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Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada),

is a dramatic example of subarctic legacy contamination from mining activi-

ties, with remediation costs projected to exceed $1 billion. Operational

between 1948 and 2004, gold extraction at Giant Mine released large quantities

of arsenic and metals from the roasting of arsenopyrite ore. We examined the

long-term ecological effects of roaster emissions on Pocket Lake, a small lake

at the edge of the Giant Mine lease boundary, using a spectrum of palaeoen-

vironmental approaches. A dated sedimentary profile tracked striking

increases (approx. 1700%) in arsenic concentrations coeval with the initiation

of Giant Mine operations. Large increases in mercury, antimony and lead also

occurred. Synchronous changes in biological indicator assemblages from mul-

tiple aquatic trophic levels, in both benthic and pelagic habitats, indicate

dramatic ecological responses to extreme metal(loid) contamination. At the

peak of contamination, all Cladocera, a keystone group of primary consumers,

as well as all planktonic diatoms, were functionally lost from the sediment

record. No biological recovery has been inferred, despite the fact that

the bulk of metal(loid) emissions occurred more than 50 years ago, and the

cessation of all ore-roasting activities in Yellowknife in 1999.
1. Introduction
Anthropogenic metal contamination can be a detrimental and intense stressor

on ecosystems. The repercussions are particularly evident in remote northern

regions, which often lack other direct contamination sources due to limited

population pressures. Historical metal contamination of northern aquatic eco-

systems have been recorded globally in relation to mining and smelting

activities, including in northern China [1,2], Finland [3,4], Sweden [5],

Norway [6], and the Kola Peninsula [7] and Siberia [8] in Russia. In Canada,

the legacy of metal(loid) contamination includes numerous examples of the

release of arsenic to the environment [9], known to be a metalloid of great

concern when elevated in natural systems owing to its toxicity [10].

The primary anthropogenic sources of arsenic to the environment include

release from base metal smelting and refining, thermal and power generation

(particularly coal combustion) and historic gold mining [9]. Large quantities

of arsenic (among other metal(loid)s) were released as emissions and tailings

from smelting and refining in Flin Flon, Manitoba [11,12] and Sudbury, Ontario

[13]. In Canada, historic gold mining represents one of the major sources of

arsenic contamination to the environment because many recoverable gold
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Figure 1. Map of the city of Yellowknife (Northwest Territories, Canada), with the location of Pocket Lake identified, Giant Mine lease area indicated with a dashed
line, and the Giant Mine roaster indicated with a star. Inset (a) The study location (red transparent box) in the context of Canada. Inset (b) Surface water arsenic
concentrations (mg l21) in the region based on 45 samples collected in 2011, 2014 and 2015, showing continued elevation of arsenic concentrations in lake water
within approximately 15 km of the Giant Mine emission source.
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deposits are found in arsenic bearing sulfide deposits [9].

Elevated arsenic and metal concentrations have been linked

to mine drainage and emissions from gold mining in Ontario

[14], Nova Scotia [15,16], British Columbia [17] and the

Northwest Territories [18,19]. Despite the widespread

documentation of arsenic contamination in aquatic envi-

ronments, relatively little is known about the long-term

ecological impacts of arsenic exposure.

In Canada’s Northwest Territories, mining and resource

extraction are key contributors to overall economic develop-

ment [20]. The capital city of Yellowknife has a long history

of gold mining, with three mines that operated within the

city limits between 1938 and 2004: Con Mine (1938–2003)

and Negus Mine (1939–1952) in the south and Giant Mine

(1948–2004) in the north (figure 1). These mines were the

major economic drivers of the region [21], but early oper-

ations undertaken prior to effective emissions and waste

management controls resulted in substantial contamination

to the local environment [22]. In particular, the roasting of

arsenopyrite ore to facilitate gold extraction resulted in the

creation and emission of large quantities of arsenic trioxide

(As2O3) as a by-product [23], a form of arsenic known to be

the most toxic, water-soluble and bioavailable of solid arsenic

compounds [24].

During the early operational history of the Yellowknife

gold mines, large amounts of As2O3 were released to the sur-

rounding landscapes via roaster stacks, estimated at 7.3 tonnes

per day from 1949 to 1951 for Giant Mine alone [22,25]. Most

of the atmospheric As2O3 emissions were released from Giant

Mine, where gold was predominately hosted in the refractory

phase, which required roasting of the ore prior to cyanidation.

Mitigation practices were ordered following the death of a

local Dene boy from acute arsenic poisoning in the spring of

1951 [26]. The first attempts at capturing As2O3 occurred

with the installation of an electrostatic precipitator in 1951

(emissions decreased to an estimated 5.5 tonnes per day for
1952–1953; [25]), followed by a baghouse in 1958. Emissions

from 1959 to 1999 (when roasting ceased) were decreased sub-

stantially to approximately 0.01–0.4 tonnes per day [25].

During the full operational history of Giant Mine, an estimated

20 million kg of As2O3 were released to the environment [25],

and thus the legacy of contamination during the course of the

Giant Mine operation is substantial. Increases in arsenic con-

centrations in sediment core profiles from Yellowknife Bay

(Great Slave Lake), adjacent to the Giant Mine lease, have

been reported consistent with the opening years of the mine

in approximately 1950 [27,28], and arsenic remains elevated

in surface waters within approximately 15 km of the mine

(figure 1) [18,19].

The remediation of the Giant Mine site, currently being

undertaken by the Government of Canada, is expected to

exceed one billion dollars [29], making it one of the most

expensive mine reclamation projects ever planned in

Canada. While most research has focused on quantifying

arsenic contamination in surrounding ecosystems, other pol-

lutants, including polycyclic aromatic hydrocarbons (PAHs),

associated with roasting activities, and mercury may also be

of concern. Mercury amalgamation was used at Giant Mine

for gold recovery from 1948 until 1958 [23,30], and elevated

PAH concentrations have been recorded as a result of smelt-

ing operations in other locations [31,32], though the potential

for the roasting of arsenopyrite at Giant Mine as a source of

PAHs to the environment has not previously been explored.

Owing to the lack of direct monitoring data, the historical

inputs of these toxicants and their ecological impacts

remain largely unknown. Understanding the magnitude of

ecosystem responses and the potential for recovery following

metal(loid) and hydrocarbon contamination from mining

operations is critical for understanding the impact of historic

resource development in sensitive northern ecosystems.

In this study, we address this key knowledge gap by analys-

ing proxy records preserved in a dated lake sediment core to
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characterize both the legacy of metal(loid) and PAH contami-

nation from gold mining, and the response of aquatic biota to

these legacy contaminants at multiple trophic levels in a small,

high-closure, headwater lake (Pocket Lake) located approxi-

mately 1 km from the Giant Mine roaster stack (figure 1). We

used a ‘palaeo-ecotoxicological approach’, where the sedimen-

tary record of contaminant deposition is directly compared to

the timing, magnitude and nature of changes in biological

subfossil indicators of interest, including those organisms com-

monly used as model organisms in ecotoxicology (e.g.

Daphnia, diatoms and chironomids). We hypothesized that,

given the close proximity of Pocket Lake to the point emission

source at Giant Mine, significant inputs of metal(loid)s and

other toxicants have occurred historically, and resulted in sub-

stantial changes in the assemblage of biological organisms

known to be sensitive to metal(loid) contamination. Importantly,

Pocket Lake is not believed to have ever received inputs of

tailings or other mine wastes, and thus any contaminants

entering this ecosystem probably did so solely via airborne

deposition, either onto the lake surface or onto the small catch-

ment. As such, these findings can be used to place ecological

changes in other lakes proximate to Giant Mine, as well as

other mining-impacted regions globally, in the context of an

ecosystem highly impacted by metal(loid) exposure.
2. Material and methods
Pocket Lake (62830032.300 N, 114822025.600 W) is a small (4.8 ha)

headwater lake (sampling depth 2.0 m) located in the southern

portion of the Baker Creek watershed (137 km2), approximately

4 km north of the city of Yellowknife [33,34]. The small (less

than 5 ha) catchment of Pocket Lake includes an exposed bedrock

upland and a soil-filled valley to the south that drains the exposed

outcrop into Pocket Lake. The bedrock upland occupies approxi-

mately 78% of the basin, and the valley approximately 22% [33].

Vegetation is absent from the bedrock outcrop, though lichen

cover is common. Black spruce (Picea mariana) grow at the edge

of the valley, where it borders the outcrop. Understory vegetation

(especially dwarf willow—Salix spp.), mosses, sedges and grasses

dominate the soil-filled valley [33]. Prior to the development of

Giant Mine, the area around Pocket Lake (including the lower

reaches of Baker Creek) was used heavily by members of the Yel-

lowknives Dene First Nation for the collection of berries and

traditional medicines (E. Sikyea, F. Sangris and M.-R. Sundberg

2015, personal communication). Permafrost is discontinuous in

the region, and generally associated with peat plateaus [33]. The

Yellowknife region experiences a subarctic continental climate,

with long cold winters and short mild summers. The mean

annual air temperature is 24.38C, with a July mean of 17.08C
and a January mean of 225.68C (1981–2010 average). Mean

annual precipitation is 289 mm, approximately 40% of which

falls as snow (Environment Canada, Climate Normals Online).

A single sediment core was obtained from Pocket Lake

through the early spring ice (ice thickness 0.9 m) on 28 March

2014, and sectioned at 0.5 cm intervals using a Glew extruder

[35]. Water and surficial sediment samples were collected for

chemistry analyses at the Taiga Environmental Laboratory

(Yellowknife, NT, Canada; electronic supplementary material,

table S1). Sediment age determination for the last approximately

150 years was conducted using 210Pb and 137Cs radiometric

dating techniques, with radioisotopic activity measured using

an Ortec high-purity germanium gamma spectrometer (Oak

Ridge, TN, USA) [36]. Certified reference materials obtained

from the International Atomic Energy Association (Vienna,

Austria) were used for efficiency corrections, and a chronology
was developed using ScienTissiME (Barry’s Bay, ON, Canada;

electronic supplementary material, figure S1). Selected intervals

were analysed for total metal(loid) concentrations (SGS Environ-

mental Services, Lakefield, ON, Canada) via inductively coupled

plasma–mass spectrometry. SGS is a Canadian Association for

Laboratory Accreditation Inc. (CALA) accredited facility, and

all metal(loid) data reported here fall under this accreditation.

Biological subfossil indicators were prepared and identified

using standard techniques (diatoms [37], cladocerans [38], chirono-

mids and chaoborids [39]). In order to minimize the potential for

bias, samples were analysed using a blind method, where the ana-

lyst was not aware of which sediment interval was being examined.

Estimates of overall primary production were determined using

visible reflectance spectroscopy, conducted on a FOSS NIRSystems

Model 6500 Rapid Content Analyzer, a technique that estimates

both chlorophyll a and its degradative products [40]. Total mercury

was measured by thermal decomposition with gold trap amalga-

mation and cold vapour atomic absorption spectrometry using a

Nippon Instruments SP-3D mercury analyser with a theoretical

detection limit of 0.01 ng g21, dry weight. Measurement accuracy

was estimated by running blanks and calibrated with MESS-3

(certified: 91+9 ng g21, measured: 113+0.5 ng g21; National

Research Council of Canada) and SRM2704 (certified: 1440+
70 ng g21, measured: 1662+348 ng g21; National Institute of Stan-

dards & Technology (NIST), Gaithersburg, MD, USA) as certified,

standard reference materials, every 10 samples. Total organic

carbon (TOC) analysis was conducted at the G.G. Hatch Stable

Isotope Laboratory (University of Ottawa), and ranged from 31

to 37%.

For PAH analysis, wet sediments were mixed with Hydro-

matrixTM (Agilent Technologies, Santa Clara, CA, USA) and

elemental copper to remove sulfur (US EPA Method 3660B).

Samples were also spiked with known concentrations of
13C-labelled PAHs (Cambridge Isotope Laboratories, Tewksbury,

MA, USA) prior to extraction. Analytes were extracted using US

EPA Method 3540C modified for accelerated solvent extraction.

Clean up with US EPA Method 3630C was adapted for use on

6 ml (1 g) SupelcleanTM LC-Si solid-phase extraction cartridges

and reduced to 1 ml. Method blanks of HydromatrixTM and

replicates (n ¼ 3) of SRM1941b (NIST) were extracted follow-

ing the same procedures. The PAH fraction was spiked with

p-terphenyl-d14 (Cambridge Isotope Laboratories, Tewksbury,

MA, USA) as an internal standard and analysed following

methods outlined in [41]. Analytes were recovery corrected

using the 13C-labelled PAHs with mean recovery rates ranging

from 11 to 198%. The concentrations of PAHs were also calculated

per gram organic carbon, but owing to limited variability in TOC,

the trends were virtually identical to those per gram dry weight,

and as such only the latter were explored further. The detection

limits for the 16 EPA priority PAHs are included as supplementary

information (electronic supplementary material, table S2).

Linear, indirect ordinations (principal components analysis,

PCA) were used to summarize the variation in the independent

palaeoenvironmental proxies and facilitate the comparison of

the timing of changes. PCA was conducted on square root-

transformed assemblages for the biological indicators, and

correlation matrices for the metal(loid)s and PAHs using vegan

v2.3–0 [42] for the R statistical computing environment. Relative

frequency diagrams were generated using TILIA v. 1.7.16.
3. Results and discussion
(a) Historical trends in contaminant deposition to

Pocket Lake
Concentrations of metal(loid)s associated with roaster emis-

sions (including arsenic, antimony, lead, iron and mercury)
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exhibited substantial increases from pre-mining background

levels in the 210Pb-dated sediment core from Pocket Lake

beginning in the early 1950s, exactly at the timing of the

onset of operations at Giant Mine, when roaster emissions

were vented freely to the atmosphere (figure 2). Of particular

note, total arsenic increased approximately 1700% to greater

than 30 000 mg g21 (i.e. more than 3% arsenic by dry weight),

and total mercury increased approximately 2000% to greater

than 2.0 mg g21, in comparison to concentrations in the sedi-

ments deposited prior to the onset of mining activities

(figure 2). Daily arsenic (and other metal(loid)) emissions at

Giant Mine peaked in the late 1940s and early 1950s, after

which the implementation of emission abatement measures

(e.g. the installation of a baghouse in 1958) drastically reduced

roaster emissions [25]. By contrast, arsenic and metal concen-

trations in the sediment core from Pocket Lake peaked later,

in approximately 1970, after which concentrations declined

and returned to pre-impact conditions. Sedimentary arsenic

profiles from Yellowknife Bay, an embayment of Great Slave

Lake at Yellowknife, more closely followed the emission

history of Giant Mine, exhibiting increases in arsenic concen-

trations consistent with the initiation of mining operations at

Giant Mine and peaking in approximately 1960 [27,28]. There

are two competing hypotheses to explain the delayed peak in

metal(loid)s in Pocket Lake: (i) post-depositional remobilization

of metal(loid)s in the sediments interfere with the use of the

sediment core from Pocket Lake as a historical archive of

Giant Mine emissions; and (ii) the delayed peak in metal(loid)

concentrations in Pocket Lake is related to retention in the catch-

ment, providing a source of continued influx of metal (loid)s

into Pocket Lake after atmospheric emission reductions.

Both arsenic and antimony are known to undergo com-

plex post-depositional sedimentary processes, including

remobilization, changes in speciation and the formation of

new As/Sb-oxide, As/Sb-sulfide and Fe–Mn oxide com-

pounds, with pH, flow velocity, the presence of vegetation,

and redox conditions as important controls on these

processes [43–45]. Enhanced fixation of arsenic in the

sediments has been linked to adsorption onto iron oxide com-

pounds (known to have been produced by roasting at Giant
Mine [46]), with decreased leaching to the water column

exhibited when arsenic and iron co-precipitate [44,47]. Sedi-

ment records from nearby Yellowknife Bay, while recording

a distinct peak in arsenic associated with the height of

mining operations, also exhibit surficial enrichment attribu-

ted to post-depositional remobilization via reductive

dissolution and re-precipitation in the oxic layer near the

sediment–water interface [28]. In Pocket Lake, sedimentary

arsenic concentrations slightly downcore to the timing of

the onset of mining in 1948 are somewhat elevated compared

to those below a core depth of 24 cm, suggesting some down-

ward migration may occur; however, we observe no surficial

enrichment of arsenic. Instead, the total arsenic and antimony

trends are consistent with those of lead and mercury, which

are not known to undergo substantial post-depositional

mobility in lake sediments [48,49]. This similarity strongly

suggests that sedimentary trends in arsenic and antimony

are primarily a reflection of historic inputs of these

metal(loid)s into Pocket Lake. Collectively, the evidence

summarized above does not support a hypothesis that the

delayed metal(loid)s peak in Pocket Lake is being driven by

post-depositional sedimentary processes.

During the period of high emissions from Giant Mine in the

first decade of its operations, large quantities of metal(loid)s

would have accumulated in catchment soils in close proximity

to the mine. Previous studies have shown that outcrop soils

(such as those found in the catchment of Pocket Lake) contain

high concentrations of legacy arsenic (56–5760 ppm, average

1546 ppm), and that the bulk of roaster-derived arsenic found

in outcrop soils near Giant Mine was deposited over 45 years

ago [25,50]. It has also been suggested that the solubility of

As2O3 generated at Giant Mine, and now present in local

soils, is lower than expected and may be owing to antimony

impurities [50]. Presently in the Yellowknife region, the highest

arsenic concentrations are recorded in small, high-closure lakes

like Pocket Lake [19], and we expected that Pocket Lake would

exhibit delayed chemical recovery compared with Yellowknife

Bay (Great Slave Lake), which drains a larger catchment, and

where hydrological and sedimentary inputs from the Yellow-

knife River would more quickly dilute legacy metal(loid)s.
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Delayed peaks following emission reductions have also been

reported in lake sediment cores from other mining regions in

Canada, including copper and zinc mining in Flin Flon, Mani-

toba [51] and nickel mining in Sudbury, Ontario [52]. In

Sudbury, legacy concentrations of metals in terrestrial soils

have been shown to delay recovery up to several decades

after emission reductions, and even increase aquatic metal con-

centrations in some cases during drought [52,53]. Like Pocket

Lake, it is the small, shallow, perched, closed-basin Sudbury

lakes that exhibited the most delayed response to emission

reductions [52]. Therefore, we conclude that the catchment

was a critical source of metal(loid)s to Pocket Lake for more

than a decade following the installation of the baghouse and

decrease in roaster emissions at Giant Mine.

To date, investigations into legacy contaminants in the

environment near Giant Mine have focused exclusively on met-

al(loid)s, but roaster emissions may also be an important source

of PAHs [31,32]. PAHs represent a diverse group of organic

contaminants formed during the combustion of biomass,

either at high temperatures (pyrogenic), or at low temperatures

over long geological timespans (petrogenic—naturally occur-

ring in petroleum products). Although PAHs can be

produced during natural processes (e.g. during forest fires),

human activities are dramatically increasing the environmental

burdens of these contaminants globally [54]. Because PAHs can

be toxic [55], it is important to assess whether roaster emissions

from Giant Mine also released PAHs to the surrounding

environment, in addition to arsenic and other metal(loid)s.

We observed increases in the total concentration of alkylated

PAHs after the onset of mining operations at Giant Mine,

though unlike the metal(loid)s, the magnitude of the increase

was subtle (figure 2). Diagnostic ratios of select PAH com-

pounds commonly used to identify the sources of complex

PAH mixtures in the environment [56] indicate a greater con-

tribution from petroleum combustion sources since the

mid-twentieth century (electronic supplementary material,
figure S2). This shift in PAH source could potentially be related

to the roasting of ore deposits at nearby Giant Mine, and/or the

urbanization of the city of Yellowknife occurring at the same

time. However, the observed decrease in PAH concentrations

(figure 2), coinciding with decreases in sedimentary metal

(loid)s, suggest that roasting operations were the dominant

anthropogenic source of PAHs to Pocket Lake, not urban devel-

opment, which accelerated throughout the twentieth century.

Metal(loid)s remain the primary group of contaminants of

ecotoxicological concern related to Giant Mine emissions.

(b) Ecological impacts of metal contamination at
multiple trophic levels

We examined the ecological impacts of metal(loid) exposure

in three different groups of aquatic biota (diatoms (algae),

Cladocera (zooplankton), Chironomidae and Chaoboridae

(macroinvertebrates)) at different trophic levels by analysing

subfossil remains preserved in the sedimentary record of

Pocket Lake. Striking changes in all three groups of biological

indicators were observed coincident with the opening of the

mine in 1948 and the corresponding metal(loid) loading

that followed (figures 3 and 4).

Following the opening of Giant Mine and the rapid

increase in arsenic and other metal(loid)s, the epiphytic

diatom taxon Nupella impexiformis and planktonic diatom

species Discostella stelligera/pseudostelligera were rapidly lost

from the assemblage. These taxa are known to be sensitive

to mining-induced contamination [57,58]. The loss of Discos-
tella stelligera/pseudostelligera is particularly notable, as these

taxa had been increasing in abundance prior to around

1948 (figure 3). An overall decrease in planktonic taxa follow-

ing metal contamination has been documented previously in

other metal-contaminated lakes [58–60]. Plankters may be

more susceptible to metal contamination, while benthic taxa

may gain some protection from exposure in thick biofilms,
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as algae and bacteria present in the benthic matrix may act to

bind or detoxify toxicants [61,62]. In Pocket Lake, an increase

in Navicula cryptocephala and Navicula cryptotenella occurred

following the opening of Giant Mine, with the relative abun-

dances of these taxa clearly following the trajectory of

metal(loid)s in the sediments. Navicula cryptocephala was

shown to be the dominant diatom taxon in both periphytic

and planktonic samples in a lake that received tailings from

a lead–zinc–copper mine in British Columbia, Canada [63],

and thus it appears this taxon is tolerant of high metal con-

centrations. Achnanthidium minutissimum, another taxon

previously reported as tolerant of high levels of metals

[58,59], though not previously associated with high arsenic

concentrations, increased in abundance coincident with met-

al(loid) contamination (electronic supplementary material,

figure S4). While diatom teratogeny has been associated

with metal contamination from mining in previous studies

[57,60], no teratological forms were observed in Pocket

Lake. Despite the major change in the diatom assemblages,

which we infer to be closely linked to metal(loid) contami-

nation, overall primary production (as measured by

sedimentary chlorophyll a and its diagenetic products) was

not related to the history of mining impacts (figure 3).

Whether or not more metal(loid)-tolerant algal groups, such

as green algae and/or cyanobacteria [64], replaced planktonic

diatoms in the algal community of Pocket Lake is an

important avenue for future research.
The Cladocera are a keystone group of primary consu-

mers occupying both pelagic and benthic habitats and are

an important component of the zooplankton community in

lakes. In Pocket Lake, the cladoceran assemblage exhibited

a shift from dominance by benthic taxa, including Alona
spp. and Chydorus brevilabris, to the pelagic Daphnia cf.

pulex complex immediately following the onset of metal(loid)

contamination in Pocket Lake (figure 3; electronic sup-

plementary material, figure S3). Daphnia are commonly

used as model organisms in ecotoxicological studies [65],

with some taxa known to be relatively tolerant of aqueous

arsenic concentrations above 1–1.5 mg l21 [66]. The clado-

ceran assemblage shift to arsenic-tolerant Daphnia as arsenic

was increasing in the ecosystem suggests that the resident

zooplankton taxa in the pre-mining era probably included

organisms that are comparatively more sensitive to arsenic,

such as copepods [67], which do not leave identifiable

subfossil remains. Daphnia would have had a competitive

advantage in a arsenic-contaminated environment, allowing

them to exploit a newly available niche as resident

zooplankton are out-competed. Coincident with the peak in

sedimentary metal(loid)s and extreme arsenic contamination

in the mid-1970s, Daphnia and other cladoceran remains were

no longer recovered in the sediments of Pocket Lake,

suggesting that Cladocera were functionally lost from this

ecosystem and have not recovered. Dramatic, negative effects

of arsenic contamination on Cladocera have also been

observed in China [68] and Flin Flon, Manitoba [69].

Larval stages of the phantom midge genus Chaoborus are

an important predator on Daphnia that also leave identifiable

remains (mandibles) preserved in lake sediments. In Pocket

Lake, Chaoborus mandibles were recovered in low abundances

(less than 10 per interval) throughout the sediment core,

including both the pre-, peak and post-mining periods, and

no notable changes in biomass or productivity of these macro-

invertebrate predators on Daphnia can be inferred in response

to metal(loid) contamination. Furthermore, the large-bodied

species Chaoborus americanus and Chaoborus trivattatus were

recovered throughout, suggesting Pocket Lake has probably

always been fishless, as C. americanus is a well-known indicator

of fishless (or very low planktivorous fish) conditions, and

C. trivattatus, which often coexists with C. americanus, generally

dominates in lakes with minimal fish community [70]. The

recovery of remains of these taxa at low, but consistent, abun-

dances throughout the sediment core suggests that Pocket

Lake has not undergone changes in fish community, and has

most probably been fishless over the recent past, including

the period of intense contamination from mining operations.

As planktivorous fishes represent another important predator

on Daphnia, the down-core trends we report for Chaoborus
allow us to exclude with some confidence the potential influ-

ence of changes in predator abundance/composition as a

primary driver of historical Daphnia trends in Pocket Lake.

The identification of Chaoborus remains throughout the sedi-

ment record in Pocket Lake shows they were able to tolerate

the metal(loid) exposure following contamination, including

obtaining sufficient food despite the collapse of the cladoceran

community, which would have probably represented an

important food source. Future sampling should focus on char-

acterizing the modern zooplankton and microinvertebrate

communities of Pocket Lake.

Chironomids, an important group of benthic organisms

in most freshwater ecosystems, are considered to be generally
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tolerant of metal(loid)s such as arsenic, lead and zinc [71].

Nonetheless, the chironomid assemblage in Pocket Lake also

exhibited changes coincident with the timing of the onset of

mining operations and contamination (figure 3; electronic

supplementary material, figure S5). Immediately following

the onset of mining operations, a decrease in Tanytarsus
and a marked increase in Cricotopus and Psectrocladius
were observed. After around 1970, decreased abundances of

Cricotopus strongly tracked decreasing sedimentary metal con-

centrations, though Psectrocladius abundance did not change.

Species of Cricotopus have been shown to be highly tolerant

of metals and a useful indicator of contamination [72]. After

the decrease in metal(loid)s, Polypedilum nubeculosum-type

increased in abundance. A similar trend of decreasing abun-

dance of species of the tribe Tanytarsini and increases in

Chironomini have been observed in lakes receiving metal-

rich effluent from mining operations in northern Siberia [7]

and Manitoba, Canada [69]. Arsenic exposure has been

shown to lead to chironomid mouthpart deformities [73], but

similar to teratalogical diatom forms, none were observed in

the subfossils from Pocket Lake.

Despite more than 50 years since the onset of arsenic

emission reductions at Giant Mine, and more than a decade

since the cessation of all gold processing activities in the

Yellowknife area, we did not observe any evidence of recov-

ery in the diatoms or Cladocera. Although the sedimentary

profile of arsenic in Pocket Lake showed a return towards

pre-impact concentrations, the water and surface sediments

of Pocket Lake continue to exhibit remarkably high levels

of arsenic (Asaq: 2070 mg l21; total Assediment: 806 mg g21;

electronic supplementary material, table S1). These concen-

trations are well above both the probable effects level for

toxicity set out in the Canadian sediment quality guideline

(17 mg g21; [74]) and the federal drinking water quality

guideline (10.0 mg l21; [75]). Therefore, concentrations of

legacy metal(loid)s from gold mining in Pocket Lake may

still be too toxic to support biological recovery.

Similarly, elevated surface water total arsenic has been

observed in small lakes within approximately 15 km of Giant

Mine (figure 1) [19], indicating the potential for our obser-

vations of ecological change at multiple trophic levels in

Pocket Lake to be applicable to a wider range of freshwater

ecosystems in the proximity of Giant Mine. Several small

lakes located west–northwest of Giant Mine, downwind of

the prevailing wind direction, currently have arsenic concen-

trations more than 100 mg l21, and even up to 650 mg l21 in

one instance, while arsenic concentrations in lakes more than

15 km from Giant Mine are typically below 10 mg l21 [18,19].

We expect, however, that given its close proximity to Giant

Mine, Pocket Lake is among the most heavily impacted lakes

in the region that has not received direct mine waste inputs,

such as tailings. Although zooplankton communities in other

arsenic-contaminated Yellowknife lakes have almost certainly

undergone ecological changes related to legacy effects from

mining activities, it is unlikely that all cladocerans were

eliminated from other contaminated lakes in the region. For
example, Daphnia are still abundant in Kam Lake, which was

historically contaminated with arsenic from Con Mine [76].

Because several larger lakes in the area are used for fishing

and recreational activities, including by the local

First Nations community, studies such as this one are critical

for understanding the potential consequences of legacy con-

taminants from mining for both ecosystem and human health.
4. Conclusion
We document extensive ecological effects at multiple trophic

levels in response to extreme arsenic contamination (and

other metals) at the precise time of the onset of gold

mining operations at Giant Mine in 1948. The peak concen-

trations of arsenic observed in the sediments of Pocket Lake

represent, to our knowledge, the highest reported in the sedi-

ments of non-tailings lakes that are impacted solely by

anthropogenic emissions. The Cladocera and planktonic dia-

toms were the most heavily impacted of the biological

organisms examined in this study, but even chironomids,

which are relatively tolerant of pollution, exhibited shifts in

species assemblage consistent with metal contamination. At

the height of metal loading, all Cladocera were lost from

the sediment record, and thus we conclude that this keystone

group of primary consumers was functionally extirpated

from Pocket Lake. The magnitude of impact at the study

site was large enough that, despite decreased concentrations

of heavy metals in the sediment record, biological

assemblages have exhibited little to no recovery.
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