Supporting Document M1

Estimates of Flow and Arsenic Releases from Surface and Underground Sources (SRK, 2005)

Giant Mine

Estimates of Flow and Arsenic Releases from Surface & Underground Sources

Prepared for

Department of Indian Affairs and Northern Development

Prepared by

May 2005

Giant Mine

Estimates of Flow and Arsenic Releases from Surface and Underground Sources

Department of Indian Affairs and Northern Development

PreCambrian Building Suite 500, 4920 52nd Street Yellowknife, NT X1A 3T1

SRK Consulting (Canada) Inc. Suite 800, 1066 West Hastings Street Vancouver, B.C. V6E 3X2

Tel: 604.681.4196 Fax: 604.687.5532 E-mail: vancouver@srk.com Web site: www.srk.com

SRK Project Number 1CI001.013

May 2005

Table of Contents

1	Introduction	1
2	Surface Sources	1
	2.1 Methods	1
	2.1.1 Flows 2.1.2 Source Concentrations 2.1.3 Arsenic Load Estimates	1
	2.1.2 Source Concentrations	3
	2.1.3 Arsenic Load Estimates	4
	2.2 Results	5
	2.2.1 Current Water and Arsenic Balance2.2.2 Post-Closure Water and Arsenic Balance	5
	2.2.2 Post-Closure Water and Arsenic Balance	7
3	Underground Sources	9
	3.1 Methods	9
	3.2 Results	
4	Summary and Conclusions	13
5	References	15
J	Relefences	15

List of Tables

Table M.1: Summary of Estimated Annual Runoff and Infiltration – Current Conditions	2
Table M.2: Summary of Estimated Source Concentrations	4
Table M.3: Arsenic Loadings to Baker Creek and Yellowknife Bay by Location	5
Table M.4: Summary of Arsenic Loadings from Years 2000 to 2003	6
Table M.5: Arsenic Loadings to Baker Creek by Source	6
Table M.6: Arsenic Loadings from Surface Mine Sources (excluding Upstream Baker Creek ar	nd
the Effluent Treatment Plant)	7
Table M.7: Post-Remediation Arsenic Loadings to Baker Creek and Yellowknife Bay by Locati	on 8
Table M.8: Arsenic Loadings to Baker Creek from Remediated Surface Sources	8
Table M.9: Summary of Underground Flows for Current and Future Conditions	10
Table M.10: Source Concentrations for Arsenic Trioxide Dust	10
Table M.11: Source Concentrations for Other Sources in the Underground Mine	11
Table M.12: Estimates of Flow and Arsenic Loadings from the Underground Workings under	
Current and Future Conditions	12

List of Figures

- Figure M1 Mine Site Catchment Areas
- Figure M2 Assumed Surface Runoff
- Figure M3 Percent Runoff to Baker Creek Current Conditions
- Figure M4 Percent Runoff to Great Slave Lake Current Conditions
- Figure M5 Percent Runoff to Underground Mine Current Conditions
- Figure M6 Percent Runoff to Effluent Treatment Plant
- Figure M7 Infiltration Rates Current Conditions
- Figure M8 Post Closure Runoff and Infiltration Assumptions
- Figure M9 Arsenic Concentrations Current Conditions
- Figure M10 Arsenic Concentrations Post-Closure Conditions

List of Appendices

- M1 Surface Estimates Current Conditions
- M2 Surface Estimates Future Conditions
- M3 Underground Estimates

1 Introduction

A series of calculations were completed to estimate flows and rates of arsenic release from the surface and underground sources under current and post-closure conditions.

The water and load balance is presented in two parts:

- calculations to estimate flows and arsenic release from surface sources and any discharges from the underground mine to Baker Creek, Yellowknife Bay, the underground workings, and the effluent treatment plant.
- calculations to estimate flow and arsenic release from the underground mine.

The calculations were balanced such that net flows to the underground workings from the surface model are equal to inflows used in the underground model. However, for ease of calculation, they are not directly linked.

Calculations are presented for current and post-closure conditions. The post-closure estimates reflect long-term conditions, after the proposed remediation activities have been completed and arsenic concentrations in the surface runoff reach levels that are acceptable for direct discharge. Therefore, the long-term arsenic releases from surface facilities are assumed to be discharged directly to the receiving environment. It was assumed that partial dewatering of the underground mine would be maintained, with water levels fluctuating below the base of the open pits to approximately the 425 level. Flows from the underground workings would continue to be treated.

2 Surface Sources

2.1 Methods

2.1.1 Flows

The surface of the mine site was divided into a series of small watershed areas or "catchments" reflecting runoff from the different components of the mine (Figure M.1). Catchments for Baker Creek upstream of the mine, Trapper Creek upstream of the mine, and for the smaller unnamed tributaries on the west side of Baker Creek were delineated using regional topographic maps. Those within the mine area were delineated using the detailed 2003 topography. The areas for each of the catchments are provided in the calculation tables in Appendix M1.

Rates of surface and shallow groundwater flow from each catchment were estimated by multiplying the surface areas by the annual runoff, which reflects the predominant ground conditions within the catchment. Regional catchments were assigned a runoff of 56 mm, reflecting the average annual runoff observed in Baker Creek. Local mine site catchments were assigned an annual runoff of 100 mm. The higher value applied to the mine site was intended to reflect increased runoff resulting

from the relatively sparse vegetation, hilly topography and relative lack of ponded water on the mine site. Figure M.2 shows the runoff assumption for each of the catchments within the mine site area.

The surface and shallow groundwater flows were apportioned to Baker Creek, Yellowknife Bay, the Effluent Treatment Plant (ETP), and/or the underground mine on the basis of drainage patterns or water management activities. Percent estimates of surface runoff to each of these areas under current conditions are shown in Figures M.3 to M.6, with details provided in Appendix M1.

The rate of flow to the deeper groundwater system was estimated by multiplying the footprint areas by the estimated infiltration rates. The infiltration rates varied from zero in the regional catchments to 55 mm in catchments that are fully within the envelope of the surface drillholes. Catchments that were partially within the drill envelope were assigned a value based on the proportion of area that was within the drill envelope. The Northwest Pond was assigned an infiltration of 417 mm to account for the large amount of seepage losses observed from this area ($800 \text{ m}^3/\text{day}$). Figure M.7 shows the infiltration rates applied to each of the catchments within the mine site area, under current conditions. All of the deep groundwater flow was assumed to report to the mine workings.

Flows from the Effluent Treatment Plant (ETP) were estimated based on the average volume of water treated from 2000 to 2004 (750,000 m^3/year).

Table M.1 provides a summary of the runoff and groundwater infiltration rates used in the calculations for current conditions. The values are presented in units of millimetres per year and as a percentage of the total precipitation.

Table M.1: Summary of Estimated Annual Runoff and Infiltration – Current Conditions.

Calculation Inputs	Catchments*	mm/year	% of Precipitation
Precipitation	All	280	100
Runoff (surface and shallow groundwater)			
Regional Mean Annual Runoff	B1, C1, D1, E1, G1, PL	56	20
Local Mean Annual Runoff	all others	100	36
Infiltration to Mine			
Regional Catchments	B1, C1, D1, E1, E2, G1, T1, T2, BB1, BB2, YK1	0	0
Within area of influence of dewatered mine	STP1, CTP1, NTP1, M1, M2, M3, M4, M5, M7	7.5	3
Within mine drill envelope	PP2, BP1, BP2, BP3, BP4, BP5, BC1b, AP1, AP2, CP1	55	20
Partially within drill envelope	PP1, BC1a, BC1c, BC2, BC3, M6,	12-36	4-13
Inflows from NW Pond Catchment	NWTP	417	149**
* See Figure M.1 ** Includes infiltration from the pond	•		Prepared by: KSS Checked by: OIK

** Includes infiltration from the pond

The proposed remediation activities will result in some changes to the drainage patterns and water management activities. Notably, surface runoff from the tailings areas and contaminated water in the vicinity of the mill will reach sufficient quality that it can be discharged directly to the environment, and the tailings will be re-graded such that most of the tailings runoff will drain into Baker Creek. Both of these changes will result in a greater amount of runoff to Baker Creek. Assumed changes to the percentage distributions of surface runoff from each catchment to Baker Creek, the Effluent Treatment Plant, the Underground mine or Yellowknife Bay under post-closure conditions are summarized in Figure M.8.

The proposed remediation activities will also result in some changes to the estimates of deep groundwater infiltration, which were characterized by the following changes to the water balance inputs:

- Drainage of the Northwest Pond will reduce the amount of groundwater infiltration to 14 mm (from 417 mm under current conditions).
- Dewatering and covering of the polishing pond will reduce deep groundwater infiltration to 14 mm (from 31 mm under current conditions).
- The frozen section of the B1 pit will be backfilled with contaminated soil. The unfrozen section of the B1 pit will be backfilled with waste rock and clean borrow material and will be graded and compacted to promote runoff. This will reduce infiltration in the B1 pit to 14 mm (from 55 mm under current conditions), and will result in the runoff being directed to Baker Creek rather than into the underground workings.

The above changes are also summarized in Figure M.8.

Flows from the underground mine will be reduced due to the above activities and partial flooding of the mine. This will result in a significant reduction in flows to the Effluent Treatment Plant. The flows to and from the Effluent Treatment Plant were taken from the underground flow and load calculations presented in Section 3. These were conservatively rounded to $365,000 \text{ m}^3/\text{year}$ or $1000 \text{ m}^3/\text{day}$ in the calculations of loading from the Effluent Treatment Plant.

2.1.2 Source Concentrations

Arsenic source concentrations were estimated for each of the catchment areas based on the results of the surface water quality monitoring programs and seep surveys presented in Supporting Documents B2 and B3.

Post-closure estimates of concentrations were made on the basis of the proposed remediation activities in each catchment. In general, it was assumed that arsenic concentrations in seepage and runoff would be 0.5 mg/L or less before being allowed to discharge to the environment.

A summary of source concentrations for current and post-closure conditions is provided in Table M.2 and Figures M.9 and M.10.

2.1.3 Arsenic Load Estimates

Arsenic loadings from surface and groundwater flows to Baker Creek, Yellowknife Bay, the Effluent Treatment Plant and the underground mine were estimated by multiplying the respective flow rates by the source concentrations in each catchment.

Where possible, check points were built into the calculations, enabling calculated arsenic loadings to be compared to measured flows and concentrations at various points in the system. Check points at the mouth of Trapper Creek and at the mouth of Baker Creek were particularly useful because they are part of the routine monitoring program so there was sufficient data to provide independent estimates of arsenic loadings at these locations.

The calculation spreadsheets for current and future conditions are provided in Appendix M1 and M2.

Table M.2: Summary of Estimated Source Concentrations

Description	Catchment*	Arsenic Concentration (mg/L)	
		Current	Post- Closure
Baker Creek Upstream of Mine (measured concentrations)	B1	0.026	0.026
Tributaries in Mine Area (measured concentrations)	D1, E2, E1, G1	0.025 to 0.079	0.025 to 0.079
Effluent Treatment Plant discharge (SNP Monitoring Data)	ETP	0.38	0.38
Typical runoff from undisturbed areas near sites (seep surveys)	C1, PL, NWTP2, NWTP3, BC2, BC3, T2, YK1	0.2	0.2
Slightly influenced by mine wastes (seep surveys)	M3, BP4, BP5, BB1, BB2	0.5	0.5
	BC1a, M2	0.5	0.2
Moderately influenced by mine wastes, contaminated soils or pit walls (seep surveys)	BC1c, BP1ii, BP2, AP1, AP2, CP1,	1	1
	BP1i, M7, BC1b, M6, M5	1	0.5
	M4, T1	1	0.2
Polishing pond catchment runoff	PP1i	0.2	0.5
Vertical seepage from Polishing Pond	PP1ii	5	5
Lateral seepage from Northwest Pond (seep surveys)	NWTPi	2.0	0.5
Vertical seepage from Northwest Pond (underground sampling data)	NWTPii	7	7
Seepage from other tailings areas (seep surveys)	STP1ii, CTP1ii, NTP1ii	4	4
	PP2, BP3, STP1i, STP2, CTP1i, NTP1i,	4	0.5
Heavily contaminated soil in mill area (seep surveys)	M1	10	0.5

* See Figure M.1 for catchments near mine

Prepared by: KSS Checked by: QJK

2.2 Results

2.2.1 Current Water and Arsenic Balance

Detailed results of the water and load balance for current conditions, including estimates of flows to the underground mine are provided in Appendix M1.

Table M.3 summarizes the measured and estimated arsenic loadings along each section of Baker Creek. The results indicate the most significant sources of loading to Baker Creek are sources upstream of the mine, and the effluent treatment plant. The estimated loads for these two areas were calibrated to the monitored loadings at these locations, and were therefore expected to be in agreement. Estimated loadings at Trapper Creek were approximately 36 kg/year higher than the monitored loadings. This suggests that the estimated flow rates or concentrations from this area are high, and that seepage rates from the Northwest Pond may be lower than estimated. Estimated arsenic loadings of 800 kg/year at the monitoring data.

Direct runoff to Yellowknife Bay from the mine site catchments is estimated to contribute an additional 110 kg/year of arsenic, of which approximately 65 kg/year can be attributed to areas influenced by surface activities. Therefore, the total loading to Yellowknife Bay from Baker Creek and the mine site is estimated to be approximately 910 kg/year.

		Arsenic Rel	ease (kg/year)	
Location along Baker Creek	Average Annual Flow (m³/year)	Measured (Calculated from 2004 Monitoring Data)	Estimated from Water and Arsenic Balance	%Total Load to Baker Creek
Baker Creek Upstream of Giant Mine	7,098,000	227	224	28
Trapper Creek (including the Northwest Pond)	418,000	42	78	10
Effluent Treatment Plant	750,000	285	285	36
Polishing/Settling Pond Area	42,000	na	44	5
Runoff/seepage from catchments between Baker Creek Pond and Mill Area	75,000	na	37	5
Runoff/seepage from Mill Area catchments	19,000	na	21	3
Runoff/seepage from catchments downstream of Mill Area to mouth of Creek	524,000	na	111	14
Total Inputs at mouth of Baker Creek	8,925,000	839	800	100
Direct Runoff to Yellowknife Bay	296,000	na	110	
Total Inputs to Yellowknife Bay	9,221,000	na	910	d by: KSS

 Table M.3: Arsenic Loadings to Baker Creek and Yellowknife Bay by Location

Prepared by: KSS

Checked by: QJK

Table M.4 presents arsenic loadings in Baker Creek from 2000 to 2003 as calculated from the monitoring data. There is substantial year to year variability, with generally higher loadings in wetter years such as 2001 and 2002. However, total arsenic loading in a typical year (such as 2003) are comparable to the value estimated from the water and arsenic balance.

Table M.5 summarizes the estimated arsenic loadings to Baker Creek and Back Bay from each of the major surface sources. Upstream sources comprise approximately 224 kg/year, or 28% of the total arsenic loading to Baker Creek. An additional 67 kg/year or 8% can be attributed to tributaries upstream of Trapper Lake and to the west of Baker Creek. Discharge of water from the Effluent Treatment Plant contributes 285 kg/year, or 36% of the total arsenic loading to Baker Creek, and other mine site sources contributes approximately 224 kg/year or 28% of the loading to Baker Creek.

Year	Total Flow (m³/year)	Average Concentration (mg/L)	Measured Arsenic Loading (kg/year)
2000	na*	0.28	na
2001	18,000,000	0.10	1800
2002	13,900,000	0.08	1100
2003	9,900,000	0.07	730

Table M.4: Summary of Arsenic Loadings from Years 2000 to 2003

Notes: * 2000 was likely a low flow year. However, the WSC records appearPrepared by: KSSto have some missing data, and reliable flow estimates were not available.Checked by: QJK

Table M.5:	Arsenic	Loadings to	Baker	Creek by	y Source
------------	---------	-------------	-------	----------	----------

Sources to Baker Creek	Average Annual Flow (m ³ /year)	Estimated Arsenic Loadings (kg/year)
Baker Creek Upstream of Giant Mine	7,098,000	224
Tributaries to Baker Creek Adjacent to Giant Mine	846,000	67
Effluent Treatment Plant (ETP)	750,000	285
Runoff from Surface Mine Facilities to Baker Creek	231,000	224
Total Inputs to Baker Creek	8,925,000	800

Prepared by: KSS

Checked by: QJK

A more detailed breakdown of estimated arsenic loadings from the mine site sources (excluding the Effluent Treatment Plant) is shown in Table M.6. The estimated contributions from the Northwest Pond and the Settling/Polishing Ponds comprise approximately half of these loadings. A small amount of the arsenic loading can be attributed to the heavily contaminated soils in the mill area, and the remainder to runoff from other areas.

Creek and the Effluent Treatment Plant)					
Source	Flow (m³/year)	Estimated Arsenic Loadings (kg/year)			
Northwest Tailings Pond	29,000	55			
Polishing Pond/Settling Pond Area	42,000	44			
Upstream of Mill	75,000	37			
Mill Area	19,000	21			
Downstream of Mill (mostly runoff)	67,000	67			
Total Surface Contributions to Baker Creek	231,000	224			

Table M.6: Arsenic Loadings from Surface Mine Sources (excluding Upstream Baker	
Creek and the Effluent Treatment Plant)	

Prepared by: KSS Checked by: QJK

One implication of the results shown in Tables M.5 and M.6 is that reducing either the flow or the arsenic concentration coming from the Effluent Treatment Plant would lead to the largest reduction in overall arsenic release. Alternatively, if the Effluent Treatment Plant discharge is moved to Yellowknife Bay, as proposed, there would be a significant reduction in arsenic loading to Baker Creek. Some further reduction in arsenic releases could be achieved by removal of contaminated soil and by covering the tailings areas.

However, a substantial portion of the arsenic loading in Baker Creek comes from upstream sources and larger undisturbed catchments adjacent to the mine. Arsenic releases from those areas are most likely due to soil and sediment contaminated by historical atmospheric releases from the roaster. While these sources are expected to diminish over time, it may take several decades and possibly hundreds of years before all of the arsenic from these sources is flushed from the system.

2.2.2 Post-Closure Water and Arsenic Balance

Table M.7 summarizes the estimates of future arsenic loading from each of the major sources on the site. Arsenic sources upstream of the mine and in the tributaries are assumed to remain unchanged from current conditions. Of the remaining sources, surface facilities on the mine, including the tailings areas, contaminated soil, roads and waste rock would contribute approximately 193 kg/year of arsenic to Baker Creek, and an additional 69 kg/year to Yellowknife Bay. Although the remediation activities would result in lower source concentrations in many of the catchments, the estimated post-closure loadings are only slightly lower than the current loadings. The main reason for this is that flows that were previously directed to the underground workings or to the treatment plant are assumed to be directly discharged to the environment at an arsenic concentration of

0.5 mg/L. The arsenic loading from the treatment plant would be substantially lower than that from the current treatment plant (139 kg/year as compared to 285 kg/year under current conditions), primarily due to the reduction in flows. In addition, the treatment plant discharge would directed to Yellowknife Bay rather than Baker Creek.

In total, the surface remediation activities are estimated to reduce arsenic loadings in Baker Creek from current levels of approximately 800 kg/year to approximately 484 kg/year. Total mine site loads to Yellowknife Bay are estimated to be reduced from 910 kg/year to approximately 692 kg/year. Concentration in surface runoff from all sources is expected to decrease as readily soluble contaminants are flushed from the system and discharge concentrations fall below the assumed 0.5 mg/L. Therefore, long-term reductions in arsenic loading are likely to be greater than these estimates suggest.

A more detailed breakdown of estimated current and future flows and arsenic loadings from each of the mine components (excluding the Effluent Treatment Plant) is shown in Table M.8.

Average Annual			
Flow (m³/year)	Current	Future	
7,098,000	224	224	
846,000	67	67	
na	285	0	
389,000	224	193	
8,333,000	800	484	
291,000	110	69	
365,000	Na	139	
8,989,000	910	692	
	Annual Flow (m ³ /year) 7,098,000 846,000 na 389,000 8,333,000 291,000 365,000	Annual Flow Release Current Current 7,098,000 224 846,000 67 na 285 389,000 224 8,333,000 800 291,000 110 365,000 Na	

 Table M.7: Post-Remediation Arsenic Loadings to Baker Creek and Yellowknife Bay

 by Location

Prepared by: KSS Checked by: QJK

Table M.8: Arsenic Loadings to Baker Creek from Remediated Surface Sources

_		Arsenic Release (kg/year)	
Current	Future	Current	Future
29,000	76,000	55	36
42,000	42,000	44	21
na	68,000	na	34
75,000	85,000	37	21
19,000	47,000	21	17
67,000	71,000	67	64
231,000	389,000	224	193
	29,000 42,000 na 75,000 19,000 67,000	29,000 76,000 42,000 42,000 na 68,000 75,000 85,000 19,000 47,000 67,000 71,000	29,000 76,000 55 42,000 42,000 44 na 68,000 na 75,000 85,000 37 19,000 47,000 21 67,000 71,000 67

Prepared by: KSS Checked by: QJK

3 Underground Sources

3.1 Methods

A separate set of calculations was used to estimate the arsenic loading originating within the underground mine workings. Detailed calculation sheets are provided in Appendix M3.

Estimates of flows to the underground mine from surface sources were taken from the surface calculations. The amount assumed to be entering the underground workings was the sum of the flows from the northwest pond and infiltration from catchments within the drill envelope. Estimates of lateral groundwater flows are described in Supporting Documents C1 and C2. Flows and arsenic loading from the Northwest Pond were assumed to move conservatively through the mine workings, while all other flows were assumed to interact with the underground sources.

The surface and groundwater flows were generally apportioned based on the footprint or cross sectional area of the source (for vertical and lateral flows, respectively). In the estimates of current conditions, vertical flow through the arsenic chambers and stopes was adjusted to account for the relatively high arsenic releases observed in the underground water and load balance.

In the estimates of post-closure conditions, the vertical and cross sectional areas of each of the underground sources were adjusted to reflect partially flooded conditions in the mine. Because the mine will be used to provide storage for seasonal inflows, two scenarios were carried through in the calculations, one reflecting minimum expected water levels (to the 425 Level) of the mine workings, and one reflecting maximum expected water levels (below the base of the open pits). In addition, flows through the arsenic chambers were set to zero to account for freezing, and flows from the Northwest Pond were reduced to a nominal infiltration rate of 0.014 m/year to account for drainage of the pond and placement of covers.

A summary of vertical and lateral flows through the mine workings is provided in Table M.9.

tical Flow enic dust - funnelled flow from pits enic dust - infiltration from Baker Creek ster tailing backfill tion tailings backfill te rock backfill onal bedrock/mine walls thwest Tailings Pond Subtotal (Vertical)	2,200 2,200 9,000 9,000	Flood to 425 Level 0 17,000 17,000	Flood to Base of Pits 0 0 17,000	Current 6.0 6.0 52	Flood to 425 Level 0 0	Flood to Base of Pits 0 0
enic dust - funnelled flow from pits enic dust - infiltration from Baker Creek ster tailing backfill 11 tion tailings backfill 61 onal bedrock/mine walls 44 thwest Tailings Pond 295 Subtotal (Vertical) 44	2,200 9,000 9,000	0 0 17,000	Pits 0 0	6.0	Level 0	of Pits
enic dust - funnelled flow from pits enic dust - infiltration from Baker Creek ster tailing backfill 11 tion tailings backfill 61 onal bedrock/mine walls 44 thwest Tailings Pond 295 Subtotal (Vertical) 44	2,200 9,000 9,000	0 17,000	0 0	6.0	0	0
enic dust - funnelled flow from pits enic dust - infiltration from Baker Creek ster tailing backfill 11 tion tailings backfill 61 onal bedrock/mine walls 44 thwest Tailings Pond 295 Subtotal (Vertical) 44	2,200 9,000 9,000	0 17,000	0	6.0	•	-
enic dust - infiltration from Baker Creek ster tailing backfill 11 totion tailings backfill 11 te rock backfill 61 onal bedrock/mine walls 44 thwest Tailings Pond 29 Subtotal (Vertical) 44	2,200 9,000 9,000	0 17,000	0	6.0	•	-
ster tailing backfill11ttion tailings backfill11te rock backfill61onal bedrock/mine walls44thwest Tailings Pond293Subtotal (Vertical)44	9,000 9,000	17,000	Ũ		0	0
tion tailings backfill 11 te rock backfill 61 onal bedrock/mine walls 4 thwest Tailings Pond 29 Subtotal (Vertical) 44	9,000		17,000	52		0
te rock backfill 63 onal bedrock/mine walls 44 thwest Tailings Pond 29 Subtotal (Vertical) 44	,	17 000		52	45	45
onal bedrock/mine walls4thwest Tailings Pond29Subtotal (Vertical)44	~ ~ ~ ~	17,000	17,000	52	45	45
thwest Tailings Pond 293 Subtotal (Vertical) 44	9,000	60,000	60,000	188	163	163
Subtotal (Vertical) 44	6,000	40,000	40,000	126	109	109
	2,000	9,900	9,900	800	27	27
	9,000	142,000	142,000	1,231	390	390
eral Flow						
enic dust	0	0	0	0	0	0
ster tailing backfill	0	34,000	26,000	0.0	93	72
tion tailings backfill	0	34,000	26,000	0.0	93	72
te rock backfill	0	86,000	67,000	0.0	235	183
rock/tunnels 43	1,000	57,000	45,000	1,180	156	122
Subtotal (Lateral) 43	1,000	210,000	164,000	1,180	576	450
TAL 88	0,000	353,000	307,000	2,411	966	840

Table M.9: Summary of Underground Flows for Current and Future Conditions

Prepared by: KSS Checked by:QJK

Source concentrations used in the calculations were based on data from the mine water sampling programs (Supporting Document B1), the solids testing programs (Supporting Document B4).

Source concentrations for the arsenic trioxide areas are summarized in Table M.10. Source concentrations for unsaturated (current) conditions are based on the maximum concentrations observed at the face of the bulkheads (Supporting Document B1). Source concentrations for flooded conditions are based on solubility tests completed by CANMET (2000).

Table M.10: Source (Concentrations for	Arsenic Trioxide Dust
----------------------	---------------------------	------------------------------

Source	Arsenic Concentration (mg/L)								
	Unsaturated	Flooded							
	Conditions	Conditions							
Arsenic Chambers (5°C)	4000	4700 to 9000							
Deep Disposal (10°C)	na	5600 to 9600							
Source: CANMET (2000)		Prepared by: KSS							

Checked by: DBM

Source concentrations for the other underground sources are summarized in Table M.11. Source concentrations for unsaturated (current) conditions are based on analyses of seepage from known sources in the mine (Supporting Document B1). Source concentrations for flooded conditions are based on the leach extraction tests described under the solids testing programs (Supporting Document B4). These concentrations are appropriate for the first several pore volumes of water through the system. However, with the exception of the roaster tailings, these concentrations are expected to slowly decrease over time as stored oxidation products are flushed from the solids. As discussed in Supporting Document B4, the roaster tailings contain significant amounts of arsenic associated with secondary iron oxide minerals. Reductive dissolution of the iron oxides will provide a long term source of dissolved arsenic in the roaster tailings.

	Arsenic Concentration (mg/L)								
Source	Unsaturated Conditions	Flooded Conditions							
Backfilled flotation tailings	5	5							
Backfilled roaster tailings	5	10							
Backfilled waste rock	1.5	1.5							
Bedrock and mine walls	0.05	1.5							
Source: Supporting Documents B1 and	d B4.	Prepared by: KSS Checked by: DBM							

 Table M.11: Source Concentrations for Other Sources in the Underground Mine

In all cases, estimates of arsenic loadings were obtained by multiplying the flows (Table M.9) by the corresponding source concentrations (Tables M.10 and M.11). Calculation sheets for each of the scenarios are provided in Appendix M3.

3.2 Results

The resulting estimates of current and post-closure flow and arsenic loadings from the underground workings are summarized in Table M.12.

Consistent with the findings of the underground water sampling programs, the Northwest Pond and the arsenic chambers are currently the single largest sources of arsenic loading to the underground workings, contributing 2,000 and 17,500 kg/year, respectively. Total flows from the underground workings are approximately 880,000 m³/year. At present, all of the flows from the underground workings are pumped to the Northwest Pond and stored for seasonal water treatment.

Remediation of the Northwest Pond and partial flooding of the workings will result in a significant reduction in inflows to the mine. As a result, the amount of water that will need to be pumped from the mine water management system and treated will be approximately 307,000 to 353,000 m³/year (810 to 970 m³/day). These flows were conservatively rounded to 1000 m³/day to estimate the rate of discharge from the Effluent Treatment Plant (see Section 2).

Isolation of the arsenic chambers by ground freezing, and removal of the Northwest Pond seepage, will result in a substantial reduction in arsenic loadings. Residual loadings in the underground workings would be on the order of 890-1050 kg/year. The average arsenic concentration in the minewater would be approximately 3 mg/L, reflecting inputs from the various backfill materials. It is assumed that this water would require treatment prior to release into the environment. However, the estimated arsenic concentration is strongly dependent on how much water flows through the backfill materials. It is possible that preferential flow through cleaner areas of the mine will result in concentrations that may eventually allow direct discharge.

Table M.12: Estimates of Flow and Arsenic Loadings from the Underground Workings under Current and Future Conditions

Arsenic Sources	F	low (m³/yeaı	·)	Arsenic	Loadings (k	g/year)
	Current	425	100	Current	425	100
Vertical Flow						
arsenic dust - funnelled flow from pits	2,200	0	0	8,760	0	0
arsenic dust - infiltration from Baker Creek	2,200	0	0	8,760	0	0
roaster tailing backfill	19,000	17,000	17,000	96	83	83
flotation tailings backfill	19,000	17,000	17,000	96	83	83
waste rock backfill	69,000	60,000	60,000	103	89	89
regional bedrock/mine walls	46,000	40,000	40,000	2	2	2
Northwest Tailings Pond	292,000	9,900	9,900	2,044	69	69
Subtotal (Vertical)	449,000	142,000	142,000	19,861	326	326
Lateral Flow						
arsenic dust	0	0	0	0	0	0
roaster tailing backfill	0	34,000	26,000	0	338	264
flotation tailings backfill	0	34,000	26,000	0	169	132
waste rock backfill	0	86,000	67,000	0	128	100
bedrock/tunnels	431,000	57,000	45,000	646	86	67
Subtotal (Lateral)	431,000	210,000	164,000	646	721	563
TOTAL	880,000	353,000	307,000	20,507	1047	889
				1	Prenared by K	יר

Prepared by: KSS Checked by: QJK

4 Summary and Conclusions

Calculations were presented to estimate flows and rates of arsenic release from the surface and underground sources under current and post-remediation conditions.

The calculations of surface loading indicate that, under current conditions:

- sources upstream of the mine comprise approximately 224 kg/year, or 28% of the total arsenic loading to Baker Creek.
- Tributaries upstream of Trapper Lake and to the west of Baker Creek contribute an additional 67 kg/year or 8% of the loading to Baker Creek
- The Effluent Treatment Plant contributes 285 kg/year, or 36% of the total arsenic loading to Baker Creek, and,
- Other mine site sources contribute approximately 224 kg/year or 28% of the loading to Baker Creek.

An additional 110 kg/year can be attributed to direct runoff from the mine site catchments directly to Yellowknife Bay, resulting in total loads from the Baker Creek and mine site catchments of approximately 910 kg/year.

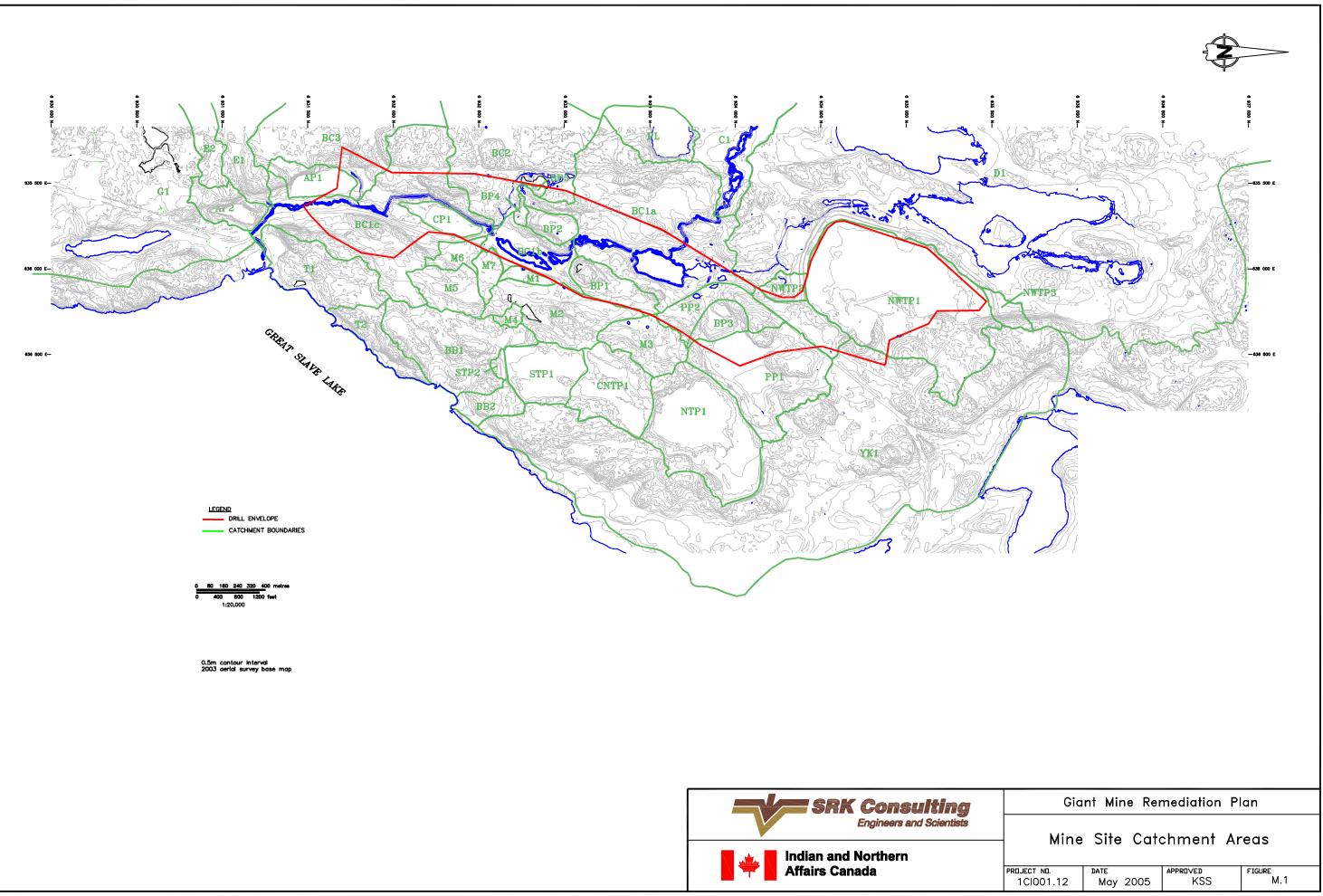
The remediation activities are expected to reduce contributions from the Effluent Treatment Plant to approximately 139 kg/year, contributions from the other sources to Baker Creek to approximately 193 kg/year, and contributions in direct runoff to Yellowknife Bay to approximately 69 kg/year. In addition, the Effluent Treatment Plant will discharge directly to Yellowknife Bay. These changes result in a total reduction in loading to Baker Creek from approximately 800 kg/year to 484 kg/year, and a reduction in loading to Yellowknife Bay from approximately 910 kg/year to 692 kg/year.

The calculations of underground loading indicate that the Northwest Pond and the arsenic chambers are the largest sources of arsenic from the underground mine. Currently, total flows from the mine are on the order of 880,000 m³/year, and total arsenic loadings are approximately 20,000 kg/year. At present, all of the flows from the underground workings are pumped to the Northwest Pond and stored for seasonal water treatment. Following remediation, flows from the underground mine are expected to be reduced to 307,000 to 330,000 m³/year (840 to 970 m³/day), and arsenic loads are expected to be reduced to 890 to 1050 kg/year. Although the mine water will still need to be treated, it is possible that preferential flow through cleaner areas of the mine will result in concentrations that may someday reach levels that would be acceptable for discharge.

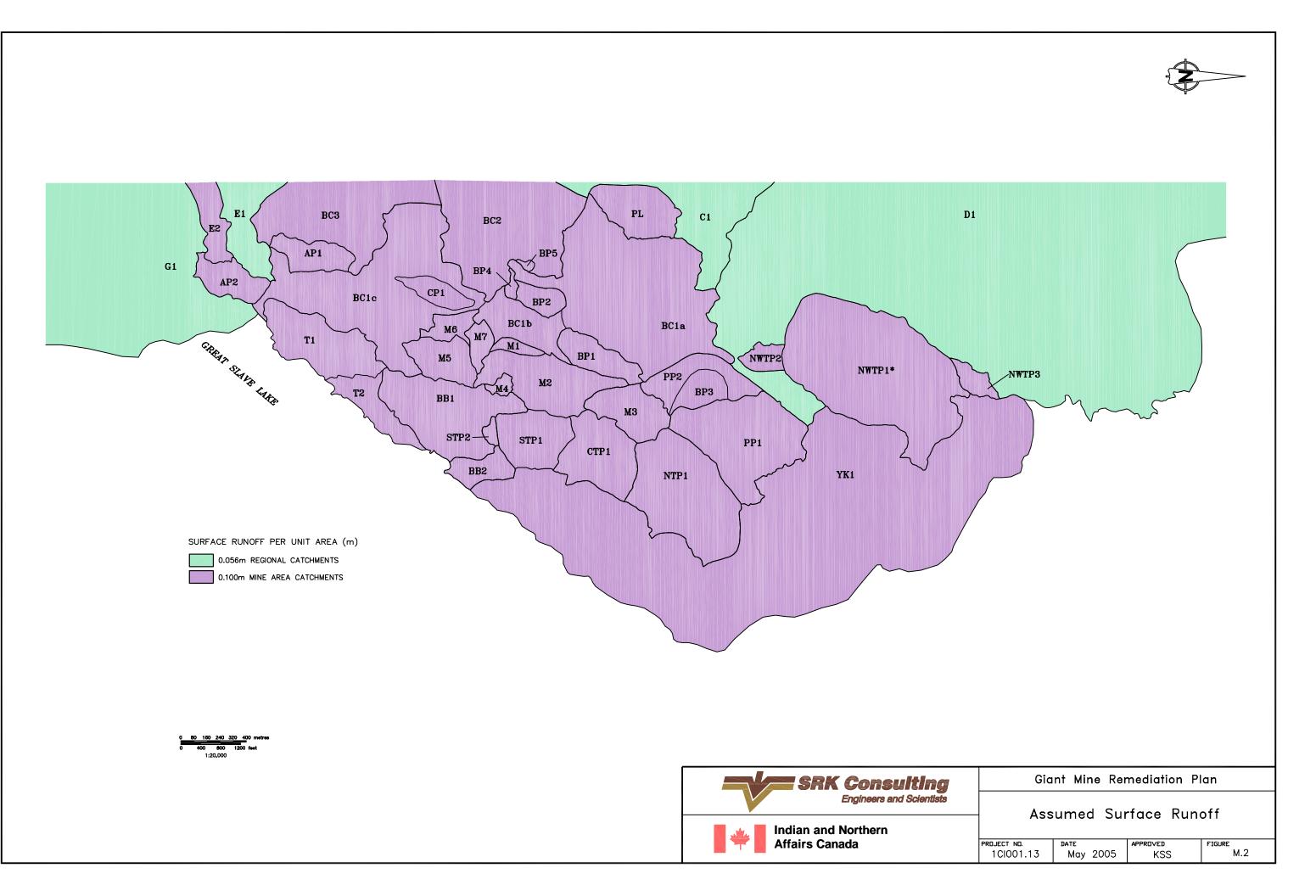
This report, "Estimates of Flow and Arsenic Releases from Surface and Underground Sources", has been prepared by SRK Consulting (Canada) Inc.

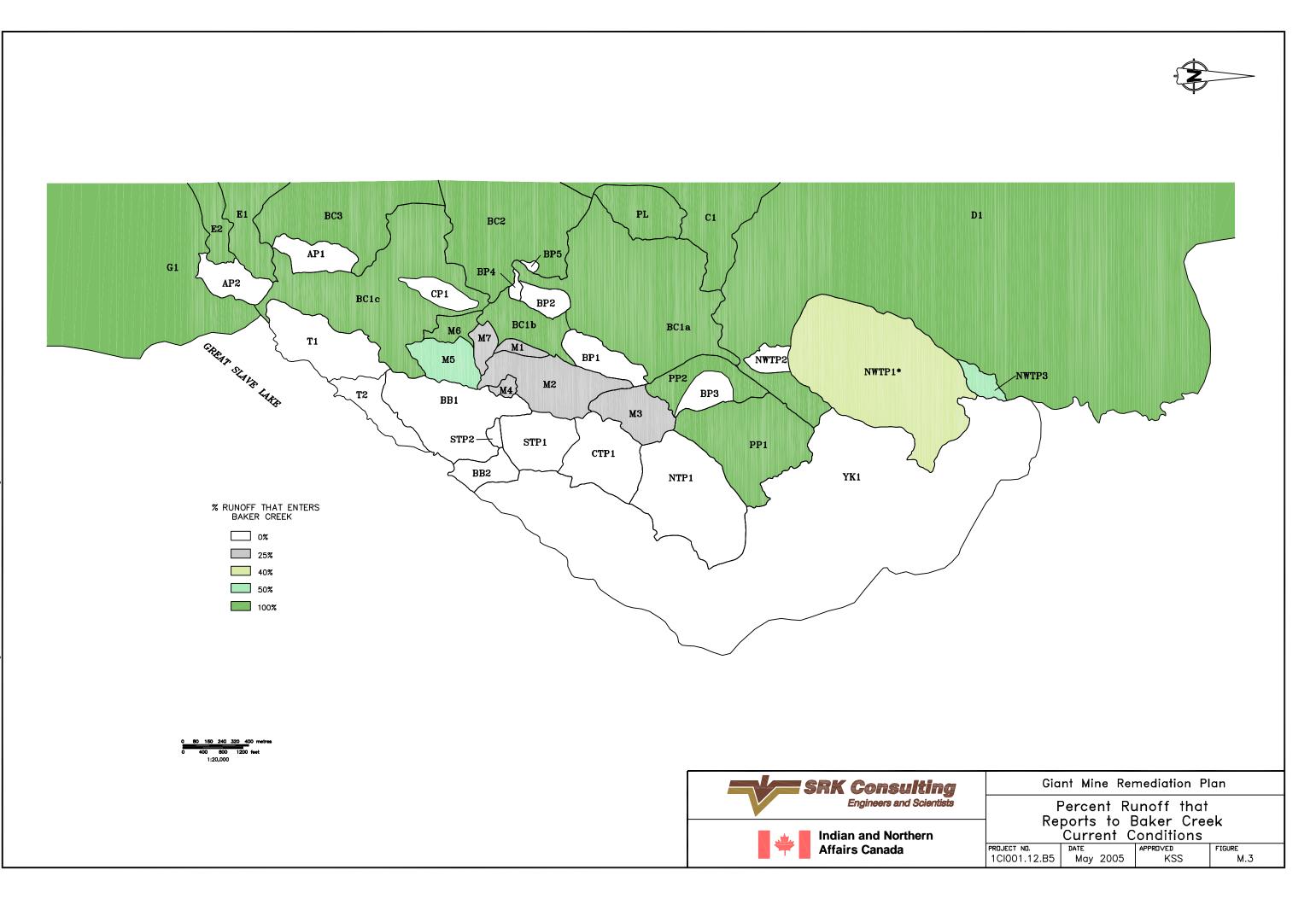
Kelly Sexsmith, P.Geo.

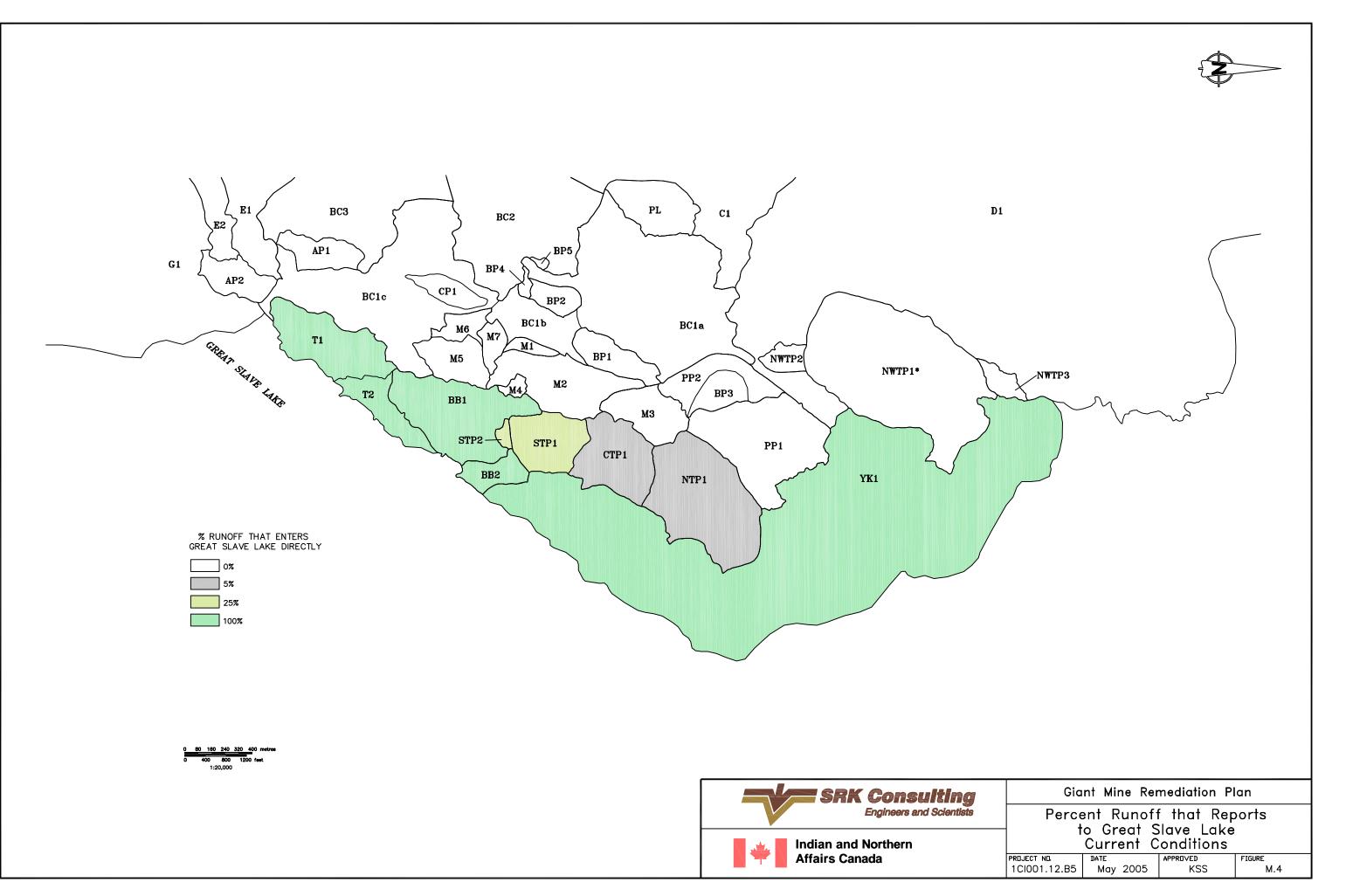
Senior Geochemist

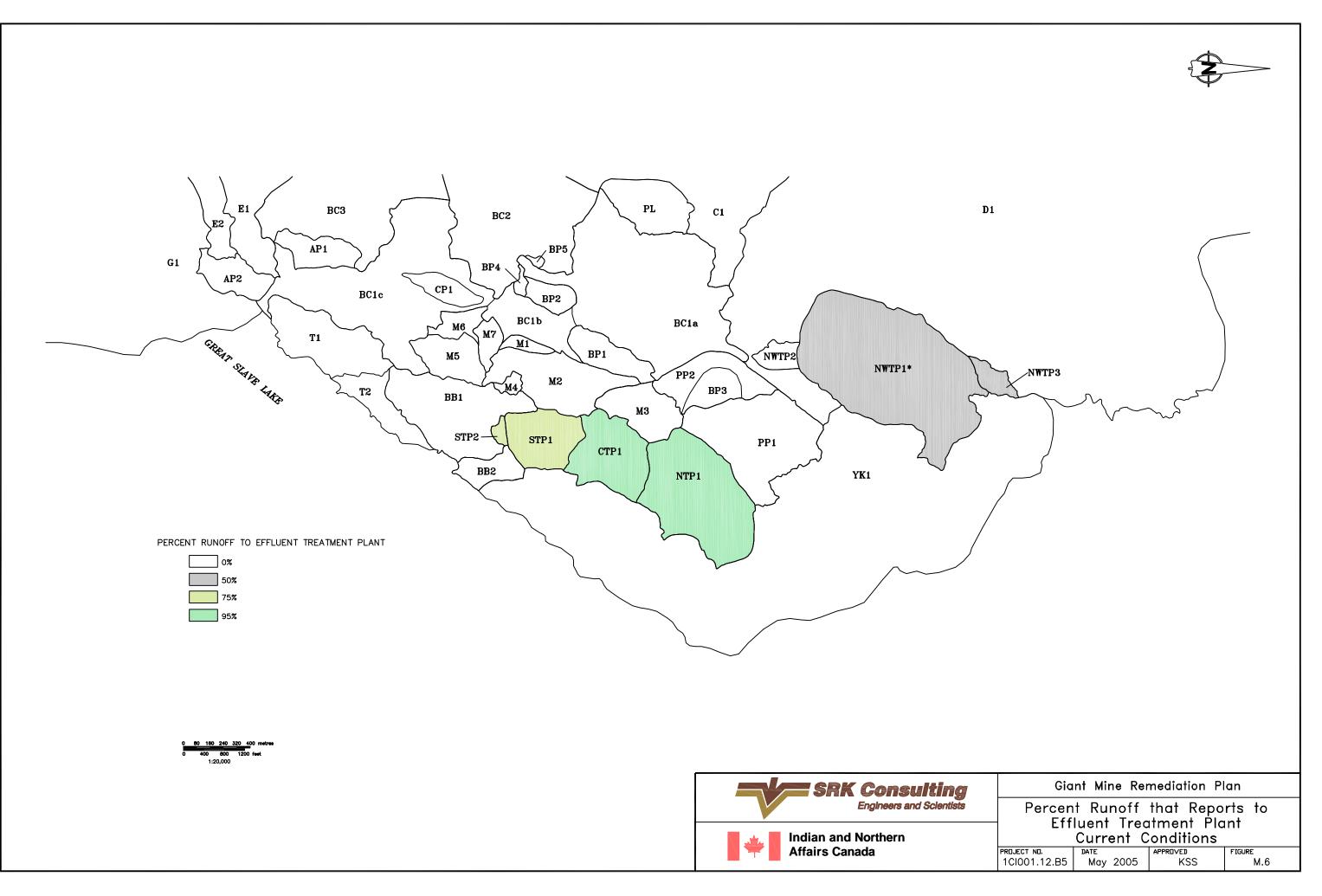

Daryl Hockley, P.Eng. Principal

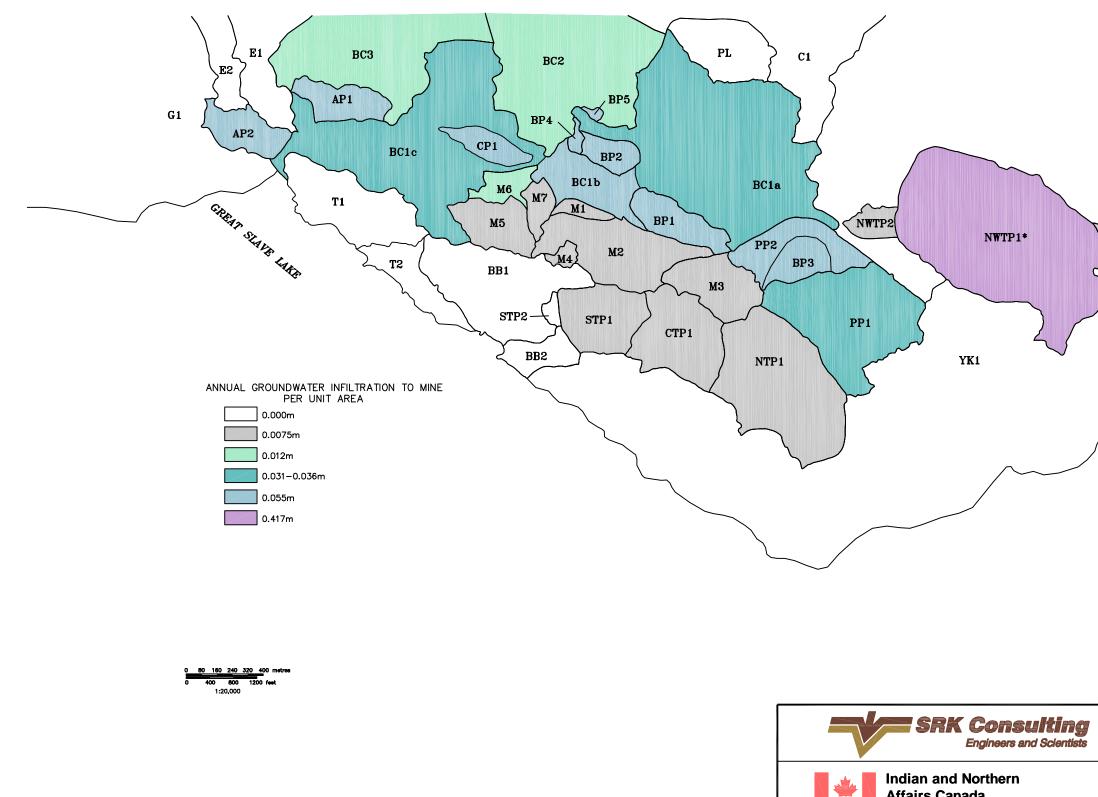
5 References


CANMET, 2000. A Review of Arsenic Disposal Practices for the Giant Mine, Yellowknife, Northwest Territories, Riveros, P. A. and J. E. Dutrizac


KSS/spk

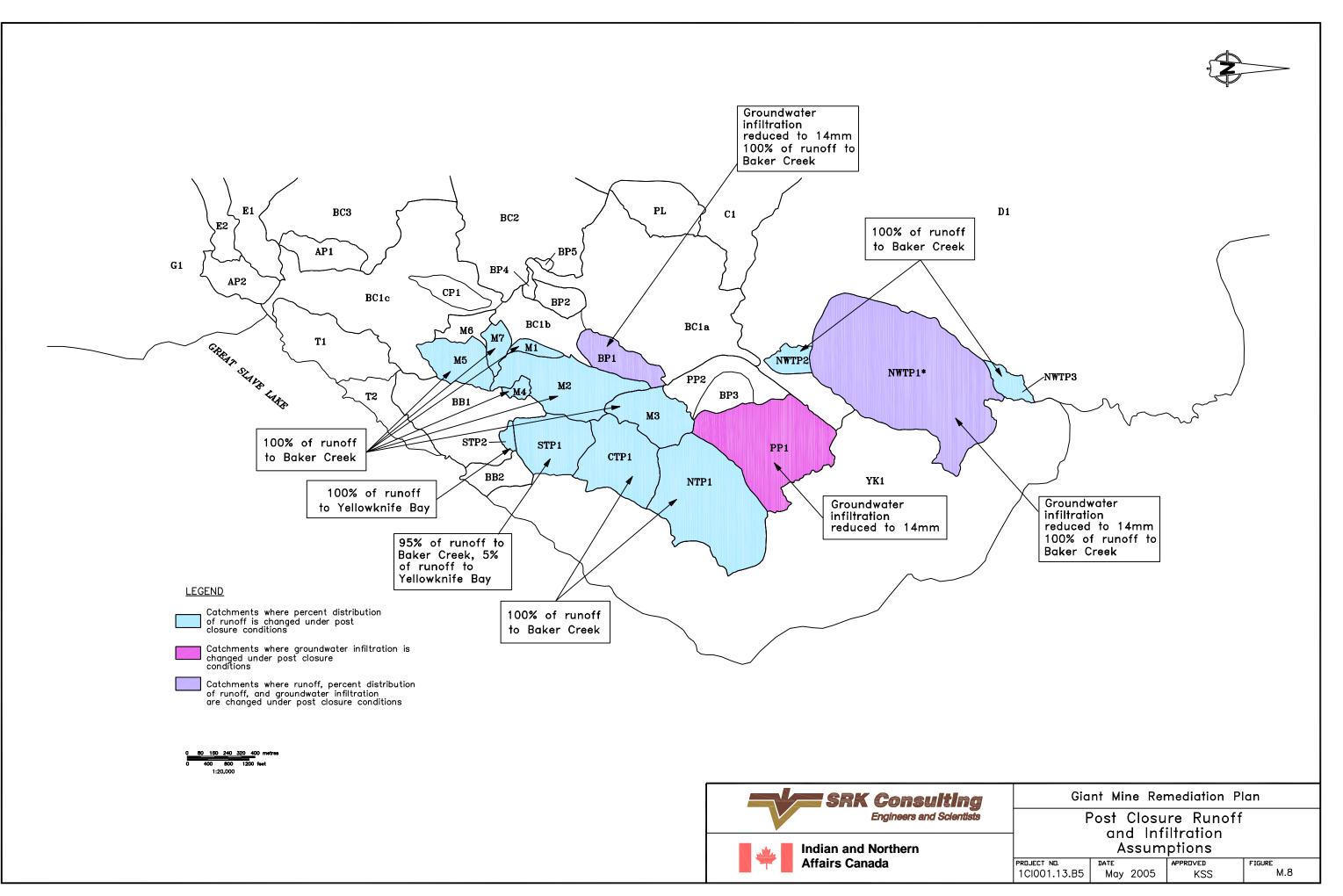

Figures





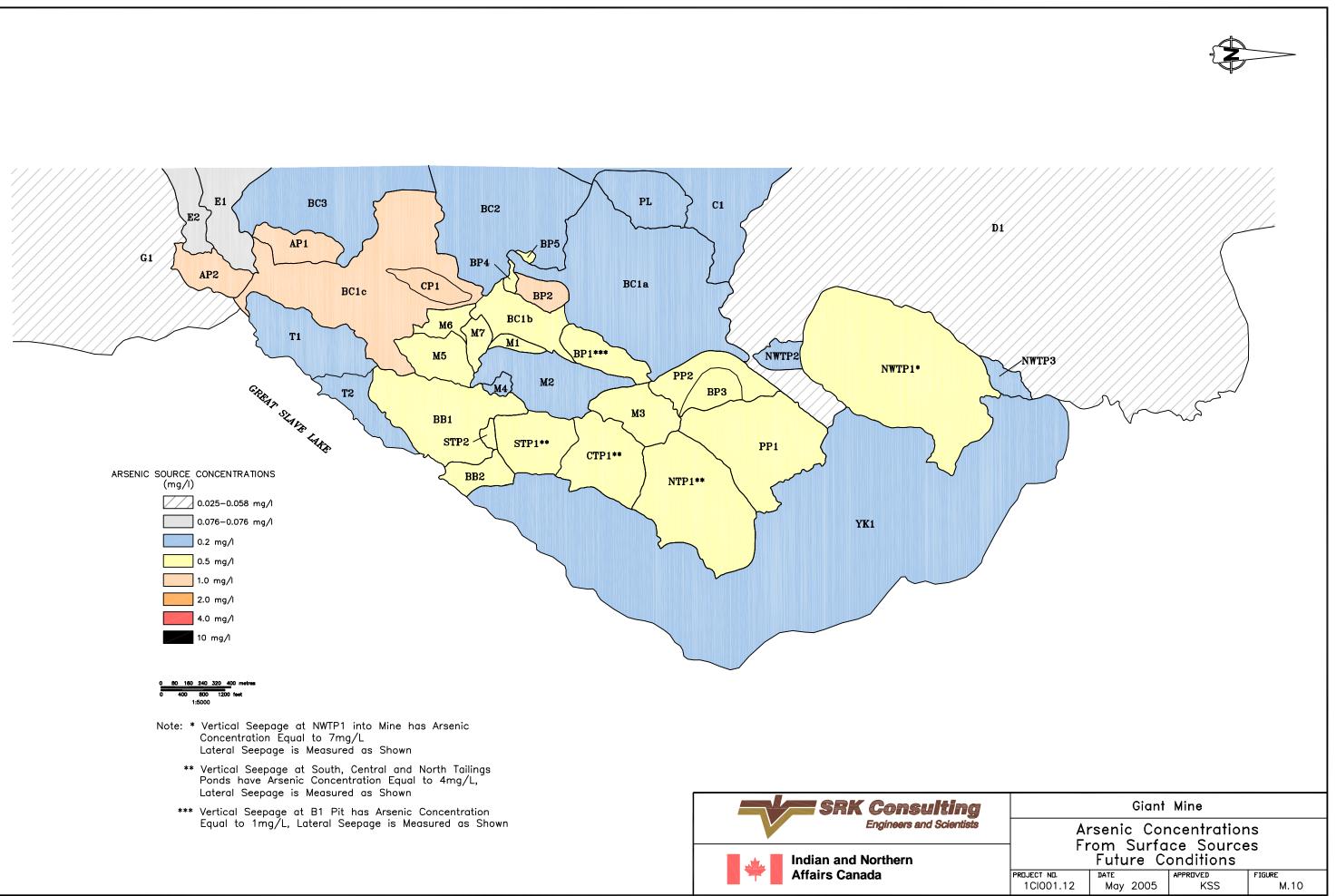
PL E1 BC3 C1 BC2 E2 AP1 /BP5 G1 \heartsuit BP4 AP2 CP1 BC1c BP2 \sim BC1b BC1a M6 CREAT STAVE LARE S M7 **T1** MI BP1 M5 NWTP2 NWTP1* PP2 M2 BP3 T2 BB1 МЗ STP2 -STP1 PP1 CTP1 BB2 YK1 NTP1 % RUNOFF THAT REPORTS TO UNDERGROUND 0% 10% 50% 75% 100% 400 800 SRK Consulting Engineers and Scientists Indian and Northern Affairs Canada

Refi


D1	
	XNWTP3
	Giant Mine Remediation Plan Percent Runoff that Reports
	Percent Runoff that Reports to Underground Current Conditions PREJECT NEL DATE APPREVED FIGURE
	PROJECT NO. DATE APPROVED FIGURE 1CI001.12.B5 May 2005 KSS M.5

Indian and Northern Affairs Canada

D1	NWTP3			
	NWIP3			
	Gio	ant Mine Re	mediation F	Plan
		Infiltratio	n Rates	
		Current C		
	PREJECT NE. 1CIO01.13	DATE May 2005	APPROVED KSS	FIGURE M.7



PL **E**1 BC3 C1 BC2 E2 AP1 G1 BP4 、 AP2 CP1 BC1c BP2 BC1b M6 BC1a CREAT SLATE LARE M7 **T**1 M1 BP1 M5 NWTP2 NWTP1* PP2 M2 M42 BP3 T2 BB1 МЗ STP2-STP1 PP1 CTP1 ARSENIC SOURCE CONCENTRATIONS (mg/l) BB2 NTP1 YK1 0.025-0.058 mg/l 0.076-0.076 mg/l 0.2 mg/l 0.5 mg/l 1.0 mg/l 2.0 mg/l 4.0 mg/l 📕 10 mg/l

80 160 240 320 400 metres 400 800 1200 feet 1:20,000

Note: * Vertical seepage at NWTP1 into mine has asenic concentration equal to 7mg/L Lateral seepage is measured as shown

Appendix M1 Surface Estimates – Current Conditions

Scenario: Current Conditions, Regional Mean Annual Runoff (MAR) of 56 mm, Local MAR of 100 mm, Annual Balance

1	catchment	Area	Surface Yield	Deep GW	Total Annual		% Surfa			Aportioned Surface Volume Flow (m ³ /yr)				Infiltration to	As	As	₋oad (kg/yı	r)
				Yield	Surface Flow		Distrik	bution			Volume Fl	ow (m³/yr)		UG Mine				,
ID	D Description	m²	m³/m	m³/m	m³	Baker Crk	ETP Y	YK Bay	UG Mine	Baker Crk	ETP	YK Bay	U/G (direct inflows)	Underground Mine	mg/L	Baker	UG Mine	YK Bay
Baker Creek: Upstream of Giant																		
Inputs A1 B2 B1 C [*] PI	 Optional western boundary of Baker Creek (not included in the calculations) Runoff from large upstream catchment of Baker Creek Runoff from subcatchment upstream Trapper Creek confluence to B1 Inputs from Pocket Lake 	24,324,988 25,269,363 122,683,710 3,928,865 132,753	0.056 0.056	0.000 0.000 0.000 0.000 0.000	1,362,199 1,415,084 6,870,288 220,016 7,434	0 0 100 100 100	0 0 0 0	0 0 0 0	0 0 0 0	0 0 6,870,288 220,016 7,434	0 0 0 0		0 0 0 0 0 0 0 0 0 0	-	x x 0.026 0.20 0.20	179 44 1.5	0.00 0.00	0.00 0.00 0.00
Calculated Net Inputs Measured Inputs	Baker Creek: Upstream of Giant Measured Concentration/Flow/Load above confluence with Trapper Creek (C1+B1+P1)									7,097,738 7,097,738	0	(0 0	-	0.032	224 227	0.00	0.00
measured inputs	% Difference in measured vs calculated loads									7,097,730					0.032	-1%		
Trapper Creek																		
Inputs D ^r NWT NWT NWT NWT	 Upper Trapper Lake/Gar Lake Catchment Northwest Pond (lateral seepage to Trapper Creek and Mine into NW2) IPii Nothwest Pond area vertical seepage to Mine IPii Discharge from Underground Mine Quarry on the south margin of Northwest Pond Pumpback seepage collection basin Trapper Creek 	6,943,169 690,578 690,578 na 36,766 34,526	0 na 0.100	0.000 0 0.417 na 0.0075 0.0075	388,817 69,058 0 881,475 3,677 3,453	0	0 50 0 100 0 50	0 0 0 0 0	0 10 0 100 0	388,817 27,623 0 0 0 1,726 418,167	0 34,529 0 881,475 0 1,726 917,730	(((0 6,906 0 0 0 0	- 288,164 na 276 259 288,699	0.058 2.0 7.0 0.20 0.20 0.187	23 55 0.00 0.35 78	14 2017 0.79 0.052	0.00 0.00 0.00 0.00 0.00
Measured Inputs	Loading Total Closing Control Point at Output (d/s of D1discharge into BC1a) % Difference in measured vs calculated loads		l		1	<u> </u>				418,167			, -		0.100	42 30%		
Effluent Treatment Plant and Dow	Instream Subcatchments					1									-			
Net Discharge to Baker Creek Inputs PP PP BP BP BP		328,107 328,107 92,419 66,720	0.100	0.000 0.031 0.055 0.055	32,811 0 9,242 6,672 750,000	100 0 100 0 100	0 0 0 0	0 0 0 0	0 0 0 100 0	32,811 0 9,242 0 750,000	0 0 0 0 0	(0 0	- 10,253 5,083 3,670 -	0.20 5.0 4.0 4.0 0.38	6.6 0.00 37 0.00 285	51 20 41	0.00 0.00 0.00 0.00 0.00
Inputs PP PP BP BP Calculated Net Input	1ii Settling and Polishing Pond (vertical seepage) 22 Below Polishing Pond (tailings spill, outside of blind B3 Pit) 23 B3 Pit and Portal drains to Mine P Effluent Treatment Plant Discharge Effluent Treatment Plant and Downstream Subcatchments	328,107 92,419	0 0.100	0.031 0.055	0 9,242 6,672	0 100 0	0 0 0	0 0 0	0 0 100	0 9,242 0 750,000 792,053	0		0 0 0 0 0 6,672	5,083 3,670	5.0 4.0 0.38 0.415	0.00 37 0.00 285 329	51 20 41 0.00 113	0.00 0.00 0.00
Inputs PP PP BP BP	 Settling and Polishing Pond (vertical seepage) Below Polishing Pond (tailings spill, outside of blind B3 Pit) B3 Pit and Portal drains to Mine Effluent Treatment Plant Discharge 	328,107 92,419	0 0.100	0.031 0.055	0 9,242 6,672	0 100 0	0 0 0	0 0 0	0 0 100	0 9,242 0 750,000	0 0 0		0 0 0 0 0 6,672 0 0	5,083 3,670 -	5.0 4.0 4.0 0.38	0.00 37 0.00 285	51 20 41 0.00 113	0.00 0.00 0.00 0.00
Inputs PP PP BP Calculated Net Input Measured Inputs Baker Creek: Upstream of Mill Are Local Inputs BC: M: BP	111 Settling and Polishing Pond (vertical seepage) 12 Below Polishing Pond (tailings spill, outside of blind B3 Pit) 13 B3 Pit and Portal drains to Mine 14 Effluent Treatment Plant and Downstream Subcatchments Loading Total Closing Point at Output (Baker Creek at BC1a) % % Difference in measured vs calculated loads 15 Baker Creek upstream of Mill including Baker Creek Pond (10% of area contaminated by tailings)	328,107 92,419	0 0.100 0.100 0.100 0.100	0.031 0.055	0 9,242 6,672	0 100 0 100 100 25	0 0 0	0 0 0	0 0 100	0 9,242 0 750,000 792,053	0 0 0		0 0 0 6,672 0 6,672	5,083 3,670 - 19,006 22,353 977 501	5.0 4.0 0.38 0.415	0.00 37 0.00 285 <u>329</u> 285	51 20 41 0.00 113 11 5.4 0.71	0.00 0.00 0.00 0.00
Inputs PP PP BP Calculated Net Input Measured Inputs Baker Creek: Upstream of Mill Are Local Inputs BC' Mt BP BP	 Settling and Polishing Pond (vertical seepage) Below Polishing Pond (tailings spill, outside of blind B3 Pit) B3 Pit and Portal drains to Mine Effluent Treatment Plant Discharge Effluent Treatment Plant and Downstream Subcatchments Loading Total Closing Point at Output (Baker Creek at BC1a) % Difference in measured vs calculated loads Baker Creek upstream of Mill including Baker Creek Pond (10% of area contaminated by tailings) M3 catchment west of tailings ponds (includes TRP) Small pit to the south of BP2	328,107 92,419 66,720 715,294 130,209 9,115	0 0.100 0.100 0.100 0.100 0.100	0.031 0.055 0.055 0.031 0.0075 0.055	0 9,242 6,672 750,000 71,529 13,021 912	0 100 0 100 100 25 0	0 0 0 0 0	0 0 0 0	0 0 100 0 	0 9,242 0 750,000 792,053 750,000 71,529 3,255 0 0	0 0 0 0		0 0 0 6,672 0 6,672 0 6,672 0 6,672 0 9,766 0 9,766 0 912 0 474	5,083 3,670 - 19,006 22,353 977 501 261	5.0 4.0 0.38 0.415 0.38 0.50 0.50 0.50 0.50	0.00 37 0.00 285 329 285 7% 326 7%	51 20 41 0.00 113 11 5.4 0.71 0.37	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Inputs PP PP BP Calculated Net Input Measured Inputs Baker Creek: Upstream of Mill Are Local Inputs BC: M: BP	111 Settling and Polishing Pond (vertical seepage) 12 Below Polishing Pond (tailings spill, outside of blind B3 Pit) 13 B3 Pit and Portal drains to Mine P Effluent Treatment Plant Discharge Effluent Treatment Plant and Downstream Subcatchments Loading Total Closing Point at Output (Baker Creek at BC1a) % Difference in measured vs calculated loads Perform to inlet of Baker Creek Pond 1a Baker Creek upstream of Mill including Baker Creek Pond (10% of area contaminated by tailings) 3 M3 catchment west of tailings ponds (includes TRP) 24 Small pit to the south of BP2	328,107 92,419 66,720 715,294 130,209 9,115	0 0.100 0.100 0.100 0.100 0.100	0.031 0.055 0.055 0.031 0.0075 0.055	0 9,242 6,672 750,000 71,529 13,021 912	0 100 0 100 100 25 0	0 0 0 0 0	0 0 0 0	0 0 100 0 	0 9,242 0 750,000 792,053 750,000 71,529 3,255 0	0 0 0 0 0		0 0 0 6,672 0 6,672 0 6,672 0 6,672 0 9,766 0 9,766 0 912 0 474	5,083 3,670 - 19,006 22,353 977 501 261	5.0 4.0 0.38 0.415 0.38 0.50 0.50 0.50 0.50	0.00 37 0.00 285 329 285 7% 366 1.6 0.00 0.00	51 20 41 0.00 113 11 5.4 0.71 0.37 18 0.00 2032	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Inputs PP PP BP Calculated Net Input Measured Inputs Baker Creek: Upstream of Mill Are Local Inputs BC: Mi BP Calculated Net Input Upstream Baker Creek Trapper Creek Trapper Creek WTP and Settling/Polishing	 Settling and Polishing Pond (vertical seepage) Below Polishing Pond (tailings spill, outside of blind B3 Pit) B3 Pit and Portal drains to Mine Effluent Treatment Plant Discharge Effluent Treatment Plant and Downstream Subcatchments Loading Total Closing Point at Output (Baker Creek at BC1a) % Difference in measured vs calculated loads Baker Creek upstream of Mill including Baker Creek Pond (10% of area contaminated by tailings) M3 catchment west of tailings ponds (includes TRP) Small pit to the south of BP2	328,107 92,419 66,720 715,294 130,209 9,115	0 0.100 0.100 0.100 0.100 0.100	0.031 0.055 0.055 0.031 0.0075 0.055	0 9,242 6,672 750,000 71,529 13,021 912	0 100 0 100 100 25 0	0 0 0 0 0	0 0 0 0	0 0 100 0 	0 9,242 0 750,000 792,053 750,000 71,529 3,255 0 0 74,785 7,097,738 418,167	0 0 0 0 0 0 0 0 917,730 0		0 0 0 6,672 0 6,672 0 6,672 0 6,672 0 9,766 0 912 0 9,766 0 912 0 474 0 11,151 0 0 0 0 10,582	5,083 3,670 - 19,006 22,353 977 501 261 24,092 - 288,699	5.0 4.0 0.38 0.415 0.38 0.50 0.50 0.50 0.50	0.00 37 0.00 285 329 285 7% 36 1.6 0.00 0.00 0.00 377 224 78	51 20 41 0.00 113 11 5.4 0.71 0.37 18 0.00 2032 113	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Area Subcatchn	ment	Area	Surface Yield	Deep GW Yield	Total Annual Surface Flow			face Flow	I		Aportioned Volume Flo			Infiltration to UG Mine	As	As L	oad (kg/yr)	
ID De	lescription	m²	m ³ /m	m³/m	m ³	Baker Crł	k ETP	YK Bay	UG Mine	Baker Crk	ETP	YK Bay	U/G (direct inflows)	Underground Mine	mg/L	Baker	UG Mine	/K Bay
Baker Creek: Mill Area Reach																		
M1 M M2 M2 M4 M4 M7 M1	1 Pit 2 Pit 11 Mill and roaster area 12 Upland above Mill 14 South of Mill (Parking area) 17 South of Mill (C-shaft, Shops, Dry and Ore Stockpiles) aker Creek near Mill Area (~40% of area is contaminated similar to M1)	85,485 43,803 19,960 202,976 14,213 34,156 117,924	0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.055 0.055 0.0075 0.0075 0.0075 0.0075 0.0075	8,549 4,380 1,996 20,298 1,421 3,416 11,792	0 0 25 25 25 25 25 25 100	0 0 0 0 0 0	0 0 0 0 0 0 0	100 100 75 75 75 75 75 0	0 499 5,074 355 854 11,792	0 0 0 0 0 0	0 0 0 0 0 0 0	8,549 4,380 1,497 15,223 1,066 2,562 0	4,702 2,409 150 1,522 107 256 6,486	1.0 1.0 0.50 1.0 1.0 1.0	0.00 0.00 2.5 0.36 0.85 12	13 6.8 16 8.4 1.2 2.8 6.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Calculated Net Input Ba	aker Creek: Mill Area Reach	sumed discharge								18,575	0	0	33,277	15,631	1.11	21	55	0.00
Upstream Inputs										8,382,742	917,730	0	28,406	331,797		668	2162	0.00
Cumulative Net Input										8,401,317	917,730	0	61,683	347,428	0.082		2218	0.00
	oading Total Closing Point at BC1b d/s endpoint 6 Difference in measured vs calculated loads									na					na	na na		
Baker Creek: Downstream of Mill Area		1			1													
M6 ca M5 ca AP1 A1 AP2 A2 CP1 C1 BC3 W BC1c Ba E1 Tr E2 Tr	Vest Tributary 1 of Baker Creek atchment south and west of C-Dry atchment above and east of C-shaft/dry 1 Pit 2 Pit 1 Pit Vest Tributary 2 of Baker Creek aker Creek catchment downstream of Mill area to mouth at YK Bay ributary of Baker Creek ributary of Baker Creek ributary of Baker Creek inamed creek that probably discharges into Baker just upstream of outlet	537,051 41,451 93,038 119,948 83,121 50,418 513,128 577,117 4,696,410 109,667 1,396,826	0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.056 0.056	$\begin{array}{c} 0.012\\ 0.012\\ 0.0075\\ 0.055\\ 0.055\\ 0.055\\ 0.012\\ 0.036\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	53,705 4,145 9,304 11,995 8,312 5,042 51,313 57,712 262,999 10,967 78,222		0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 50 100 100 100 0 0 0 0 0 0	53,705 4,145 4,652 0 0 51,313 57,712 262,999 10,967 78,222	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 4,652 11,995 8,312 5,042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6,579 508 698 6,597 4,572 2,773 6,286 20,776 - - -	0.20 1.0 1.0 1.0 1.0 1.0 0.20 1.0 0.079 0.076 0.025	11 4.1 4.7 0.00 0.00 10 58 21 0.83 2.0	$ \begin{array}{c} 1.3\\ 0.51\\ 5.3\\ 19\\ 13\\ 7.8\\ 1.3\\ 21\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array} $	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Calculated Net Input Ba	aker Creek: Downstream of Mill Area	measured discha	arge							523,714	0	0	30,001	48,788	0.21	111	68	0.00
Upstream Inputs										8,401,317	917,730	-	61,683	347,428		689	2218	0.00
Cumulative Net Input										8,925,032	917,730	0	91,683	396,216	0.090	800	2286	0.00
	losing Point at BC1c d/s endpoint 6 Difference in measured vs calculated loads									8,925,032					0.094	839 -2%		
Yellowknife (YK) Bay, Great Slave Lake		1			1													
Non-Baker Creek Inputs T1 Tc T2 Ar STP1 Sc STP2 Se CTP1 Cc NTP1 Nc BB1 Ba BB2 Ba	ownsite catchment into YK Bay rea adajecnt to Townsite 1 outh Pond seepage eepage collection from south pond that is pumped pack to SP1 central Pond seepage lorth Pond seepage ack Bay catchment 1 ack Bay catchment 2 rea north of Backbay discharging to Backbay	200,825 92,275 136,049 11,183 181,041 364,714 286,855 60,103 2,252,783	0.100 0.100 0.100 0.100 0.100 0.100	0.000 0.0075 0.000 0.0075 0.0075 0.0075 0.000 0.000 0.000	20,082 9,228 13,605 1,118 18,104 36,471 28,686 6,010 225,278	0 0 0 0 0 0 0 0	0 75 75 95 95 0 0	100 100 25 25 5 5 100 100 100	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 10,204 839 17,199 34,648 0 0 0	20,082 9,228 3,401 280 905 1,824 28,686 6,010 225,278	0 0 0 0 0 0 0 0 0 0 0 0	- 1,020 - 1,358 2,735 - - -	1.0 0.20 4.0 4.0 4.0 0.50 0.50 0.20	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 4.1\\ 0.00\\ 5.4\\ 11\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	20 1.8 14 1.1 3.6 7.3 14 3.0 45
Calculated Inputs Ye	ellowknife (YK) Bay, Great Slave Lake				 					0	62,889	295,694	0	5,114		0.00	20	110
Upstream Inputs										8,925,032	917,730	0	91,683	396,216		800	2286	0.00
Total Inputs to Baker Creek										8,925,032						800		

.

Total Inputs to YK Bay

Total Surface Inputs to UG Mir

from inside Mine drill envelope (without NW Pond) from outside Mine drill envelope NW Pond 9,220,726

910

	493,013		2307
6,410	157,049	430	
64,006	43,847	120	
	292,117	800	

Appendix M2 Surface Estimates – Future Conditions

Baker Creek: Upstream of Giant Inputs A1 Duckfish L B2 Optional w B1 Runoff fror C1 Runoff fror Calculated Net Inputs Baker Creet Measured Inputs Measured NWTPi Northwest NWTPi Northwest NWTPi NWTP2 Quarry on NWTP3 Pumpback Calculated Net Inputs Trapper Creet Calculated Net Inputs Trapper Creet WWTP3 Pumpback Calculated Net Inputs Loading To WWTP3 Differen Ketarge to Baker Creek Net Discharge to Baker Creek Inputs PP1ii Settling an PP1ii Settling an PP2 Below Poli Bay Pit and	Subcatchment	Area	Surface Yield	Deep GW Yield	Total Annual Surface Flow			face Flor	w	Aportioned Surface Volume Flow (m ³ /yr)			Infiltration to UG Mine	As	As L	oad (kg/yr)	
ID Descript Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional B1 Runoff fi C1 Runoff fi PI Inputs fr Calculated Net Inputs Baker C Measured Inputs Measure % Differ Trapper Creek Inputs Trapper Creek Inputs Calculated Net Inputs Trapper Measured Inputs Loading % Differ Effluent Treatment Plant and Downstream Subca Net Discharge to Baker Creek Inputs PP1 Settling PP2 Below P BP3 B3 Pit a ETP Effluent Calculated Net Inputs Loading % Differ Baker Creek: Upstream of Mill Area to inlet of Ba Local Inputs Calculated Net Inputs Baker C Measured Inputs Loading % Differ Baker Creek: Upstream of Mill Area to inlet of Ba Local Inputs Calculated Net Inputs Baker C M3 M3 cate BP4 Small pi BP5 Small pi Calculated Net Inputs Loading % Differ Baker Creek: Upstream of Mill Area to inlet of Ba Local Inputs Upstream Inputs: Upstream Baker Creek Trapper Creek ETP and Settling/Polishing Ponds Cumulative Flows and Loads Measured Inputs Loading % Differ Baker Creek: Mill Area Reach Local Inputs Measured Inputs Loading % Differ Baker Creek: Mill Area Reach Local Inputs Ma Street BP1 B1 Pit in BP1 B1 Pit in BP2 B2 PI Pit M1 BP1 B1 Pit in BP2 B2 PI Pit M1 BP1 B1 Pit in BP2 B2 PI Pit M1 BP1 M1 M1 M1	ID Description	m²	m³/m	m³/m	m ³	Baker Crk	ETP	YK Bay	UG Mine	Baker Crk	ETP	YK Bay	U/G (direct inflows)	t Underground Mine	mg/L	Baker	UG Mine YK Ba
ID Descript Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional B1 Runoff fr C1 Runoff fr PI Inputs fr Calculated Net Inputs Measure % Differ Trapper Creek Inputs Calculated Net Inputs Trapper Measured Inputs Loading % Differ Effluent Treatment Plant and Downstream Subce Net Discharge to Baker Creek Inputs Calculated Net Inputs Effluent Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Calculated Calculated Net Inputs Effluent Calculated Net Inputs Calculated Calculated Net Inputs Effluent Calculated Net Inputs Effluent Calculated Net Inputs Calculated Net Inputs Calculated Calculated Net Inputs Effluent Calculated Net Inputs Calculated Net Inputs Effluent Calculated Net Inputs Calculated													,				
inputs		24,324,988	0.056	0.000	1,362,199	0	0	0	0	0	C)	0	0 -	x		
ID Descrip Baker Creek: Upstream of Giant Inputs A1 Duckfis B2 Optiona B1 Runoff 1 C1 Runoff 1 C1 Runoff 1 PI Inputs f Calculated Net Inputs Baker O Measured Inputs Measur % Differ Trapper Creek Inputs D1 Upper 1 NWTPi Northwe NWTPPi Northwe NWTPPi Northwe NWTPPi Northwe NWTPPi Northwe NWTPP Northwe NWTPP 2 Quary NWTP3 Pumpba Calculated Net Inputs Trapper Measured Inputs Loading % Differ Effluent Treatment Plant and Downstream Subc Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subc Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subc Net Discharge to Baker Creek Inputs EFF Effluent Measured Inputs Loading % Differ Baker Creek: Upstream of Mill Area to inlet of B Local Inputs D1 Upstream Baker Creek Trapper Creek Trapper Creek ETP and Settling/Poinsing Ponds Cumulative Flows and Loads Measured Inputs Loading % Differ Baker Creek: Mill Area Reach Local Inputs Local Inputs Cumulative Flows and Loads Measured Inputs Loading % Differ Baker Creek: Mill Area Reach Local Inputs Differ Baker Creek: Mill Area Reach Local Inputs Differ Baker Creek: Mill Area Reach Local Inputs D1 BP1 B1 Pit i BP1 B1 Pit i B2 B2 Pit M M1 M1 M1 M1		25,269,363	0.056	0.000	1,415,084	0	0	0	0	0	0	-	0	0 -	X		
		122,683,710 3,928,865	0.056 0.056	0.000 0.000	6,870,288 220,016	100 100	0 0	0 0	0 0	6,870,288 220,016	(5	0 0	0 -	0.026 0.20	178.63 44.00	0.00 0.0 0.00 0.0
ID Description Inputs A1 Duckfish La B2 Optional we B1 Runoff from P1 Inputs from Calculated Net Inputs Baker Creet Measured Inputs Measured 0 % Different Trapper Creek Inputs Trapper Creek Inputs Calculated Net Inputs Trapper Cre Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcactce Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcacter Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcacter Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcacter Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcacter Baker Creek: Upstream of Mill Area to Inlet of Bake Calculated Net Inputs Discharge Trapper Creek Inpu		132,753		0.000	7,434		0	0	0	7,434	0	-	0	0 -	0.20	1.49	0.00 0.0
Calculated Net Inputs	s Baker Creek: Upstream of Giant									7,097,738	()	0	0 -	0.032	224.12	0.00 0.0
Measured Inputs	Measured Concentration/Flow/Load above confluence with Trapper Creek (C1+B1+P1)									na						na	
	% Difference in measured vs calculated loads															na	
Inputs	s D1 Upper Trapper Lake/Gar Lake Catchment	6,943,169	0.056	0.000	388,817	100	0	0	0	388,817	(h	0	0	0.058	22.55	0.00 0.0
	NWTPi Northwest Pond (lateral seepage to Trapper Creek and Mine into NW2)	690,578	0.100	0.000	69,058	100	0	0	0	69,058	(5	0	0 -	0.50	34.53	0.00 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish L B2 Optional was B1 Runoff from G1 Runoff from G1 Runoff from G1 Runoff from P1 Inputs from Calculated Net Inputs B4 Resured Inputs Calculated Net Inputs D1 Upper Trap NWTPi Northwest P NWTP2 Quary on t NWTP3 Pumpback Calculated Net Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs PP1i Setting and PP2 Below Polis B73 B3 Pit and Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs D1 Setting and PP2 Below Polis B73 B3 Pit and ETP Effluent Tre Measured Inputs Loading To % Different Baker Creek Trapper Creek ETP and Setting/Polishing Ponds Cumulative Flows and Loads Measured Inputs Loading To % Different BP11 B1 Pit runo BP11 B1 Pit run	NWTPii Nothwest Pond area vertical seepage to Mine	690,578		0.0140	0	0	0	0	0	0	C)	0	0 9,668	7.0	0.00	67.68 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish Lai B2 Optional wes B1 Runoff from C11 Runoff from C11 Runoff from C11 Runoff from C11 Runoff from P1 Inputs from C11 Runoff from P1 Inputs measured C % Difference Trapper Creek Inputs D1 Upper Trapp NVTPI Northwest P2 NVTPI Discharge from Calculated Net Inputs Cal	NWTPiii Discharge from Underground Mine NWTP2 Quarry on the south margin of Northwest Pond	36,766	na 0.100	na 0.0075	3,677	100	0	0	0	3,677	C)	0	0 276	0.20	0.74	0.06 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish Lai B2 Optional wei B1 Runoff from C1 Runoff from C1 Runoff from C1 Inputs From I Calculated Net Inputs Baker Creek Measured Inputs Measured C % Difference Trapper Creek Inputs D1 NVTPI Northwest P NVTPI Northwest P NVTPI Discharge to Baker Creek Inputs Calculated Net Inputs Calculated Net Inputs Northwest P Measured Inputs Calculated Net Inputs Trapper Cree Measured Inputs Calculated Net Inputs Trapper Creek Inputs Calculated Net Inputs Calculated Net Inputs Northwest P MVTPI NVTPI NVTPI NVTPI Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs DP11 Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs DP11 Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs DP11 Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs DP11 Discharge to Baker Creek BD3 D3 Pli Setting and PD2 D3 Pli Setting and PD3 D3 Pli And P D3 D3 Pli And P D4 D3 D4	NWTP3 Pumpback seepage collection basin	34,526	0.100	0.0075	3,453		0	0	0	3,453	C)	0	0 259	0.20	0.69	0.05 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish Lak B2 Optional wes B1 Runoff from 1 C11 Runoff from 1 C11 Runoff from 1 C11 Runoff from 1 C11 Runoff from 2 P1 Inputs measured C0 % Difference Trapper Creek Inputs D1 Upper Trapp NWTPi Northwest P0 NWTPi Northwest P0 NWTPi Discharge fro NWTP2 Quary on th NWTP3 Pumpback so Calculated Net Inputs Trapper Creek Measured Inputs Loading Tota % Difference Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs PP11 Settling and PP2 Below Polish BP3 B3 Pit and P EFF Effluent Treat Measured Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subcatch Net Discharge to Baker Creek Inputs PP11 Settling and PP2 Below Polish BP3 B3 Pit and P EFF Effluent Treat Measured Inputs Local Inputs Upstream 6f Mill Area to inlet of Baker Creek Upstream Inputs: Upstream 6f Mill Area to inlet of Baker Creek Upstream Inputs: Upstream Baker Creek Imputs Date Creek ETP and Settling/Polishing Ponds Cumulative Flows and Loads Measured Inputs EF1 B1 Pit runoff BP11 B1 Pit runoff BP11 B1 Pit runoff BP11 B1 Pit inflitta BP2 B2 Pit M1 M1 Ill and	Trapper Creek									465,004	()	0	0 10,203	0.126	58.51	67.78 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish Lak B2 Optional was B1 Runoff from C1 Runoff f	Loading Total Closing Control Point at Output (d/s of D1discharge into BC1a) % Difference in measured vs calculated loads														na	na na	
										8							
Net Discharge to Baker Creek	(
inputo	PP1i Settling and Polishing Pond runoff	328,107	0.100	0.000	32,811	100	0	0	0	32,811	C)	0	0 -	0.50	16.41	0.00 0.0
	PP1ii Settling and Polishing Pond infiltration	328,107	0.000	0.014	0	0	0	0	0	0	0		0	0 4,593	5.0	0.00	22.97 0.0
		92,419 66,720	0.100 0.100	0.055 0.055	9,242 6,672	100 0	0 0	0 0	0 100	9,242 0	(-	0 0 6,67	0 5,083 2 3,670	0.50 0.50	4.62 0.00	2.54 0.0 5.17 0.0
		,-=-			365,000	0	0	100	0	0	C	365,00		0 -	0.38	0.00	0.00 13
Calculated Net Inputs	Effluent Treatment Plant and Downstream Subcatchments									42,053	(365,00	0 6,67	13,346	0.50	21.03	30.68 13
Measured Inputs	Loading Total Closing Point at Output (Baker Creek at BC1a) % Difference in measured vs calculated loads												·		NA	NA NA	
			-							1				-			
	BC1a Baker Creek upstream of Mill including Baker Creek Pond (10% of area contaminated by tailings)	715,294	0.100	0.031	71,529	100	0	0	0	71,529	C		0	0 22,353	0.20	14.31	4.47 0.0
	M3 M3 catchment west of tailings ponds (includes TRP) BP4 Small pit to the south of BP2	130,209 9,115	0.100 0.100	0.0075 0.055	13,021 912	100 0	0 0	0 0	0 100	13,021 0	(0 0 91	0 977 2 501	0.50 0.50	6.51 0.00	0.49 0.0 0.71 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional v B1 Runoff frc G1 Runo	BP5 Small pit to the west of BP2	4,743	0.100	0.055	474	0	0	0	100	0	(0 47		0.50	0.00	0.37 0.0
ID Descript Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional B1 Runoff fi C1 Runoff fi D1 Upper T NVTPi Northwe NVTPi Northwe NVTPi Northwe NVTPi Discharg NVTP2 Quary C NVTP3 Pumpba Calculated Net Inputs Trapper Measured Inputs Trapper Measured Inputs Loading % Differ Effluent Treatment Plant and Downstream Subcz Net Discharg to Baker Creek Inputs PP1 Settling PP2 Below P BP3 B3 Pit a EFF Effluent Calculated Net Inputs Loading % Differ Effluent Treatment Plant and Downstream Subcz Net Discharg to Baker Creek Inputs PP1 Settling EFFluent Calculated Net Inputs Loading % Differ Effluent Treatment Plant and Downstream Subcz Net Discharg to Baker Creek Inputs PP1 Settling EFFLUENT Calculated Net Inputs Loading % Differ Baker Creek: Upstream of Mill Area to Inlet of Ba Local Inputs Upstream Baker Creek Trapper Creek ETP and Settling/Polishing Ponds Cumulative Flows and Loads Measured Inputs BP1 B1 Pit in BP2 B2 Pit M1 M1 Mill M2 M2 Upit M4 M4 Sout M7 W7 Sout	s Baker Creek: Upstream of Mill Area to inlet of Baker Creek Pond										(h	0 1,38	24,092	0.246	20.82	6.03 0.0
ID Descri Baker Creek: Upstream of Giant Inputs A1 Duckfi B2 Option B1 Runoff C1 Runoff C1 Runoff P1 Inputs Calculated Net Inputs Baker Measured Inputs Measu % Diffe Trapper Creek Inputs D1 Upper NWTPi Northw NWTPi Settling P1 Settling P2 Below B3 P1 Settling P2 Below B3 P1 Settling P2 Below B3 P1 Settling P2 Below B3 P1 Settling P2 Below B73 B3 P1 ETF Effluer Calculated Net Inputs Effluer Measured Inputs Loadin % Diffe Baker Creek: Upstream of Mill Area to inlet of E Local Inputs Baker M3 M3 ca BP4 Small B74 Small B74 Small B74 Small B74 Small B74 Small P15 Small Calculated Net Inputs Loadin % Diffe Calculated Net Inputs Baker M3 M3 ca B74 Small B74 Small B75 Small B74 S					1	<u> </u>				1		-	,	24,032	0.240		
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish I B2 Optional v B1 Runoff fro C1 Runoff fro C1 Runoff fro PI Inputs from Calculated Net Inputs Measured % Different NWTPB Nothwest NUPS NUPS NUPS NUPS NUPS NUPS NUPS NUPS										7,097,738 465,004	(0	0 - 0 10,203		224.12 58.51	0.00 0.0 67.78
ID Descripti Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional B1 Runoff fr C1 Runoff fr PI Inputs fr Calculated Net Inputs Measured Inputs Measured Inputs Trapper Creek Inputs Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subca Net Discharge to Baker Creek Inputs PP1i Settling a PP2 Below PA BP3 B3 Pit at ETP Effluent Calculated Net Inputs Calculated Net Input	9										· · ·	5	-				
ID Descrip Baker Creek: Upstream of Giant Inputs A1 Duckfis B2 Optiona B1 Runoff C1 Runoff P1 Inputs Baker O Measured Inputs Calculated Net Inputs D1 Upper NWTPi Northw NWTPi Northw NWTPi Northw NWTPi Northw NWTP3 Pumpb Calculated Net Inputs Calculated Net Inputs Calculated Net Inputs Effluent Treatment Plant and Downstream Subo Net Discharge to Baker Creek Inputs PP1 Settling PP1 Settling PP1 Settling PP2 Below BP3 B3 Pit a ETP Effluent Calculated Net Inputs Calculated N	S									42,053	(365,00	0 6,67	13,346		21.03	30.68 138
ID Descript Baker Creek: Upstream of Giant Inputs A1 Duckfist B2 Optiona B1 Runoff C1 Runoff C1 Runoff C1 Runoff PI Inputs Baker C Measured Inputs D1 Upper T Calculated Net Inputs D1 Upper T NWTPi Northwe NWTPii Discharg NWTP2 Quary G NWTP3 Pumpba Calculated Net Inputs Calculated N											(365,00	0 8,058	8 47,641	0.042	324.47	104.50 138
Measured Inputs	Loading Total Closing Point at location just upstream of BC1a d/s endpoint									na					na	na na	
	% Difference in Current measured vs Calculated future loads																
· ·			I <u> </u>		1	1											
Baker Creek: Mill Area Reach																	
Baker Creek: Mill Area Reach	s BP1i B1 Pit runoff	85,485		0.000	8,549	100	0	0	0	8,549	(0	0 -	0.50	4.27	0.00 0.0
Baker Creek: Mill Area Reach	s BP1i B1 Pit runoff BP1ii B1 Pit infiltration	85,485	0.000	0.014	0	100 0 0	0 0 0	0 0 0	100	8,549 0 0)	0	0 - 0 1,197 30 2,409	0.50 1.0 1.0	0.00	1.20 0.0
ID Des Baker Creek: Upstream of Giant Inputs A1 Duc B2 Opti B1 Run C1 Run PI Input Calculated Net Inputs Bak Measured Inputs Measured NWTPi Nort NWTPi Nort NWTPi Nort NWTPi Nort NWTP3 Pur Calculated Net Inputs Trap Measured Inputs Loa WWTP3 Pur Calculated Net Inputs Trap Measured Inputs Loa SNet Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream S Net Discharge to Baker Creek Inputs Effluent S Effluent Inputs Effluent S Net Discharge to Baker Creek Inputs S Effluent Inputs Effluent S Measured Inputs Loa % D Baker Creek: Upstream of Mill Area to Inlet C Local Inputs Bak M3 M3 BP4 Sma BP5 Sma Calculated Net Inputs Loa % D Baker Creek: Upstream of Mill Area to Inlet C Local Inputs Loa % D Baker Creek: Upstream of Mill Area to Inlet C Local Inputs Loa % D Baker Creek: Mill Area Reach Local Inputs Loa % D Baker Creek: Mill Area Reach Local Inputs Loa % D	s BP1i B1 Pit runoff BP1ii B1 Pit infiltration BP2 B2 Pit M1 M1 Mill and roaster area	85,485 43,803 19,960	0.000 0.100 0.100	0.014 0.055 0.0075	0 4,380 1,996	0 0 100	0 0 0	0 0 0	100 100 0	0 0 1,996)))	0 0 4,38 0	80 2,409 0 150	1.0 1.0 0.50	0.00 0.00 1.00	1.20 0.0 6.79 0.0 0.07 0.0
ID Desc Baker Creek: Upstream of Giant Inputs A1 Duck B2 Optic B1 Runc C1 Runc P1 North NotTPI North NVTPI North NVTPI North NVTPI North NVTPI North NVTPI Disc Reasured Inputs Trap Measured Inputs Calculated Net Inputs Inputs Effluent Treatment Plant and Downstream Su Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Su Net Discharge to Baker Creek Inputs Effluent Treatment Plant and Downstream Su Net Discharge to Baker Creek Inputs Effluent S Effluent S Effluent S Effluent S Effluent S Effluent S Effluent Runcs S Effluent Treatment Plant and Downstream Su Net Discharge to Baker Creek Inputs Effluent S Ef	s BP1i B1 Pit runoff BP1i B1 Pit infiltration BP2 B2 Pit M1 M1 Mil and roaster area M2 W2 Upland above Mill	85,485 43,803 19,960 202,976	0.000 0.100 0.100 0.100 0.100	0.014 0.055 0.0075 0.0075	0 4,380 1,996 20,298	0 0 100 100	0 0 0 0	0 0 0 0	100 100 0 0	0 0 1,996 20,298)))	0 0 4,38 0 0	302,409015001,522	1.0 1.0 0.50 0.20	0.00 0.00 1.00 4.06	1.20 0.0 6.79 0.0 0.07 0.0 0.30 0.0
ID Description Baker Creek: Upstream of Giant Inputs A1 Duckfish B2 Optional B1 Runoff fr C1 Runoff fr PI Inputs fr Calculated Net Inputs Measure % Differe Trapper Creek Inputs D1 Upper Tr NVTPPi Northwes NWTPIi Northwes NWTPII Northwes NWTPII Northwes NWTPI Northwes NYTR NYTR NYTR NYTR N	s BP1i B1 Pit runoff BP1i B1 Pit infiltration BP2 B2 Pit M1 M1 Mill and roaster area M2 M2 Upland above Mill M4 M4 South of Mill (Parking area)	85,485 43,803 19,960	0.000 0.100 0.100 0.100 0.100 0.100	0.014 0.055 0.0075	0 4,380 1,996	0 0 100	0 0 0	0 0 0	100 100 0	0 0 1,996))))	0 0 4,38 0	80 2,409 0 150	1.0 1.0 0.50	0.00 0.00 1.00	1.20 0.0 6.79 0.0 0.07 0.0 0.30 0.0 0.02 0.0
Baker Creek: Mill Area Reach	s BP1i B1 Pit runoff BP1ii B1 Pit infiltration BP2 B2 Pit M1 M1 Mill and roaster area M2 M2 Upland above Mill M4 M4 South of Mill (Parking area) M7 M7 South of Mill (C-shaft, Shops, Dry and Ore Stockpiles)	85,485 43,803 19,960 202,976 14,213	0.000 0.100 0.100 0.100 0.100 0.100	0.014 0.055 0.0075 0.0075 0.0075	0 4,380 1,996 20,298 1,421	0 0 100 100 100 100	0 0 0 0 0	0 0 0 0 0	100 100 0 0 0	0 0 1,996 20,298 1,421)))))	0 0 4,38 0 0 0	30 2,409 0 150 0 1,522 0 107	1.0 1.0 0.50 0.20 0.20	0.00 0.00 1.00 4.06 0.28	1.20 0.0 6.79 0.0 0.07 0.0 0.30 0.0 0.02 0.0

Scenario: Future Conditions Regional Mean Annual Runoff (MAR) of 56 mm, Local MAR of 100 mm, Annual Balance

	Subcatchment	Area	Surface Yield	Deep GW Yield	Total Annual Surface Flow		% Surface Distribu			Aportioned S Volume Flow	-		Infiltration to UG Mine	As	As L	.oad (kg/y	yr)
	ID Description	m²	m³/m	m³/m	m ³	Baker Crk	ETP YK	Bay UG Mine	Baker Crk	ETP Y		6 (direct flows)	Underground Mine	mg/L	Baker	UG Mine	YK
Upstream Input	IS									0 3	65,000	8,058	47,641		324.47	104.50)
Cumulative Flows and Loads										0 3	65,000	12,438	59,767	0.044	341.69	116.25	5
Aeasured Inputs	Loading Total Closing Point at BC1b d/s endpoint								na	0 3	05,000	12,430	59,767	0.044 na	341.69 na	110.25	—
	% Difference in measured vs calculated loads												_	L	na		
aker Creek: Downstream of																	
Local Input	BC2 West Tributary 1 of Baker Creek	537,051	0.100	0.012	53,705	100	0 0	0	53,705	0	0	0	6,579	0.20	10.74	1.32	<u>,</u>
	M6 catchment south and west of C-Dry	41,451	0.100	0.012	4,145	100	0 0	0	4,145	0	0	0	508	0.50	2.07	0.25	5
	M5 catchment above and east of C-shaft/dry	93,038	0.100	0.0075	9,304	100	0 0	-	9,304	0	0	0	698	0.50	4.65	0.35	
	AP1 A1 Pit AP2 A2 Pit	119,948 83,121	3 0.100 0.100	0.055 0.055	11,995 8,312	0	0 0		0	0	0	11,995 8,312	6,597 4,572	1.0 1.0	0.00 0.00	18.59 12.88	
	CP1i C1 Pit (lateral runoff and seepage)	50,418	0.100	0.055	5,042	0	0 0		0	0	0	6,312 5,042	4,572	1.0	0.00	5.04	
	CP1ii C1 Pit (vertical)	50,418	0.000	0.055	0,0.1	0	0 0		0	0	Õ	0,012	2,773	1.0	0.00	2.77	
	BC3 West Tributary 2 of Baker Creek	513,128	0.100	0.012	51,313	100	0 0	0	51,313	0	0	0	6,286	0.20	10.26	1.26	,
	BC1c Baker Creek catchment downstream of Mill area to mouth at YK Bay	577,117	0.100	0.036	57,712	100	0 0	•	57,712	0	0	0	20,776	1.0	57.71	20.78	
	E1 Tributary of Baker Creek E2 Tributary of Baker Creek	4,696,410	0.056	0.000	262,999	100 100	0 0		262,999	0 0	0	0	-	0.079 0.076	20.78	0.00	
	E2 Tributary of Baker Creek G1 Unamed creek that probably discharges into Baker just upstream of outlet	109,667 1,396,826	0.100 0.056	0.000 0.000	10,967 78,222	100	0 0		10,967 78,222	0	0	0	-	0.076	0.83 1.96	0.00 0.00	
Calculated Net Inputs	Baker Creek: Downstream of Mill Area	1,000,020	0.000	0.000	10,222	100	0	Ū	10,222	0	0	25,349	48,788	0.206	109.01	63.24	
alculated Net inputs										0	0	20,040	40,700	0.200	103.01	00.24	
Jpstream Inputs										- 30	65,000	12,438	59,767		341.69	116.25	5
Cumulative Flows and Loads										0 3	65,000	37,787	108,555	0.055	450.69	179.50) 1
leasured Input	Closing Point at BC1c d/s endpoint % Difference in measured vs calculated loads								na					na	na na		
ellowknife (YK) Bay, Great S	Slave Lake		I						T			<u> т</u>	T	T			
Non-Baker Creek Input																	
	T1 Townsite catchment into YK Bay T2 Area adajecnt to Townsite 1	200,825	5 0.100 5 0.100	0.000	20,082	0	0 10		0		20,082	0	-	0.20	0.00		
	Area adalectitio Lowinsite 1			0.000	9,228		0 10		0	0	9,228	0	-	0.20	0.00	0.00	
		92,275		0 0000	13 605	-	0 5	0		0		0		0.50	65		
	STP1i South Tailings Pond runoff	136,049	0.100	0.0000	13,605	95 0	0 5		12,925 0	0	680 0	0	- 1 020	0.50 4 0	6.5 0.00	0.00	
	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration			0.0000 0.0075 0.000	13,605 0 1,118	95	0 5 0 0 0 10	0	12,925 0 0	0 0 0	0 0 1,118	0 0 0	- 1,020 -	0.50 4.0 0.50	6.5 0.00 0.00		
	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration	136,049 136,049	0.100 0.000	0.0075	0	95 0	0 0	0 0	0	0	0	0 0 0 0	-	4.0	0.00	0.00 4.1)
	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltration	136,045 136,045 11,183 181,041 181,041	0.100 0.000 0.100 0.100 0.100 0.100 0.000	0.0075 0.000 0.0000 0.0075	0 1,118 18,104 0	95 0 0 100 0	0 0 0 10 0 0 0 0	0 0 0 0 0	0 0 18,104 0	0 0	0 1,118 0 0	0 0 0 0 0		4.0 0.50 0.50 4.0	0.00 0.00 9.1 0.00	0.00 4.1 0.00 0.00 5.4)
	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration STP2 Seepage collection from south pond that is pumped pack to SP1 CTP1i Central Tailings Pond runoff CTP1ii Central Tailings Pond infiltration NTP1i North Tailings Pond runoff	136,045 136,045 11,183 181,041 181,041 364,714	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000	0 1,118	95 0 100 0 100	0 0 0 10 0 0 0 0 0 0	0 0 0 0 0	0 0 18,104 0 36,471	0 0 0	0 1,118 0 0 0	0 0 0 0 0	- - 1,358 -	4.0 0.50 0.50 4.0 0.50	0.00 0.00 9.1 0.00 18	0.00 4.1 0.00 0.00 5.4 0.00))
	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration STP2 Seepage collection from south pond that is pumped pack to SP1 CTP1i Central Tailings Pond runoff CTP1ii Central Tailings Pond infiltration NTP1i North Tailings Pond infiltration NTP1ii North Tailings Pond infiltration	136,045 136,045 11,162 181,041 181,041 364,714 364,714	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.000 0.100 0.000 0.100 0.000	0.0075 0.000 0.0000 0.0075 0.0000 0.0075	0 1,118 18,104 0 36,471 0	95 0 100 0 100 0	0 0 0 10 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 18,104 0 36,471 0	0 0 0 0 0 0	0 1,118 0 0 0 0	0 0 0 0 0 0	- - 1,358	4.0 0.50 4.0 0.50 4.0	0.00 0.00 9.1 0.00 18 0.00	0.00 4.1 0.00 0.00 5.4 0.00 11)))
	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iiNorth Tailings Pond infiltrationNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1	136,049 136,049 11,182 181,041 364,714 364,714 286,855	0.100 0.000 0.100 0.100 0.000 4 0.100 4 0.000 5 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000	0 1,118 18,104 0 36,471 0 28,686	95 0 100 0 100 0 0	0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 18,104 0 36,471 0 0	0 0 0 0 0 0 0	0 1,118 0 0 0 0 28,686	0 0 0 0 0 0 0	- - 1,358 -	4.0 0.50 4.0 0.50 4.0 0.50	0.00 0.00 9.1 0.00 18 0.00 0.00	0.00 4.1 0.00 0.00 5.4 0.00 11 0.00))
	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iNorth Tailings Pond infiltrationNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2	136,045 136,045 11,162 181,041 181,041 364,714 364,714	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.000 0.100 0.000 0.100 0.000	0.0075 0.000 0.0000 0.0075 0.0000 0.0075	0 1,118 18,104 0 36,471 0	95 0 100 0 100 0	0 0 0 10 0 0 0 0 0 0 0 0 0 0		0 0 18,104 0 36,471 0	0 0 0 0 0 0 0 0	0 1,118 0 0 0 0	0 0 0 0 0 0 0 0 0	- - 1,358 -	4.0 0.50 4.0 0.50 4.0	0.00 0.00 9.1 0.00 18 0.00	0.00 4.1 0.00 0.00 5.4 0.00 11))
Calculated Net Inputs	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iiNorth Tailings Pond runoffNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2YK1Area north of Backbay discharging to Backbay	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 2	0 1,118 0 0 28,686 6,010 25,278		- 1,358 - 2,735 - - -	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 18 0.00 0.00 0.00 0.00	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00	
	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iNorth Tailings Pond infiltrationNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0 0 0		0 1,118 0 0 28,686 6,010 (25,278 991,083		- 1,358 - 2,735 - - - - - 5,114	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 18 0.00 0.00 0.00 0.00 34	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00 0.00 20))))
	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iiNorth Tailings Pond runoffNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2YK1Area north of Backbay discharging to Backbay	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0		0 1,118 0 0 28,686 6,010 225,278 91,083	0 0 0 0 0 0 0 0 0 0 37,787	- 1,358 - 2,735 - - -	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 18 0.00 0.00 0.00 0.00	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00))))
pstream Inputs	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iiNorth Tailings Pond runoffNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2YK1Area north of Backbay discharging to Backbay	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0 0 67,500		0 1,118 0 0 28,686 6,010 (25,278 991,083	0 0 0 0 0 0 0 0 0 0 0 37,787	- 1,358 - 2,735 - - - - - 5,114	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 18 0.00 0.00 0.00 0.00 34	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00 20 179))))
pstream Inputs otal Inputs to Baker Creek	STP1iSouth Tailings Pond runoffSTP1iiSouth Tailings Pond infiltrationSTP2Seepage collection from south pond that is pumped pack to SP1CTP1iCentral Tailings Pond runoffCTP1iiCentral Tailings Pond infiltrationNTP1iiNorth Tailings Pond runoffNTP1iiNorth Tailings Pond infiltrationBB1Back Bay catchment 1BB2Back Bay catchment 2YK1Area north of Backbay discharging to Backbay	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0 67,500 8,265,184		0 1,118 0 0 28,686 6,010 (25,278 991,083	0 0 0 0 0 0 0 0 0 0 37,787	- 1,358 - 2,735 - - - - - 5,114	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 0.00 0.00 0.00 0.00 0	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00 20 179))))
Calculated Net Inputs Jpstream Inputs Total Inputs to Baker Creek Total Inputs to YK Bay	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration STP2 Seepage collection from south pond that is pumped pack to SP1 CTP1ii Central Tailings Pond runoff CTP1ii Central Tailings Pond infiltration NTP1ii North Tailings Pond infiltration NTP1ii North Tailings Pond infiltration B1 Back Bay catchment 1 B2 Back Bay catchment 2 YK1 Area north of Backbay discharging to Backbay Yellowknife (YK) Bay, Great Slave Lake	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0 67,500 8,265,184		0 1,118 0 0 28,686 6,010 125,278 191,083 195,000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 1,358 - 2,735 - - - - - 5,114	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 0.00 0.00 0.00 0.00 0	0.00 4.1 0.00 5.4 0.00 11 0.00 0.00 0.00 20 179)))))))
ostream Inputs otal Inputs to Baker Creek otal Inputs to YK Bay	STP1i South Tailings Pond runoff STP1ii South Tailings Pond infiltration STP2 Seepage collection from south pond that is pumped pack to SP1 CTP1ii Central Tailings Pond runoff CTP1ii Central Tailings Pond infiltration NTP1ii North Tailings Pond infiltration NTP1ii North Tailings Pond infiltration B1 Back Bay catchment 1 B2 Back Bay catchment 2 YK1 Area north of Backbay discharging to Backbay Yellowknife (YK) Bay, Great Slave Lake	136,049 136,049 11,18 181,041 364,714 364,714 286,855 60,103	0.100 0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	0.0075 0.000 0.0000 0.0075 0.0000 0.0075 0.000 0.000	0 1,118 18,104 0 36,471 0 28,686 6,010	95 0 100 0 100 0 0 0	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10		0 0 18,104 0 36,471 0 0 0 0 0 67,500 8,265,184		0 1,118 0 0 28,686 6,010 125,278 191,083 195,000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 1,358 - 2,735 - - 5,114 108,555	4.0 0.50 4.0 0.50 4.0 0.50 0.50	0.00 0.00 9.1 0.00 0.00 0.00 0.00 34 451 484	0.00 4.1 0.00 0.00 5.4 0.00 11 0.00 0.00 0.00 20 179)))))

Appendix M3 Underground Estimates

Table M3-1 Current Conditions: Fully Dewatered

	DUPUIT FLOW - lateral GW flow (includes recharge) K = [q-(R(L/2))] * 2L / [h1^2-h2^2]								
Option Dependent Variables Drawdown "Depth to Water", (m): Constant Head boundary height, h2 (m): Height of seepage wall, h1 (m):	610 610 125	TOTAL LATERAL GROUND	K: h1= h2= distance (L)= "q" (flow/unit area) NATER INFLOW:	0.00073 125 610 900 0.197	m/s m/day m m m ² /d m³/d	deep bedrock deep bedrock height of seepage face in mine apth of dewatered section of min	ie		
						7			
INFILTRATION FROM SURFACE MODEL		Source Type			Infil vol. (m³/day)				
		Total Infiltration through Drill Envelope from Surface Mine, excluding NW Pond Northwest Pond			431 800				
		total			1231]			
DISTRIBUTED INFILTRATION THROUGH WORKINGS		Source Type	Footprint Area (m ²)	% of Total Drill Envelope Footprint	Dsitributed Infil vol. (m ³ /day)	Vert. Infiltr. Source Concentration (kg/m ³)	Daily Load (kg/day)		
		arsenic dust - funnelled flow from pits arsenic dust - infiltration from Baker Creek roaster tailing backfill flotation tailings backfill waste rock backfill regional bedrock/mine walls	8,059 8,059 233,312 233,312 838,591 559,061	#N/A #N/A 13% 13% 45% 30%	6 52 52 188 126	4.0 4.0 0.0050 0.0050 0.0015 0.00005	24 24 0.26 0.26 0.28 0.0063		
		total:	1,880,393		431	total:	49	kg/day	= total infiltration load
NORTHWEST POND INFLOWS		NW Pond	0	#N/A	800	0.007	5.6	kg/day	= total NW Pond load
GROUNDWATER FLOW		Source Type	Cross-sectional Area (m ²)	% of Saturated Area	GW Flow. (m ³ /day)	Source Concentration (kg/m ³)	Daily Load (kg/day)		
		dust roaster tailing backfill flotation tailings backfill waste rock backfill bedrock/tunnels total:	0 0 375,000 375,000	0.0% 0.0% 0.0% 100.0% 100.0%	0 0 0 1,180 1,180	6.0 0.010 0.0050 0.0015 0.0015	0.0 0.0 0.0 1.8 1.8	kg/day	= total groundwater load
		[Total	Flow (m ³ /day) =	2,411		56	kg/day	= TOTAL LOAD from underground

Table M3-2 Future Conditions: Dewater to 425 Level (During Freezing Implementation/Verification)

Option Dependent Variables Drawdown "Depth to Water", (m): Constant Head boundary height, h2 (m): Height of seepage wall, h1 (m):	100 610 512	TOTAL LATERAL GROUND	K: h1= distance (L)= "q" (flow/unit area) NATER INFLOW	0.00073 1 512 1 610 1 900 1	n/s n/day n n m ² /d m³/d	deep bedrock deep bedrock height of seepage face in mine apth of dewatered section of min	9		
INFILTRATION FROM SURFACE MODEL		Source Type Total Infiitration through Drill Envelope from Surface Mine, excluding NW Pond Northwest Pond total			Infil vol. (m ³ /day) 363 27 390				
DISTRIBUTED INFILTRATION THROUGH WORKINGS		Source Type arsenic dust - funnelled flow from pits arsenic dust - infiltration from Baker Creek roaster tailing backfill flotation tailings backfill waste rock backfill regional bedrock/mine walls total:	Footprint Area (m ²) 8,059 8,059 233,312 233,312 838,591 559,061 1,880,393	% of Total Drill Envelope Footprint #N/A 13% 13% 45% 30%	Dsitributed Infil vol. (m ³ /day) 0 45 45 163 109 363	Vert. Infiltr. Source Concentration (kg/m3) 4 4 0.0050 0.0050 0.0015 0.00005	Daily Load (kg/day) 0.000 0.23 0.23 0.24 0.0054 0.70	kg/day	= total infiltration load
NORTHWEST POND INFLOWS		NW Pond	#N/A	#N/A	27	0.0070	0.19	kg/day	= total NW Pond load
GROUNDWATER FLOW		Source Type dust roaster tailing backfill flotation tailings backfill waste rock backfill bedrock/tunnels	#IV/A Cross-sectional Area (m ²) 0 258,597 258,597 258,597 655,283 436,855	#IV/A % of Saturated Area 0.0% 16.1% 16.1% 40.7% 27.1%	GW Flow. (m³/day) 0 93 93 235 156	0.0070 Source Concentration (kg/m ³) 6 0.010 0.0050 0.0015 0.0015	Daily Load (kg/day) 0.0 0.93 0.46 0.35 0.23	<u>ry/uay</u>	
		total:	1,609,331	100.0%	966	0.0015	2.9	kg/day kg/day	= total groundwater load = TOTAL LOAD from underground

Table M3-3 Future Conditions: Maintain Water Level Below Base of Open Pits (Long-term Operations)

DUPUIT FLOW - lateral GW flow (includes recharge) K = [[q-(R(L/2))] * 2L / [h1^2-h2^2]										
Option Dependent Variables Drawdown "Depth to Water", (m): Constant Head boundary height, h2 (m): Height of seepage wall, h1 (m):	50 610 560	TOTAL LATERAL GROUND	K: 8.5E-09 m/s 0.00073 m/day h1= 560 m h2= 610 m distance (L)= 900 m _"q" (flow/unit area) 0.075 m ² /d			deep bedrock deep bedrock - height of seepage face in mine - depth of dewatered section of mine				
INFILTRATION FROM SURFACE MODEL		Source Type Total Infiltration through Drill Envelope from			Infil vol. (m ³ /day)					
		Surface Mine, excluding NW Pond			363					
		Northwest Pond			27					
		total			390					
DISTRIBUTED INFILTRATION THROUGH WORKINGS		Source Type	Footprint Area (m ²)	% of Total Drill Envelope Footprint	Dsitributed Infil vol. (m³/day)	Vert. Infiltr. Source Concentration (kg/m3)	Daily Load (kg/day)			
		arsenic dust - funnelled flow from pits arsenic dust - infiltration from Baker Creek roaster tailing backfill	8,059 8,059 233,312	#N/A #N/A 13%	0 0 45	4 4 0.0050	0.000 0.000 0.23			
		flotation tailings backfill waste rock backfill regional bedrock/mine walls	233,312 838,591 559,061	13% 45% 30%	45 163 109	0.0050 0.0015 0.00005	0.23 0.24 0.0054			
		total:	1,880,393	3076	363	total:	0.0034	kg/day	= total infiltration load	
NORTHWEST POND INFLOWS		NW Pond	N/A	N/A	27	0.007	0.19	kg/day	= total NW Pond load	
GROUNDWATER FLOW		Source Type	Cross-sectional Area (m ²)	% of Saturated Area	GW Flow. (m³/day)	Source Concentration (kg/m3)	Daily Load (kg/day)			
		dust roaster tailing backfill	0 258,597	0.0% 16.1%	0 72	6 0.010	0.0 0.72			
		flotation tailings backfill	258,597	16.1%	72	0.0050	0.72			
		waste rock backfill	655,283	40.7%	183	0.0015	0.27			
		bedrock/tunnels total:	436,855 1,609,331	27.1% 100.0%	122 450	0.0015	0.18 1.5	kg/day	= total groundwater load	
									= TOTAL LOAD	
			Total	Flow (m ³ /day) =	840		2.4	kg/day	from underground	