high. This further confirms Giant Mine as the primary source of arsenic emissions. In addition, a very high arsenic deposition rate during June 1974 was obtained at station D21 which is located near Con Mine adjacent to the tailings area and the arsenic pits. This indicates that Con Mine's tailings area and the arsenic pits continue to be significant sources of fugitive arsenic emissions.

4.4 Conclusions

- 1. An arithmetic mean of 11 $\underline{\text{tons}}/\text{sq}$ mile/month was obtained as the $\underline{\text{total}}$ particulate deposition rate.
- 2. An arithmetic mean of 10 $\underline{1bs}/sq$ mile/month was obtained as the $\underline{arsenic}$ deposition rate.
- 3. Giant Mine is a primary and fugitive source of arsenic in settleable particulates.
- 4. Con Mine continues to be a source of fugitive arsenic emissions.

4.5 Recommendations

The significance of historical and present arsenic deposition rates on the Yellowknife environment requires additional study. Specific areas which need to be examined further include, accumulation in soils, quantities in spring run-off and effects on local vegetation.

5 SULFUR DIOXIDE

5.1 Sampling Procedure and Location of Sites

Continuous ambient air monitoring for sulfur dioxide was initiated in April 1973 with the installation of one Philip's monitor on the roof of the Hudson's Bay Store in downtown Yellowknife. The monitoring program was expanded under YES to three locations in June, 1975, with the installation of two additional Philip's monitors. One of the monitors was located at the EPS warehouse on the peninsula off Latham Island whereas the second monitor was located at the Super Crest Buildings approximately

one and a half miles north of Giant Mine. These sampling sites were chosen after due consideration of factors such as wind rose data, availability of electrical power, accessibility, adequate shelter and security. Additional information on the location of the above sampling stations has been provided in Appendix XI.

The sampling equipment at each site comprised of a Philip's model PW9700 coulometric monitor along with a strip chart recorder. Weekly calibrations and annual maintenance programs were carried out in accordance with manufacturer's specifications. Sulfur dioxide levels recorded on the charts were extracted and compiled manually.

5.2 Results and Discussion

An annual summary of sulfur dioxide concentrations measured has been presented in Table 7. The annual arithmetic mean values for all three years 1973 to 1975 do not exceed the annual level specified under the maximum desirable National Air Quality Objective (NAQO) for sulfur dioxide. However, individual 1-hr values exceed the 1-hr objective approximately 0.12%, 0.25% and 0.48% of the time monitored during 1973, 1974, and 1975 respectively. Further, four individual 1-hr values even exceeded the 1-hr maximum acceptable NAQO for sulfur dioxide.

Results indicating sulfur dioxide levels in excess of 0.17 ppm (maximum desirable NAQO) have been studied in greater detail and an attempt was made to correlate the results with time of day, wind speed and direction. Details have been provided in Appendix XII. On analysis, the wind direction correlation data clearly identifies Giant Mine as the major source of sulfur dioxide emissions. Further, the data shows that levels in excess of 0.17 ppm are predominantly obtained during the evening hours with 50% of the occurrences taking place between 4 p.m. and 11 p.m. and 35% of the occurrences taking place between 7 p.m. and 11 p.m. The data has been presented graphically in Figure 4.

The wind velocity correlation data has also been presented graphically in Figure 6. It clearly indicates that the majority of sulfur dioxide levels greater than 0.17 ppm were obtained at wind speeds of 5 to 8 mph.

TABLE 7 ANNUAL SUMMARY OF SULPHUR DIOXIDE CONCENTRATIONS

Year	1973	1974	1975
# of monitors operational	1	1	3
Actual # of hourly concentra- tions measured*	4080	6095	7960
Theoretical # of hourly con- centrations possible*	6580	8730	12410
Percentage of time opera- tional	62%	70%	64%
Frequency distribution of 1-hr sulfur dioxide levels: a) <0.17 ppm b) 0.17 - 0.34 ppm c) >0.34 ppm	4075 5 0	6080 13 2	7922 36 2
Max. (ppm)	0.25	0.42	0.40
Min. (ppm)	<0.005**	<0.005	<0.005
Annual arithmetic mean (ppm) - all stations	<0.010	<0.010	0.010

^{*} rounded off to nearest 5 units **lower detectable limit for the Philips monitor

[#] number

FIGURE 4

SO₂ HOURLY DATA CORRELATED WITH HOUR OF DAY (for all locations)

SO2 HOURLY DATA GREATER THAN 0-17 CORRELATED WITH WIND VELOCITY

5.3 Conclusions

- 1. Annual arithmetic mean sulfur dioxide concentrations in ambient air $\underline{\text{do not}}$ exceed the $\underline{\text{maximum}}$ desirable National Air Quality Objective.
- 2. Hourly ambient sulfur dioxide concentrations <u>occasionally</u> exceed the maximum desirable National Air Quality Objective.
- 3. Hourly ambient sulfur dioxide concentrations <u>rarely</u> exceed the maximum acceptable National Air Quality Objective.

5.4 Recommendations

Since measured sulfur dioxide concentrations in ambient air are basically within the maximum acceptable National Air Quality Objectives, it is recommended that the sulfur dioxide monitoring program in Yellowknife be terminated for the time being.

REFERENCES

- de Villiers, A.J. and P.M. Baker, Department of National Health and Welfare, Environmental Health Directorate, Occupational Health Division, "An Investigation of the Health Status of Inhabitants of Yellowknife, Northwest Territories".
- Air Pollution Control Directorate, Environmental Protection

 Service, Ottawa, "Standard Reference Method for the Determination of Suspended Particulates (by the Hi-Vol Method)", Report

 No. EPS-1-AP73-2.
- 3. Lao, R.C., et al., "Efficiency of Collection of Arsenic (Trioxide)
 in Hi-Vol Sampling", Science of the Total Environment, Vol. 2,
 (1974).
- 4. Pupp, C., and R.C. Lao, "Equilibrium Vapour Concentrations of Some Polycyclic Aromatic Hydrocarbons, Arsenious Oxide and Selenious Oxide and the Collection Efficiencies of these Air Pollutants", Atmospheric Environment, Vol. 8, Page 915, (1974).
- Dubois, L., "Status Report On Arsenic in Yellowknife", Internal Report, Chemistry Division, Air Pollution Control Directorate, Ottawa, (1975).
- 6. <u>Personal communique</u> from Puget Sound Air Pollution Control Agency, Seattle, Washington, (1975).
- 7. Subcommittee on Arsenic, Committee on Medical and Biologic Effects of Environmental Pollutants, National Research Council, "Arsenic", National Academy of Sciencies, Washington, D.C., (1976).

APPENDIX I

GIANT YELLOWKNIFE MINES LTD.

•	

The Nature of the Ore

The ore consists of sericite and chlorite schist containing aproximately 30% quartz with variable amounts of calcium and iron carbonates together with sulphides and sulphosalts. Arsenopyrite and pyrite comprise the bulk of the sulphides. Stibnite and sulphantimonides of lead, iron and copper form the remainder.

Typical Analysis - Gold: 0.50 oz/ton

Iron: 7.18%

Sulphur: 2.85%

Arsenic: 1.32%

Antimony: 0.18%

Process Description

Ore hoisted from underground is reduced to 3/8" size by jaw and cone crushers in a plant located on the surface. After crushing, the ore is transported by conveyor to the mill building where it is stored in four 500-ton bins. It is then ground to a very fine size (55% minus 200 mesh) by two 8' x 10' ball mills each operating in closed circuit with a 72" Akins classifier (flow diagram has been provided).

The resulting pulp is pumped at 44% solids into a bulk flotation circuit where about 84% of the waste rock is removed. This waste is pumped to the backfill plant where it is de-slimed and stored ready for use as mine backfill. The reject portion is directed to the tailings pond.

The remainder, or flotation concentrate, containing the gold and most of the sulphide minerals, is pumped to the roasting section of the plant for removal of sulphur, arsenic and antimony. The roaster feed is metered at 76% solids into a two-stage fluosolids roaster operating at temperatures in excess of $900^{\circ}F$.

The product of roasting is a porous calcine. The calcine is washed in water and pumped back to the main mill building where sodium cyanide and lime are added. These agents, in the presence of oxygen, dissolve the gold from the calcine. The resulting "pregnant" solution is deoxygenated and gold is precipitated out by adding zinc dust. The precipitate is refined into gold in a tilting bullion furnace.

Wastewater from the calcine wash circuit decant and wash thickners is treated with lime in an agitator and discarded to tails. All wastewaters, because of the arsenic content, are treated with lime to decrease the soluble

GIANT YELLOWKNIFE MINES LTD.

Yellowknife, Northwest Territories

milling flow sheet

arsenic level. Approximately 3000 lbs of lime is added daily to lower soluble arsenic content by about 80%.

Dust from the roasting process is collected in a hot electrostatic precipitator. It is then quenched and gold is extracted by a similar cyanide process but using activated carbon as the collecting agent. About 3% of the total gold output is recovered in this way. The carbon concentrate is sent to the United States for refining at a customs smelter.

As an air pollution control measure, arsenic and antimony oxides given off by the roasting process are collected by cooling the gases from the precipitator plant to 210°F and filtering them through orlon bags. The collected dust is pumped back underground to specially sealed permafrost stopes with displaced air reporting back to the baghouse. The exhaust gases are discharged to the atmosphere through a 150 foot stack. Total recovery of gold from the complex Giant ore is approximately 88.8%.

Chronology of Air Pollution Control Measures

Concern was expressed in 1950 over potential health hazards from the roasting process and associated arsenic fallout (10,000 - 20,000 lbs/day arsenic released to atmosphere). The following remedial measures were initiated in 1951. Air pollution control measures were refined over the period 1951 - 1962 to improve removal of arsenic trioxide from emissions. The reported efficiency of the control equipment is around 96% containment of arsenic from the stack gas emissions.

- 1951 Milling capacity of 232 tons/day. Roaster gas cleaning started.
- 1952 150 foot high stack constructed.
- 1955 Second electrostatic precipitator installed.
- 1957 Milling capacity increased to over 1000 tons/day.

 Roaster capacity increased to 200 tons/day.
- 1958 New two stage fluosolids roaster installed to replace existing roasters. Baghouse dust collected installed for more effective arsenic collection. Arsenic dust stored underground in special stopes.
- 1962 Original cold electrostatic precipitator converted to hot electrostatic operation. The same roaster

gas cleaning system has been in use from 1962 to date. The system consists of:

- 1. Cooling of roaster gases to approximately 700° F.
- 2. Roaster dust removal in a hot electrostatic precipitator.
- Recycle of dust to carbon process for gold recovery.
- 4. Cooling of gas to condense arsenic.
- 5. Collection of arsenic in a baghouse type collector.
- Dry pumping and storage of arsenic dust in specially sealed underground stopes (mined out areas).

APPENDIX II

DUSTFALL STUDIES BY NATIONAL HEALTH AND WELFARE

ARSENIC DEPOSITION RATES

1950 - 1963

.

YEARLY ARSENIC DEPOSITION (ALL LOCATIONS)

Year	Tons/sq mile/month
1950	0.103
1951	0.068
1952	0.030
1953	0.047
1954	0.027
1955	0.056
1956	0.059
1957	0.098
1958	0.104
1959	0.026
1960	0.019
1961	0.019
1962	0.019
1963	0.019

FREQUENCY DISTRIBUTION OF ARSENIC DEPOSITION RATE (On Yearly Basis)

ARSENIC DEPOSITION RATE (Tons Arsenic/Sq Mile/Month)

Year	No. of Data Submissions	<0.05	0.05-0.10	0.10-0.15	0.15-0.20	0.20-0.25	>0.25
1951	5	100%	recognis de la companie de la compa	GOLF	in reggergergerge - Wijzgeglich willige werden austrück - Witzeung gebaut Enter	Marcon (Marcon (Clark Clark Cl	
1952	6	100%	Glise	253 0	=		Proces
1953	6	67%	33%	4000a	ezn	-	ensos
1954	6	100%	Salve	Navia.	eru-	NPG	ema
1955	16	39%	31%	6%	6%	6%	12%
1956	16	39%	31%	6%	Shink .	12%	12%
1957	22	9%	41%	32%	eno e	4%	14%
1958	22	23%	55%	9%	ew.	9%	4%
1959	22	86%	14%	Alla	2249		626
1960	22	91%	9%	E335		*****	100
1961	14	93%	7%	finna	Shor	man	#000*#
1962	15	100%	eca	6550		ana-	**************************************
1963	14	100%		ELO	==		Nove

Graph of Yearly Arsenic Depositions and Giant Yellowknife Operational Characteristics

			\$

APPENDIX III

ARSENIC EMISSIONS SUMMARY

GIANT MINE, 1949 - 1974 CON MINE, 1950 - 1970

- 41 -

STACK EMISSION SUMMARY

GIANT MINE

Year	Arsenic Emissions (1bs/day)	No. Of Data Submissions	Dust Recovery Efficiency	References
1949	(16,000)	623	tson	3
1950	(16,000)	eno.	Comp	3
1951	(16,000)	Code	i dimin	3
1952	Sinia	Electric		Fried
1953	623	con construction of the co	actions:	500
1954	12,000	ética	41.8	2
1955	6,400	4	66.5	2
1956	6,000	11	54.6	2
1957	6,500	10	61.6	2
1958	(3,300)	Gwe	Geo	3
1959	115	7	99.6	2
1960	165	9	99.4	2
1961	(330)	COZZ	widosa.	3
1962	(330)	gaze*	COLD	3
1963	(330)	CHES	tento	3
1964	690*	4	98.2*	1
1965	6009	ବାରୀ	cos	Good
1966	535*	3	98.3*	1
1967	285*	L _k	99.0*	1
1968	500*	2	98.8*	1
1969	660*	3	97.7*	1
1970	485	3	98.3	1
1971	1,930	8	93.1	density of the second
1972	875	4	96.5	1
1973	890	5	95.1	1
1974	485	5	98.1	1

^{*} Corrected from previous data

() Estimated

References:

- 1. Company emission reports.
- 2. Company emission data as given to N.H. & W.
- 3. Estimated values from company production data.

STACK EMISSION SUMMARY

CON MINE

Year	Arsenic Emissions (lbs/day)	Dust Recovery Efficiency	Reference
1949			rays and restlement an angle mobile relative dispersion for the complete result and the control of the control
1950	(200)	(95)	3
1951	(200)	(95)	3
1952	(200)	(95)	3
1953	rusa .	Gase	essa
1954	395	97.8	2
1955	420	98.3	2
1956	410	97.9	2
1957	400	tuas	2
1958	385	COD.	2
1959	435	97.8	2
1960	585	97.3	2
1961	(440)	940	3
1962	(440)	CD	3
1963	(440)	Steal Steal	3
1964	295	Geo	2
1965	370	95.1	2
1966	310	GELO .	2
1967	340	85.2	2
1968	335	Geo.	2
1969	430	em	2
1970	550	86.2	2
1971	Roaster ceased 10/11/70		

References:

- 1. Company emission reports.
- 2. Company emission data as given to N.H. & W.
- 3. Estimated values from company production data.

APPENDIX IV

WIND ROSE DATA FOR YELLOWKNIFE, NWT

1955 - 1972

WIND ROSE (1955-1966)
%FREQUENCY OF DIRECTION
YELLOWKNIFE

LEGEND

WMS - WIND MEAN SPEED (M.P.H.)

TREPRESENTS % CALM

FEBRUARY WMS - 8.4

MARCH WMS - 9.4

APRIL WMS - 10.9

MAY WMS - II.O

JUNE WMS - 11.2

JULY WMS - 10.7

AUGUST WMS - 10.2

SEPTEMBER WMS - 11. 2

OCTOBER WMS - II.3

NOVEMBER WMS - 9.9

DECEMBER WMS - 8.8

WIND ROSE (1967-1972)
% FREQUENCY OF DIRECTION
YELLOWKNIFE

LEGEND

WMS - WIND MEAN SPEED (M.PH.)

REPRESENTS % CALM

JANUARY WMS - 8.4

FEBRUARY WMS - 8.8

MARCH WMS - 9.0

APRIL WMS-10.0

MAY WMS - 10.4

JUNE WMS - 10.7

JULY WMS - 10.0

AUGUST WMS - 9.9

SEPTEMBER WMS - 10.3

OCTOBER WMS - 9.8

NOVEMBER WMS - 9.4

DECEMBER WMS - 7.9

APPENDIX V

BRIEF DESCRIPTION OF THE HIGH VOLUME SAMPLER LOCATIONS

LOCATION OF HI-VOL SAMPLING STATION

Hi-Vol Station Identification	Abbreviation Used	Height of Sampling Head Above Ground Level (in feet)		ation Distance from Glant Mine (miles)
Radio Tower	RT	14	245	4.1
Airport*	Air*	35	230	3.5
Northland Trailer Park	NT	14	198	4.3
Defence Headquarters*	NRHQ*	14	190	3.3
Fisheries Warehouse	FW	14	174	2.7
Giant Trailer Park*	GT*	14	190	1.3
Giant West	GW	4	250	0.3
Giant North	GN	4	9	1.5
Hudson's Bay Store	NAPS	24	188	3.5

^{*} Existing stations under Phases I and II of study. Phase I of Study - March 12 - June 4, 1973. Phase II of Study - April 21, 1974 - February 10, 1975. Phase III of Study - February 11, 1975 - October, 1975.

Note: All nine stations formed part of the expanded network under Phase III of the study.

APPENDIX VI

SUSPENDED PARTICULATE SAMPLING PROGRAM - QUALITY ASSURANCE CHECKS

COMPARISON BETWEEN XRF AND COLORIMETRY

		X-Ray Flourescence	scence by NEC*	Vasak & Sedivec by EPS	vec Colorimetry		
Filter Identi- fication	Date of Sampling	Date of Analysis			Arsenic Concentration (ug/m³)	Difference in Arsenic Concentrations	% Discrep- ancy
6	24/05/75	3-7 /07/75	74.0	19-21/01/76	0.34	0.13	28
26	11/06/75	3-1	79.0	19-21	0.39	0.25	90
80	700	3-7	0.68	19-21	0.53	0.15	22
85	20	3-7	0.61	19-21	0.53	0.08	13
06	23	3-7	0.57	19-21	0,41	0.16	28
86	26	3-7	1.82	19-21	1.60	0.22	7
\C_1	17/07/75	7-11/08/75	0.12	13-16/01/76	, O	0.01	00
124	Ŋ	 	0.43	19-21/01/76	0.33	0	23
128	∞		0.53	13-16/01/76	95.0	0.07	(1)
3	∞	7-11	0.52	19-21/01/76	0.51	0.0	2
149	14		0.86	9-2	0.62	0.24	200
891	2	7-11	67.0	13-16/01/76	0.18	500	vn .
209	1/08/75	16-20/10/76	1,38	13-16	° ————————————————————————————————————	0.22	9
269	22	16-20	0.50	19-21/01/76	0.45	0.05	O H
292	E	16-20	0.58	19-21	9470	0 41.0	24
356	27/09/75	16-20	0.57	13-16/01/76	0,40	en - 0	23
379	3/10/75	24-27/10/75	3.91	13-16	w. M	89	
The second secon	remontal amounts of the angle - timerade - tage - and - characters - c				eer saadjuunde vardjuunde as eina eel taansaadjuunde magama ja vangsuunde saadjuunde saatuu		

* NEC - Northern Environmental Consultants, Edmonton. ** EPS - EPS Regional Laboratory, Edmonton.

Avg. deviation ± 17%.

TOTAL ARSENIC TESTS - PARTICULATE AND VAPOUR BY CHEMICAL IMPREGNATION OF HIGH VOLUME FILTERS

Filter Identi- fication	Date of Sampling	Station ID	Arsenic (ug Normal Filter	Analysis* /m ³) Treated Filter	Total Filter System
157	9/07/75	GN	0.19	0.04	0.23
158	9	GW	0.09	0.02	0.11
159	9	GT	0.03	<0.01	0.03
160	9	AIR	0.01	<0.01	0.01
234	10/08/75	GT	<0.01	<0.01	<0.01
235	10	GW	0.02	<0.01	0.02
236	10	GN	0.23	0.04	0.27
430	21/10/75	GW	<0.01	<0.01	<0.01
431	21	GN	0.01	<0.01	0.01
437	24/10/75	GT	<0.01	<0.01	<0.01
438	24	GW	0.17	<0.01	0.17
447	27/10/75	GT	0.24	<0.01	0.24
449	27	GN	<0.01	<0.01	<0.01
456	30/10/75	GT	0.02	<0.01	0.02
457	30	GW	0.33	<0.01	0.33
458	30	GN	<0.01	<0.01	<0.01

^{*} Note: 24 hour sampling period.

PERCENTAGE ERROR

High Volume Sampler Operation	± 5%
per 24 hour sampling periodper Hi-Vol sampler flowrate range - 30 to 50 cfm	
Laboratory Analysis for:	
- Total Suspended Particulate levels	± 5%
- Arsenic Concentrations in Ambient Air	4 = 6
- Vasak and Sedevic (pyridine) colorimetric method performed by EPS Regional Laboratory Edmonton	±15%
- X-ray Fluorescence performed by: - Northern Environmental Consultants	±15%
Chemistry Division, OttawaLead Concentrations in Ambient Air by XRF	±15% ±15%
Overall Concentration expressed as:	
- Total Suspended Particulates (ug/m³)	±10%
- Arsenic Concentration (ug As/m³)	±20%
- Lead Concentration (ug Pb/m^3)	±20%

APPENDIX VII

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS $\text{GREATER THAN 0.5 ug As/m}^3$

z.			

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS IN EXCESS OF 0.5 MICROGRAMS PER CUBIC METER

Filter Identification	8556	8583	8587
TSP (ug/m ³)*	9	38	60
As (ug As/m ³)**	0.95	0.62	0.70
Location	GT	GT	GT
Date Of Sampling	27/3/73	5/4/73	7/4/73
Sampling Time (hours)	24	24	24
Wind i. Direction ii. Frequency iii. Speed (mph) a. High b. Low c. Predominate	NE 80% 11 3 7 ± 2	NE 80% 18 8 15 ± 3	NE SE 50% 30% 12 3 6 ± 2
Temperature (^O F) i. High ii. Low Cloud Cover	27 2 Overcast	15 -4 Cloudy	18 -10 Clear

^{*} TSP = Total Suspended Particulates

^{**} As = Arsenic Concentration in Ambient Air

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS IN EXCESS OF 0.5 MICROGRAMS PER CUBIC METER

Filter Identification	3017	9	09	61	64	73	76	83
TSP (ug/m³) *	6	32/32/32	ç—	65	71	1	æ	53
As (ug As/m³)∻∻	0.68	1.34	0.54	89.	band band band	0.65	0.98	0 0 0 0
Location	Ð	Ü	NRHQ	IJ	Б	Ę	GI	AIR
Date of Sampling	9/5/74	27/28/29 5/74	21/11/74	21/11/74	25/11/74	3/12/74	5/12/74	10/12/74
Sampling Time (hours)	24	72	24	24	77	24	24	24
Wind i. Direction ii. Frequency (%)	N W NW 60 15 25	N N N 80 80 80	NW NE 30 70	NW NE 30 70	Z 80	N & %	NE 80	NE 85
	ω <i><</i> /	25 23 19	Q \	0, 4	17	tong FC	72 α	<u> </u>
	5 + 2	20 ± 5	7 + 2	\ > +1 C1	m) +1 Z	7 + 2	15 + 3	m H 0
Temperature (^O F) i. High ii. Low	47 34	38 33 46 30 27 32	۳ o	۳ ō	13	7 7	1 -10	1 1 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
Cloud Cover	Overcast	Cloudy	Cloudy	Cloudy	Overcast	Overcast	Overcast	Cloudy

* TSP = Total Suspended Particulates ** As = Arsenic Concentration in Ambient Air

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS IN EXCESS OF 0.5 MICROGRAMS PER CUBIC METER

Filter Identification	102	121	142	143	146	171
TSP (ug /m³)*	ç 	O		proceed.	20	26
As (ug As/m³)**	1.50	0,59	36	1.03	3,16	1.40
Location	AIR	NRHQ	AIR	Ð	Đ	AIR
Date of Sampling	23/01/75	10/02/75	3/03/75	3/03/75	5/03/75	4/04/75
Sampling Time (Hours)	24	24	24	24	24	24
Wind						orangaman (financilar - 1884)
i. Direction ii. Frequency (%)	NE 80	N 80	N NE 40 50	N NE 40 50	N 80 80	NE 25
a. High	C) (X)	Ou	10	9 <	20	0
c. Predominate	10 1+ 2	5 +1 5 +1	7 + 2	7 + 4	15 + 3	5 ± 2
Temperature (^O F) i. high ii. Low	-13 -28	-31	14	14	5 -24	- 22
Cloud Cover	Overcast	Cloudy	Cloudy	Cloudy	Cloudy	Cloudy

* TSP = Total Suspended Particulates ** As = Arsenic Concentration in Ambient Air

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS IN EXCESS OF 0.5 MICROGRAMS PER CUBIC METER

	, 						62 -	10.000 E-1000 - 1000 - 1000	ON 1000	**************************************	************
F	622	0.52	GT	8/07/75	24	305224 (\$33335) vs (\$3	N 60	hand (L) bar	2	26	Cloudy
128	130	0.53	LN	8/07/75	24		N 9	towed () tower	2 + 5	26	Cloudy
89	106	0.62	AIR	26/06/75	24		NE E	20	го 1) +1 го	26 19	Cloudy
φ Θ	7	1.82	MO	26/06/75	24		E NE 30 65	20	ν) +! ν	26	Cloudy
06	185	0.57	D	23/06/75	24	mbulo-eta PCETTTA de grave	E SE	ന ന	m +1 -1	23	Cloudy
88	7.0		Ö	20/06/75	24		S E 30 20	C (V	N +1	23	Cloudy
~-! cc	232	89.0	B	20/06/75	77	en and an annual section of the sect	E S 20 30	C 7	5 +1	23	Cloudy
56	296	0.64	MS	11/06/75	77	примененти по потежда и от пода и от под	E Calm 20 35	M M	N +1 N	6. H	Cloudy
Filter Identification	TSP (ug/m³)*	As (ug As/m³)**	Location	Date of Sampling	Sampling Time (Hours)	Wind	i. Direction ii. Frequency (%)	a. High b. Low		Temperature (^O F) i. High ii. Low	Cloud Cover

* TSP = Total Suspended Particulates ** As = Arsenic Concentration in Ambient Air

METEOROLOGICAL DATA FOR ARSENIC CONCENTRATIONS IN EXCESS OF 0.5 MICROGRAMS PER CUBIC METER

1	1	-7					r_3				
413			ВМ	15/10/75	24		E N NE 20 40 35	0	5 1+ 3 2	7.0	Cloudy
379	2.1	6 6 6	₽	3/10/75	24		田 & 乙	\Q_1	13 0	7 2	Cloudy
356	25	0.57	AIR	27/09/75	24		NE 85	01	7 + 7		Cloudy
292	20	0.58	CI	31/08/75	24		N S 25 45	∽	8 + = 5	10	Cloudy
269	82	0.50	MS .	22/08/75	24	- Again Again ann an Again agus agus agus agus agus agus agus agus	E NE 45 45	27 1	7 + 2	8 	Cloudy
209	66	© (n) , red	35	1/08/75	24	- dimension - commission	SE 80	5	5 5 7 7 6	21 13	Cloudy
149	123	0.86	æ	14/07/75	24		보 09	m	m 1+ ⊂ 0	6 5 8	Cloudy
Filter Identification	TSP (ug/m³)*	As (ug As/m³)**	Location	Date of Sampling	Sampling Time (Hours)	Wind	i. Direction ii. Frequency (%)		b. Low c. Predominate	Temperature $\binom{O}{F}$ i. High ii. Low	Cloud Cover

* TSP = Total Suspended Particulates ** As = Arsenic Concentration in Ambient Air

APPENDIX VIII

BRIEF DESCRIPTION OF DEPOSITION SAMPLING SITE LOCATION

DESCRIPTION ON DUSTFALL STATIONS

Station Identi- fication	Type of Field	Container Opening Height Above Ground Level (in feet)	General Comments on Site Location
D1	Stand	13	On Detah elementary school roof.
D2	Pole	6	100 ft. west of Con Mine ducking area, on rocky out-crop.
D3	Stand	14	On mobile trailer home in Northland Trailer Park, 50 feet from NT High-volume sampler.
D4	Stand	17	On hospital roof.
D5	Stand	22	On Hudson Bay Store roof, 50 feet from NAPS High-volume sampler.
D6	Pole	6	300 feet east of paved roadway near Niven Lake.
D7	Pole	10	In Back Bay area, 10 feet from shoreline on rocky out-crop.
D8	Stand	30	On airport terminal building, 50 feet from AIR, High-volume sampler.
D9	Pole	7	300 feet east of MOT radio tower.
D10	Stand	4	2,000 feet north off gravel roadway, 10 miles west of Giant Mine, serves as background station.
D11	Stand	15	On mobile trailer home in housing quarters of Giant Mine employees, 50 feet from GT High-volume sampler.
D12	Pole	11	25 feet east of shoreline on the tip of Latham Island.
D13	Stand	4	300 feet west of gravel road to Detah on rock mound near clearing.
D14	Pole	6	1,000 feet east of Giant's open pit mining operations on leeward side of hill, 150 feet from paved roadway.

DESCRIPTION ON DUSTFALL STATIONS - CONTINUED

Station Identi- fication	Type of Field	Container Opening Height Above Ground Level (in feet)	General Comments on Site Location
D15	Po1e	6	1/3 mile directly west of Giant Mine stack on rocky ridge, ½ mile north of open pit mining operations, 300 feet from GW High-volume sampler.
D16	Pole	6	300 feet off gravel roadway intersection, $^{\rm l}_{\rm Z}$ mile north of Giant.
D17	Stand	4	300 feet off gravel roadway on rock mound clearing, 1 mile north of Giant.
D18	Stand	4	300 feet south of road and elevated 100 feet above lake level.
D19	Stand	4	300 feet from paved road north of Stack Lake on rock mound 50 feet above road level.
D20	Stand	4	1,000 feet south of gravel roadway, 10 miles east of Giant Mine, serves as second back-ground station.
D21	Stand	4	Adjacent to fenced in $\mathrm{As}_2\mathrm{O}_3$ tailings pond and between Negus tailings pile and Con Mine operations, on rocky mound.
D22	Pole	4	On sparsely vegetated ridge halfway between Con Mine operations and new city housing subdivision.

APPENDIX IX

QUALITY CHECK ON LABORATORY PROCEDURE FOR DEPOSITION RATE SAMPLES

	ecconocides relativos controles cont			7	11		-		
% Recovery	TotalDust Sample	92	96	100	100	Not Applica- ble	98	66	100
Arsenic Analysis of Dried Dust Sample Wt. of Arsenic	Content (%)	0.050	0.045	0.050	0.050		0.055	0.055	0.055
Arsenic of Dried Wt. of	Arsenic (ug)	39	81	108	205	Į.	41	89	205
w —	Total (mg)	82	176	213	777	2	74	120	356
Gravimetric Analysis of Standard Dust Sample	Soluble (mg)	Ŋ	tand [∞	tend formal	post	τU	7	o,
Gravime of Stande	Insoluble (mg)	77	129	205	433	Π	69	911	347
Calculated Total Deposition Rate - (30 Days)	(Tons/sq Mi/Month)	13,9	28 2	ല ധ പ	e . 60	Distilled Water Blank	E. C.	o, ∞ ∞	55.2
Weight of Standard	Dust Sample (mg)	86	184	214	443	.v	98	7.2.7	353
	Identifi- cation	Local Control of the	2	m	7	5	V		∞

Note Samples #1 to 4 dried at 105 $^{\rm O}$ C overnight (10 hours) Samples #6 to 8 dried at 25 $^{\rm O}$ C for 72 hours

* Calculation (in tons/sq mi/month) = weight (in mg) x 0.1565 x 30 days # of days exposed

Σ % recovery 674 # of analysis 7 Average % Recovery 96%

APPENDIX X

TOTAL PARTICULATE AND ARSENIC DEPOSITION RATES
(June - October 1975)

75 -

TOTAL PARTICULATE DEPOSITION RATE (Tons/Sq Mi/Month)

Month	June	July	August	September	October
Station		gregige and Colonia Colon — Disput Colonia Colon — Segment (Colonia Colonia Colonia Colonia Colonia Colonia Co			armode and assessment of the first of the fi
D1	5.81	9.24	5.11	6.26	2.93
D2	4.92	39.9	SL	0.63	7.65
D3	9.88	9.34	10.1	11.2	4.57
D4	9.13	7.19	9.49	4.76	3.23
D5	19.7	43.2	19.3	12.3	13.0
D6	5.21	6.81	8.80	5.59	1.39
D7	9.95	10.4	11.4	4.84	1.42
D8	16.2	15.9	14.6	3.64	9.87
D9	3.05	3.09	5.30	1.85	0.54
D10	4.49	21.4	8.23	3.77	0.77
D11	9.83	14.4	5.06	5.20	2.71
D12	5.30	9.57	7.30	14.7	1.97
D13	4.07	7.17	2.76	2.45	0.41
D14	12.4	45.2	27.9	20.6	10.3
D15	205	5.68	8.92	3.44	3.32
D16	11.6	34.7	30.6	20.1	2.32
D17	5.50	45.0	4.16	3.61	0.75
D18	4.52	13.0	2.65	2.52	1.23
D19	4.20	SL	SL	2.83	1.13
D20	15.6	9.55	3.23	14.9	0.83
D21	33.6	6.10	2.83	1.98	2.08
D22	3.04	11.7	3.87	3.58	1.99

ARSENIC DEPOSITION RATE (Pounds/Sq Mi/Month)

Month	June	July	August	September	October
Station					
D1	2.95	4.47	1.84	2.13	1.67
D2	4.74	5.50	SL	16.7	5.55
D3	1.55	5.67	4.09	5.69	6.85
D4	2.86	3.82	2.52	4.83	1.05
D5	3.93	9.67	14.2	5.84	3.84
D6	2.52	5.13	3.86	6.63	0.12
D7	1.61	5.15	5.73	4.01	2.11
D8	3.23	6.85	4.96	3.07	3.84
D9	1.30	1.98	4.76	0.65	2.28
D10	0.21	3.72	9.76	0.57	1.38
D11	3.34	9.00	9.15	10.2	3.90
D12	3.38	7.91	5.21	1.61	3.39
D13	0.21	5.96	2.82	0.86	2.67
D14	16.0	34.7	37.2	35.4	13.3
D15	58.1	15.4	52.0	8.12	26.1
D16	22.3	42.7	88.2	21.2	12.8
D17	6.93	16.1	14.3	5.46	4.31
D18	5.90	18.2	5.13	5.86	3.01
D19	2.96	SL	SL	5.38	4.91
D20	4.78	2.27	2.50	4.61	2.53
D21	150	9.13	3.19	3.32	3.78
D2.2	2.10	4.05	3.15	2.20	2.87

4				

APPENDIX XI

GENERAL DESCRIPTION OF ${\rm SO}_2$ MONITOR SITE LOCATIONS

GENERAL DESCRIPTION OF so_2 MONITOR SITE LOCATIONS

Station Identification Location	Hudson's Bay Store	EPS Warehouse (WARE)	Super Crest Buildings (SUPER)
Direction	s	SSE	И
Degrees*	188	165	009
Distance (miles)*	3.5	3.0	1.5
Height above ground of sampling head (feet)	25	30	30
Period of operation	April/73-Oct/75	June/75-0ct/75	June/75-0ct/75

^{*}Degrees and distance from Giant Mines stack in clockwise direction from true north.

APPENDIX XII

METEOROLOGICAL CORRELATION OF SO₂ CONCENTRATION GREATER THAN 0.17 PPM (1973 - 1975)

METEOROLOGICAL CORRELATION FOR SO_2 CONCENTRATION GREATER THAN 0.17 PPM

YEAR 1973

Station Designation	Month	Day	Time of Day	Average Hourly Concentration (ppm)	Wind Correl Direction	ation Speed (mph)
НВ	April	13	4-5	0.20	N	6
НВ	April	13	9-10	0.18	NE	7
НВ	April	14	21-22	0.19	NNE	3
НВ	Sept.	4	3–4	0.18	NNE	13
НВ	Sept.	10	20-21	0.25	NNE	5

METEOROLOGICAL CORRELATION FOR SO_2 CONCENTRATION GREATER THAN 0.17 PPM

YEAR 1974

	undannada un gar en el el en en el el en en el en en el en en el en en el e	120 MICHAEL 1		Average Hourly	Wind Correl	ation
Station Designation	Month	Day	Time of Day	Concentration (ppm)	Direction	Speed (mph)
НВ	April	10	21-22	0.21	N	7
НВ	April	23	9 - 10	0.19	NNW	8
НВ	June	17	12-13	0.17	ENE	5
НВ	Aug.	20	21-22	0.36	NNW	7
нв	Aug.	20	22-23	0.30	NNW	7
НВ	Aug.	22	23-24	0.22	N	7
НВ	Aug.	23	0-1	0.28	NNE	5
НВ	Aug.	30	20-21	0.42	N	4
НВ	Oct.	11	9-10	0.17	NE	2
НВ	Oct.	17	22-23	0.24	W	4
НВ	Oct.	27	6-7	0.21	NNW	5
НВ	Nov.	6	2-3	0.19	N	13
НВ	Nov.	2	14-15	0.30	N	7
НВ	Nov.	30	16-17	0.19	N	4
НВ	Dec.	20	16-17	0.17	NNW	2

METEOROLOGICAL CORRELATION FOR SO_2 CONCENTRATION GREATER THAN 0.17 PPM

YEAR 1975

				Average Hourly	Wind Correl	ation
Station Designation	Month	Day	Time of Day	Concentration (ppm)	Direction	Speed (mph)
НВ	Jan.	26	14-15	0.17	N	4
НВ	Feb.	20	16-17	0.19	NNE	7
SUPER	June	17	17-18	0.20	E	6
SUPER	June	24	20-21	0.25	SSE	6
SUPER	June	24	21-22	0.25	S	5
SUPER	June	28	12-13	0.19	NE	6
SUPER	June	28	13-14	0.23	ENE	14
SUPER	June	28	14-15	0.21	ENE	16
SUPER	June	28	15-16	0.19	ESE	14
SUPER	June	28	16-17	0.18	E	9
SUPER	June	28	17-18	0.18	E	8
SUPER	June	28	18-19	0.18	NE	7
SUPER	June	28	19-20	0.17	NNE	9
SUPER	June	28	20-21	0.17	NE	5
SUPER	July	10	18-19	0.23	S	9
SUPER	July	10	19-20	0.17	SSW	9
SUPER	July	10	20-21	0.25	S	9
SUPER	July	20	20-21	0.34	S	9
SUPER	July	20	22-23	0.20	S	5
НВ	Aug.	31	0-1	0.27	N	9
НВ	Aug.	31	2-3	0.27	N	10
SUPER	Aug.	14	15-16	0.17	SSW	5
SUPER	Aug.	27	6-7	0.26	S	9
WARE	Aug.	9	5-6	0.23	NNW	2
WARE	Aug.	9	6-7	0.18	NNW	4
WARE	Aug.	23	19-20	0.17	NNW	4
WARE	Aug.	23	20-21	0.25	NNW	7
WARE	Aug.	23	21-22	0.25	NNW	6
WARE	Aug.	31	3-4	0.20	N	8

				A. III.
		•		
				(1982년) 기계 (1982년)