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Contaminant levels in fish are of public concern in northern Canada where they are an important food source. In
this study, we investigated the concentration of total arsenic, four arsenic species (arsenite (AslII), arsenate
(AsV), dimethylarsinate (DMA), and monomethylarsonate (MMA)), and total mercury (Hg) in the muscle and
liver of lake whitefish (Coregonus clupeaformis) and burbot (Lota lota) collected at two sites near the abandoned
Giant Mine site (Baker Pond and Yellowknife Bay) and two reference sites more than 25 km away (Chitty Lake
and southern Great Slave Lake). Total arsenic concentrations were typically higher in fish tissues collected near
the mine site, and higher in burbot than lake whitefish. We found lower concentrations of arsenic in the muscle
tissue of adult lake whitefish than juveniles. All four arsenic species were only detected in the liver tissues of adult
lake whitefish collected from Baker Pond on the mine site, and juvenile lake whitefish from the adjacent Yellow-
knife Bay. Mercury levels were highest in fish from Chitty Lake, and higher for burbot than lake whitefish, similar
with other research reporting elevated mercury in small northern lakes relative to larger waterbodies. However,
mercury levels in fish were not elevated beyond consumption guidelines. Elevated arsenic concentrations in the
fish tissues collected near the mine site suggest that the area continues to be a source of arsenic to the aquatic
food web; therefore, continued monitoring is warranted, particularly with a large portion of the local population
harvesting wild food sources.

© 2015 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research.

Introduction

In Canada's Northwest Territories (NWT), fish are an important and
culturally valued resource, with approximately 40% of the population
hunting and fishing to supplement their diet (GNWT, 2014), and 25%
of the total population partaking in recreational angling, which is, per
capita, more than most other jurisdictions in Canada (Fisheries and
Oceans Canada, 2012). Yellowknife Bay, on the north shore of Great
Slave Lake, supports many species of large bodied fish that are used as
food by people in the City of Yellowknife and the nearby aboriginal com-
munities of Dettah and N'dilo. Large bodied fish are known to accumu-
late contaminants and often have elevated concentrations relative to
biota lower in the food chain (e.g., Evans et al., 2005; Kidd et al.,
2012). Elevated concentrations of certain metals in fish, such as mercury
and arsenic, are of public concern because of the well documented
health risks associated with consuming fish with high metal burdens
(Canadian Council of Ministers of the Environment (CCME), 2000;
Canadian Food Inspection Agency (CFIA), 2014; Health Canada, 2012).

Mercury is of particular concern because of its documented toxicity,
persistence in the environment, high potential for bioaccumulation in
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the aquatic food web and ability to biomagnify with increasing trophic
levels (CCME, 2000; Kidd et al., 2012; Wiener et al., 2003). Toxic effects
on fish include disrupted neurological function and reduced growth, ox-
ygen uptake, reproductive development, sensory abilities, osmoregula-
tion, and digestion (Kidd et al., 2012; Scheuhammer et al., 2015; Wiener
et al,, 2003). In the aquatic environment, mercury can be converted
through biogeochemical interactions to the more toxic organic methyl-
mercury (MeHg) (CCME, 2000; Chetelat et al., 2015; Jensen and
Jerneldv, 1969; Winfrey and Rudd, 1990). Fish accumulate MeHg
through their diet (Rodgers, 1994). Fish tissues are typically analyzed
for total mercury, since it has been demonstrated that the majority of
mercury in fish is present as MeHg (Bloom, 1992; Forsyth et al., 2004).
Mercury is naturally occurring in the environment (Lockhart et al.,
2005), but levels can be exacerbated by the cumulative impacts of nat-
ural disturbances like fire (Garcia and Carignan, 1999; Kelly et al., 2006)
and anthropogenic activities such as logging (Garcia and Carignan,
1999), mining (Lockhart et al., 2005), flooding for hydroelectric devel-
opment (Bodaly et al., 1984), or atmospheric inputs from waste inciner-
ation and fossil fuel emissions (Kidd et al., 2012).

Point-source contamination from industrial activities into the aquat-
ic environment is a prime public concern. Arsenic contamination is
often associated with historic gold mining activity since arsenic com-
monly occurs in the ore of gold bearing metal sulfide deposits (Cohen
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and Bowell, 2014). The toxicity of arsenic is well known (Bowell and
Craw, 2014), being a carcinogen in humans (Kapaj et al., 2006) and
causing toxic and biological effects on fish (Pedlar et al., 2002b). It
bioaccumulates in the aquatic environment, but concentrations normal-
ly decrease with trophic position (Chen and Folt, 2000; Dutton and
Fisher, 2011; McIntyre and Linton, 2012). Adverse impacts to fish in-
clude effects to growth and reproduction through diminished appetite,
altered feeding behavior, increased abnormalities, reductions in gonadal
development, spawning success in adults, hatching success of eggs, and
overall health and survival during the early life stages (McIntyre and
Linton, 2012; Wiener et al., 2003).

Like mercury, arsenic has different species (or forms), and these spe-
cies have varying toxicities due to different physical and chemical prop-
erties. The inorganic forms of arsenic [arsenite (AslIl) and arsenate
(AsV)] are generally considered more toxic than organic species
[dimethylarsinate (DMA) and monomethylarsonate (MMA)], with the
trivalent form generally considered the more toxic of the two inorganic
species (McIntyre and Linton, 2012). Arsenic can be absorbed directly
through the gills of fish as well as through the gut, where it can be meth-
ylated from an inorganic to organic form (McIntyre and Linton, 2012).

Giant Mine on the shore of Yellowknife Bay in Great Slave Lake oper-
ated between 1948 and 2004 and was one of the most productive gold
mines in Canadian history (Government of Canada, 2011). Gold produc-
tion at Giant Mine also resulted in the production and subsequent stor-
age of large amounts of arsenic waste onsite, rendering the mine site
one of the most contaminated sites in Canada (Federal Contaminated
Sites Action Plan (FCSAP), 2014; Office of the Auditor General
of Canada (OAG), 2012; Government of Canada, 2011). Close to
260,000 tonnes of arsenic trioxide (As;O3) was generated as a
byproduct of gold ore processing at Giant Mine. Two hundred thirty
seven thousand tonnes of As,05 was captured by emission control tech-
nologies over the operating life of the mine and is currently stored un-
derground; however, 20,000 tonnes was not captured and was
released to the surrounding landscape via emissions from the roaster
stacks employed at the mine (Jamieson, 2014; Wrye, 2008). Over
many decades, in addition to the atmospheric fallout from historic
roaster stack emissions, Yellowknife Bay received indirect anthropogen-
ic inputs of arsenic through the discharge of mine wastewater via Baker
Creek, and the historical deposition and erosion of tailings along the
northeast shoreline of Yellowknife Bay (Andrade et al.,, 2010). In the
early years of mine operations (1948-1951), tailings were deposited di-
rectly into Yellowknife Bay in a small embayment on the north shore.
These tailings have subsequently redistributed within Yellowknife Bay
over time (Golder Associates Limited, 2005).

Arsenic loading to Yellowknife Bay has long been a concern with
several earlier studies identifying elevated levels of arsenic in sediment
and surface waters of Yellowknife Bay (Jackson et al., 1996; Mace, 1998;
Moore et al., 1978; Mudroch et al., 1989). However, relatively little in-
formation is available regarding arsenic in fish in Yellowknife Bay
(Jackson et al.,, 1996; de Rosemond et al.,, 2008), and none from sites di-
rectly on the mine site.

The primary objective of this work was to evaluate arsenic and mer-
cury burdens in fish close to Giant Mine and compare these data with
that from fish collected from reference lakes beyond the influence of
historic mining activity at Giant. We hypothesize that arsenic concen-
trations will be highest in the fish tissues collected nearest the mine
site and higher in fish with lower trophic status, whereas mercury con-
centrations will be higher in the tissues of fish collected from small lakes
and with higher trophic positioning. We analyzed metal concentrations
in the liver and muscle tissues from juvenile and adult lake whitefish
(Coregonus clupeaformis) and adult burbot (Lota lota), two large bodied
fish species that occur in Yellowknife Bay. These species were selected
as they are commonly harvested fish for human consumption (flesh of
both species and the liver of burbot are eaten) and represent different
trophic positions. Lake whitefish feed mainly on plankton as juveniles,
and benthic invertebrates as adults (Scott and Crossman, 1973).

Therefore depending on size, lake whitefish can be classified into differ-
ent trophic levels. Burbot are top-level predators having an almost ex-
clusively fish-based diet as adults (Amundsen et al., 2003) and occupy
a higher trophic position than lake whitefish (Cott et al., 2011).

Methods
Sample sites and fish collections

Lake whitefish and burbot were collected at four locations within
200 km of Giant Mine, Yellowknife, NWT. Lake whitefish collected
from southern Great Slave Lake were obtained from local commercial
fisherman, and lake whitefish from all other sampling locations were
captured using multi-mesh gillnets. Burbot were targeted using long-
lines baited with cisco (Coregonus artedi). All fish were immediately
killed upon capture, placed on ice, and frozen until dissection. Fork
length and total length (4- 1.0 mm) were recorded for lake whitefish
and burbot, respectively, and total body mass (£ 1.0 g wet) was mea-
sured for both fish species. Tissue samples of skinless white dorsal mus-
cle and liver (4 10 g) were collected from each fish, placed in individual
small plastic bags and frozen at — 20 °C for subsequent analyses.

In December 2010, adult lake whitefish (n = 8) were collected from
Baker Pond, a reach of Baker Creek (62° 30’ 28 N 114° 21’ 32 W), which
flows through the Giant Mine site into Yellowknife Bay (Fig. 1). Histor-
ically, Baker Pond was the receiving environment for Giant Mine's tail-
ings and treated waste water (Fawcett et al,, 2015).

Concentrations of arsenic in surface waters and sediments in Baker
Pond vary seasonally in association with changes in redox conditions
and changing inputs from the catchment. Reported values for arsenic
in surface waters and sediments range from 200 to 4000 pg/L and
from 2000 to 14,000 mg/kg, respectively (Nash, 2015; Fawcett et al.,
2015; Walker et al., 2015). At the time of fish collection there was less
than 1 m of water below the ice.

In March 2012, adult (n = 8) and juvenile (n = 8) lake whitefish,
and adult burbot (n = 8) were collected from Yellowknife Bay, Great
Slave Lake (62° 24’ 40 N 114° 20’ 13 W), approximately 1 km from
Giant Mine (Fig. 1). Previous research has shown that this area of Yel-
lowknife Bay (Back Bay) has been impacted by historical mining activi-
ties, either through the discharge and redistribution of tailings and
wastewater or via roaster emissions (Jackson et al., 1996; Andrade
et al,, 2010). Concentrations of arsenic in surface waters of Yellowknife
Bay vary seasonally and recently reported concentrations range be-
tween 0.5 and 10 pg/L (Jackson et al.,, 1996; Andrade et al., 2010). The
lacustrine sediments of Yellowknife Bay act as both a source and a
sink of arsenic to overlying waters, dependent on redox conditions
and other biogeochemical factors (Andrade et al., 2010). Values of re-
ported concentrations of arsenic in sediments from the main basin of
Back Bay range between 53 and 1000 mg/kg (Jackson et al., 1996;
Andrade et al., 2010).

In June 2012, adult lake whitefish (n = 9) and burbot (n = 8) were
collected from Chitty Lake (62° 42’ 48 N 114° 7’ 54 W), approximately
25 km northeast of Giant Mine in an area expected to be beyond the in-
fluence of historic roaster arsenic emissions on water, sediment and
aquatic biota (Wagemann et al., 1978) (Fig. 1). Wagemann et al.
(1978) report arsenic concentrations in water and sediment as
<10 pg/L and 28 mg/kg, respectively. Chitty Lake is primarily
surrounded by Archean metasedimentary rocks of the Yellowknife Su-
pergroup. Arsenic concentrations are generally lower in this unit com-
pared to bedrock of the Yellowknife Greenstone Belt (Boyle, 1960;
Galloway et al,, 2015); therefore, geogenic inputs of arsenic to lake sed-
iments and water are expected to be low.

In July 2012, adult lake whitefish (n = 8) were collected from the
south side of Great Slave Lake, approximately 10 km north of Hay
River, NWT (60° 59’ 32 N 115° 41’ 10 W). The southern and eastern
shores of Great Slave Lake are part of the Western Canadian Sedimenta-
ry Basin.
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Fig. 1. Locations and proximity to Yellowknife, Northwest Territories, Canada, where fish were collected for arsenic and mercury analyses. 1 = Baker Pond on the Giant Mine Lease Site,
2 = Yellowknife Bay, Great Slave Lake, 3 = Chitty Lake, 4 = Great Slave Lake, near Hay River. The black line left panel denotes the Giant Mine lease area. The gray hashed area represents
the urbanized area of the City of Yellowknife. Note that the Giant Mine lease area falls within Yellowknife city limits.

Laboratory analyses

All analyses were performed at the ALS analytical laboratory in Van-
couver with the exception of arsenic speciation, which was performed
at the ALS laboratory in Sweden. The metal analyses were carried out
using methods adapted from US EPA Method 200.3 “Sample Procedures
for Spectrochemical Determination of Total Recoverable Elements in Bi-
ological Tissues” (1996). Tissue samples were homogenized and sub-
sampled prior to hotblock digestion with nitric and hydrochloric acids,
in combination with repeated additions of hydrogen peroxide. Total
metal analysis was performed by inductively coupled plasma-mass
spectrometry, adapted from US EPA Method 6020A (note only total ar-
senic and total mercury data are reported here). Both total arsenic and
total mercury analyzed had detection limits of 0.01 mg/kg wet weight
(ww). Mercury analysis for dry samples was performed by atomic fluo-
rescence spectrophotometry, adapted from US EPA Method 245.7. This
method had a detection limit of 0.05 mg/kg dry weight (dw).

Tissue samples used for arsenic speciation were homogenized, and
then an ultrasound-assisted extraction into 1 4+ 1 methanol + water
was used to obtain extract which was then filtered (0.45 um) and dilut-
ed 10 x. Extracts were analyzed by ion chromatography (Hamilton PRP-
X100 column in a Bischoff gradient system) with post column hydride
generation for improved sensitivity. Detection was enabled with induc-
tively coupled plasma mass spectrometry (ICP-MS; Thermo Fisher Ele-
ment 2). The arsenic species analyzed and associated detection limits
were as follows: arsenite (Aslll; 0.01 mg/kg dw), arsenate (AsV;
0.04 mg/kg dw), dimethylarsinate (DMA; 0.01 mg/kg dw), and
monomethylarsonate (MMA; 0.02 mg/kg dw).

Quality assurance and control were done as per ALS Laboratories’
quality control protocol (ALS, 2012). Quality control protocol includes
instrument (e.g. verification of initial calibration, second source calibra-
tion verification standard, continuing calibration verification, and in-
strument blanks) and method quality controls (e.g. method blanks,
laboratory duplicate samples, and calibration to reference material)
(ALS, 2012).

Statistical analysis

The experimental design is an unbalanced one way design. The over-
all statistical hypothesis of ‘no difference among locations’ is tested

using analysis of variance under the assumption of normality, or a
Kruskal Wallis test if the assumption of normality could not be met
using a logarithmic transformation. Post-hoc multiple comparisons
among all means are conducted using Tukey's test modified for unequal
sample sizes (Zar, 1999) whereas multiple comparisons among all me-
dians are conducted following Gao et al. (2008). For both post-hoc tests,
alternative hypotheses were two sided and the Holm adjustment for P-
values (Holm, 1979) was used to control the overall Type I error rate to
account for multiple comparisons. When more than two comparisons
were possible, multiple comparisons were conducted only if the null hy-
pothesis of equality of means or medians was rejected using a 5% level of
significance. Total arsenic and total mercury analyses were conducted
on a ww basis. To account for size and age related variability in metal
uptake, fish of similar size (by site and species/maturity) were selected
for analysis (see Tables 1 and 2). Box and Whisker plots were used to
present the data spread, a robust measure of central tendency, and to
flag “aberrant” observations. The bottom, middle and top of the box
are the 25th, 50th (median) and 75th percentiles respectively. The
upper “whisker” is drawn at the first observation that exceeds the
median + 1.5X the interquartile range; observations greater than this
are flagged as “aberrant” using a circle. The lower whisker is similarly
defined. All statistical analysis were conducted using R (R Core Team,
2014).

Results

Summary statistics of concentrations per species per tissue per site
for total arsenic and total mercury are presented in Table 1 and for arse-
nic species in Table 2.

Total arsenic in fish tissues

The maximum total arsenic concentration found in lake whitefish
muscle was from Baker Pond at 0.57 mg/kg ww (Table 1). Total arsenic
concentrations were significantly higher in Baker Pond than Yellow-
knife Bay, Chitty Lake, and southern Great Slave Lake (P = <0.0001,
0.017, and 0.12 respectively), with no difference detected between the
other sites (Fig. 2). The concentrations of total arsenic in the livers of
lake whitefish were higher than that of the muscle for Baker Pond and
Yellowknife Bay, with a maximum concentration of 1.38 mg/kg ww
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Total arsenic (As) and total mercury (Hg) concentrations in fish by location, species, and tissue. All fish were collected in the Northwest Territories, Canada within 200 km of Yellowknife.

Values preceded by < below detection limits, nd = no data. Both wet weight (ww) and dry weight (dw) are represented. LKWH =

lake whitefish, BURB = burbot, j = juvenile.

Parameter Tissue Species Baker Pond Yellowknife Bay Chitty Lake GSL South
Mean (range) SD+ Mean (range) SD+ Mean (range) SD 4 Mean (range) SD+
Length (mm) LKWH 371.6 (315-446) 41.12 366.3 (310-420) 31.77 432.9 (398-449) 17.51 420 (362-472) 33.37
LKWH (j) nd 202.3 (195-210) 5.59 nd nd
BURB nd 508.4 (390-605) 71.25 520.5 (456-652) 56.23 nd
Total As (mg/kg ww) Muscle LKWH 0.49 (0.31-0.57) 0.09 0.19 (0.12-0.27) 0.06 0.28 (0.18-0.64) 0.15 0.19 (0.1-0.35) 0.11
Liver LKWH 0.55 (0.2-1.38) 0.36 0.32 (0.25-0.4) 0.05 0.18 (0.12-0.24) 0.04 nd
Muscle LKWH (j) nd 0.18 (0.11-0.35) 0.08 nd nd
Liver LKWH (j) nd 0.57 (0.3-0.76) 0.15 nd nd
Muscle BURB nd 0.29 (0.22-0.37) 0.05 0.3 (0.15-0.42) 0.11 nd
Liver BURB nd 1.36 (0.85-1.82) 0.3 0.36 (0.22-0.53) 0.09 nd
Total As (mg/kg dw) Muscle LKWH 1.86 (0.05-02.44) 0.75 0.19 (0.54-1.26) 0.27 1.26 (0.88-2.80) 0.64 0.77 (0.41-1.39) 0.42
Liver LKWH 1.79 (0.64-4.68) 1.24 1 27 (0.97-1.51) 0.20 0.69 (0.47-0.91) 0.15 nd
Muscle LKWH (j) nd .0 (0.57-1.66) 0.38 nd nd
Liver LKWH (j) nd 0(0.94-2.91) 0.61 nd nd
Muscle BURB nd 1 45 (1.14-1.88) 0.24 1.3 (0.68-2.1) 0.57 nd
Liver BURB nd 2.46 (1.45-3.25) 0.61 0.81 (0.5-1.72) 0.40 nd
Total Hg (mg/kg ww) Muscle LKWH 0.07 (0.05-0.14) 0.03 0.05 (0.03-0.09) 0.02 0.1 (0.07-0.18) 0.04 0.04 (0.03-0.06) 0.01
Liver LKWH 0.09 (0.04-0.18) 0.05 0.09 (0.06-0.15) 0.03 0.23 (0.11-0.42) 0.11 nd
Muscle LKWH (j) nd 0.03 (0.03-0.04) <0.01 nd nd
Liver LKWH (j) nd 0.04 (0.02-0.08) 0.03 nd nd
Muscle BURB nd 0.08 (0.05-0.12) 0.02 0.18 (0.06-0.26) 0.07 nd
Liver BURB nd 0.01 (<0.01-0.02) 0.01 0.06 (0.02-0.26) 0.08 nd
Total Hg (mg/kg dw) Muscle LKWH 0.3 (0.2-0.56) 0.12 0.24 (0.15-0.45) 0.09 0.47 (0.3-0.81) 0.21 0.18 (0.12-0.25) 0.05
Liver LKWH 0.28 (0.12-0.57) 0.15 0.35 (0.23-0.55) 0.13 0.90 (0.38-1.76) 0.45 nd
Muscle LKWH (j) nd 0.19 (0.15-0.32) 0.05 nd nd
Liver LKWH (j) nd 0.13 (0.05-0.29) 0.1 nd nd
Muscle BURB nd 0.40 (0.27-0.61) 0.11 0.84 (0.12-1.24) 0.36 nd
Liver BURB nd 0.02 (0.01-0.04) 0.01 0.22 (0.04-1.28) 0.43 nd

from the former location. However, in Chitty Lake concentrations in the
muscle were higher than in the liver (Table 1). Total arsenic concentra-
tions in the liver tissue of lake whitefish from Chitty Lake were signifi-
cantly lower than both Baker Pond (P = <0.0001) and Yellowknife
Bay (P = <0.0001) (Fig. 2). The total arsenic levels in the muscle of

Table 2

lake whitefish were similar between adults and juveniles, but was
significantly elevated in the livers of juveniles compared to adults
(P =<0.0001) (Fig. 3). There was no difference detected between the
levels of total arsenic in the muscle of burbot collected from Yellowknife
Bay and Chitty Lake. The arsenic in the liver tissues, however, was

Arsenic species [arsenite (AslIl), arsenate (AsV), dimethylarsinate (DMA), and monomethylarsonate (MMA)] concentrations in fish by location, species, and tissue. All fish were collected

in the Northwest Territories, Canada within 200 km of Yellowknife. Values preceded by < below detection limits, nd = no data. LKWH =

lake whitefish, BURB = burbot, j = juvenile.

Parameter Tissue Species Baker Pond Yellowknife Bay Chitty Lake GSL South
Mean (range) SD+ Mean (range) SD+ Mean (range) SD+ Mean (range) SD+
Length (mm) LKWH 371.6 (315-446) 41.12 366.3 (310-420) 31.77 432.9 (398-449) 17.51 420 (362-472) 33.37
LKWH (j) nd 202.3 (195-210) 5.59 nd nd
BURB nd 508.4 (390-605) 71.25 520.5 (456-652) 56.23 nd

As (III) (mg/kg dw) Muscle LKWH <0.01 <0.01 <0.01 <0.01
Liver LKWH 0.02 (0.01-0.05) 0.02 <0.01 0.01 (0.01) <0.01 nd
Muscle LKWH (j) nd <0.01 nd nd
Liver LKWH (j) nd 0.02 (0.02) <0.01 nd nd
Muscle BURB nd <0.01 <0.01 nd
Liver BURB nd <0.01 <0.01 nd

As (V) (mg/kg dw) Muscle LKWH <0.04 <0.04 <0.04 <0.04
Liver LKWH 0.04 (0.04-0.05) <0.01 <0.04 <0.04 nd
Muscle LKWH (j) nd <0.04 nd nd
Liver LKWH (j) nd 0.08 (0.08) <0.01 nd nd
Muscle BURB nd <0.04 <0.04 nd
Liver BURB nd <0.04 <0.04 nd

MMA (mg/kg dw) Muscle LKWH <0.02 <0.02 <0.02 <0.02
Liver LKWH 0.02 (0.02-0.03) <0.01 <0.02 <0.02 nd
Muscle LKWH (j) nd <0.02 nd nd
Liver LKWH (j) nd 0.04 (0.04) <0.01 nd nd
Muscle BURB nd <0.02 <0.02 nd
Liver BURB nd <0.02 <0.02 nd

DMA (mg/kg dw) Muscle LKWH <0.01 <0.01 <0.01 <0.01
Liver LKWH 0.01 (0.01-0.02) <0.01 <0.01 <0.01 nd
Muscle LKWH (j) nd <0.01 nd nd
Liver LKWH (j) nd 0.02 (0.02) <0.01 nd nd
Muscle BURB nd 0.05 (0.03-0.08) 0.02 0.02 (0.01-0.09) 0.03 nd
Liver BURB nd 0.05 (0.24-0.86) 0.23 0.08 (0.01-0.18) 0.06 nd

Please cite this article as: Cott, P.A,, et al,, Arsenic and mercury in lake whitefish and burbot near the abandoned Giant Mine on Great Slave Lake, J.
Great Lakes Res. (2015), http://dx.doi.org/10.1016/j.jglr.2015.11.004



http://dx.doi.org/10.1016/j.jglr.2015.11.004

PA. Cott et al. / Journal of Great Lakes Research xxx (2015) XXx-XXx 5
Muscle Muscle
Burbot Lake Whitefish
1.0 1 B
05 - — 2] -
- =T
% 7] = B
) Liver Liver
= Burbot Lake Whitefish
< ——p--
1.5 = -
*
10 i -
0.5 - == pee m o =
= =

BAKERCK
YK BAY
CHITTY

GS1

YK BAY

CHITTY
GSI

BAKER CK

Fig. 2. Total arsenic (As) concentrations in fish by location, species, and tissue. All fish were collected in the Northwest Territories, Canada within 200 km of Yellowknife. Values are
expressed as mg/kg (ppm) wet weight. The bottom, middle and top of the box are the 25th, 50th (median) and 75th percentiles respectively. The upper “whisker” is drawn at the first
observation that exceeds the median + 1.5 x the interquartile range. Observations greater than this are flagged as “aberrant” using a circle. The lower whisker is similarly defined. Signif-
icant pairwise differences were found between all sites for burbot liver, between all sites for lake whitefish liver (with exception of YK Bay-Baker Ck), and between Baker Ck and all sites for
lake whitefish muscle. BAKER CK = Baker Pond (a widening of Baker Creek), YK BAY = Yellowknife Bay, CHITTY = Chitty Lake, GSL = the south side of Great Slave Lake (near Hay River).

significantly higher in burbot from Yellowknife Bay (P = <0.0001;
Fig. 2). The highest total arsenic concentration was recorded from a Yel-
lowknife Bay burbot liver at 1.82 mg/kg ww (Table 1).

Arsenic species in fish tissues

All four arsenic species were found in the liver tissue of lake white-
fish from Baker Pond (Table 2). The inorganic and more toxic trivalent
form, As(III), was the most common species detected, found in 25% of
the liver samples, followed by As(V) (12.5%), DMA (12.5%) and MMA
(12.5%). As(IIl) was also found at detection limits in lake whitefish
liver tissue from Chitty Lake (Table 2), detected in 12.5% of the livers
sampled. No arsenic species were above detection limits for any lake
whitefish muscle tissues collected, or from the lake whitefish liver tis-
sues collected from Yellowknife Bay (Table 2). The inorganic DMA was
the only form of arsenic found in burbot (Table 2), and was detected
in 100% of the muscle and liver tissue samples taken from Yellowknife
Bay, and 37.5% and 87.5% of the muscle and liver tissue samples collect-
ed from Chitty Lake burbot, respectively.

Mercury in fish tissues

The highest recorded total mercury concentration for lake whitefish
muscle tissue (0.18 mg/kg ww) was detected from Chitty Lake
(Table 1), where concentrations were significantly higher than Baker
Pond (P = 0.023), Yellowknife Bay (P < 0.001), and southern Great

Slave Lake (P = 0.001). Mercury concentrations in lake whitefish mus-
cle tissue from Baker Pond were significantly higher than in Yellowknife
Bay (P = 0.001), and southern Great Slave Lake (P = 0.023) (Fig. 4). The
results for lake whitefish livers were similar, with the maximum record-
ed mercury concentration (0.42 mg/kg ww) detected in Chitty Lake
(Table 1) and significantly elevated mercury concentrations in samples
from Chitty Lake compared to those from Baker Pond (P < 0.0001) or
Yellowknife Bay (P < 0.0001) (Table 2, Fig. 4). The total mercury levels
in the muscle and liver tissues of adult lake whitefish from Yellowknife
Bay were significantly higher than juveniles (P = 0.004 and 0.022 re-
spectively) (Table 1, Fig. 3). The concentration of total mercury was sig-
nificantly higher in burbot collected from Chitty Lake compared to
Yellowknife Bay for both muscle (P < 0.0001) and liver (P < 0.0001) tis-
sues (Fig. 4). The maximum total mercury concentration found in Chitty
Lake burbot was 0.26 mg/kg ww, for both muscle and liver (Table 1).

Discussion
Total arsenic

Arsenic concentrations in adult lake whitefish were highest in fish
collected on the Giant Mine property, an area known to have arsenic
laden sediments. Sediments from the mouth of Baker Creek have been
shown to have arsenic concentrations as high as 2550 mg/kg dw
(Jackson et al., 1996), submerged tailings in Yellowknife Bay as high as
3685 mg/kg dw (EBA Engineering Consultants, 2001), and surface
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Fig. 3. A comparison of total arsenic (As) and total mercury (Hg) concentrations in the muscle and liver tissues between juvenile and adult lake whitefish in Yellowknife Bay, near Giant
Mine, Northwest Territories, Canada. Values are expressed as mg/kg (ppm) wet weight. The bottom, middle and top of the box are the 25th, 50th (median) and 75th percentiles respec-
tively. The upper “whisker” is drawn at the first observation that exceeds the median + 1.5 x the interquartile range. Observations greater than this are flagged as “aberrant” using a circle.
The lower whisker is similarly defined. Significant pairwise differences were found between juvenile and adults for all Hg concentrations in the liver and muscle, and As concentrations in

the muscle.

sediments in Back Bay up to 1050 mg/kg dw (Andrade et al., 2010). Al-
though arsenic can be absorbed directly from water through the gills
(McIntyre and Linton, 2012), arsenic concentrations in sediments and
water are not as good of an indicator of bioavailability or toxicity to
fish as dietary exposure (Pedlar and Klaverkamp, 2002). Dietary sources
of arsenic are absorbed through the gastrointestinal tract and circulated
to the other tissues. The liver is known to be a focal organ for arsenic
toxicity as it actively accumulates and excretes arsenic in its detoxifica-
tion role. This is typically reflected by the higher concentrations found in
the liver than in other tissues in exposed fish (Pedlar and Klaverkamp,
2002; Sorensen, 1991). Although previous research has shown that
fish muscle tissue is not a major repository for arsenic (Pedlar et al.,
2002; Pedlar and Klaverkamp, 2002; Sorensen, 1991), our research
clearly shows that lake whitefish from the Baker Pond site (an area di-
rectly impacted by tailings) (Golder Associates Limited, 2011; Indian
and Northern Affairs Canada (INAC), 2010) accumulated arsenic in
their muscle tissue. It is unknown how long these lake whitefish were
exposed at this site, but the elevated arsenic levels in the fish tissues
suggest that it was for an extended period. In Yellowknife Bay, mean
total arsenic concentrations measured in lake whitefish muscle
(0.19 mg/kg ww and 0.91 mg/kg dw) and liver (0.32 mg/kg ww and
1.27 mg/kg dw) tissues from our study were similar to those reported
by de Rosemond et al. (2008) collected at the same location; 0.77 and
1.07 mg/kg dw for muscle and liver tissues respectively. Concentrations
of arsenic were generally lower in the muscle than liver tissue, as was
reported by Jackson et al. (1996) and lowest (regardless of species or

tissue) at sites that were more than 25 km from Giant Mine. These re-
sults are consistent to those of Jackson et al. (1996) and Lafontaine
(1997) who also showed deceasing arsenic concentrations away from
immediate mining impacts.

Juvenile lake whitefish feed on plankton while adults feed more on
benthos (Scott and Crossman, 1973). We found that total arsenic
levels were higher in juvenile lake whitefish compared to adults, and
this difference is most pronounced in the liver tissues. Arsenic can
bioaccumulate in fish, but concentrations generally decrease with tro-
phic position (Chen and Folt, 2000; Dutton and Fisher, 2011; McIntyre
and Linton, 2012). Differences in arsenic concentrations among species
can reflect variations in feeding habits (Sorensen, 1991). In a contami-
nated watershed, planktivorous species that fed directly on metal
enriched zooplankton were shown to have higher arsenic concentra-
tions than piscivorous species (Chen and Folt, 2000).

The notion that arsenic decreases with trophic position appears to be
conflicting. In northern lakes, burbot are at a significantly higher trophic
position than lake whitefish (Cott et al., 2011). We found the higher ar-
senic concentrations in the liver and muscle tissues of burbot from Yel-
lowknife Bay compared to lake whitefish. Jackson et al. (1996) found
higher concentrations of arsenic in burbot livers compared to lake
whitefish, but found the inverse was true for muscle tissue.

Previous studies have identified a potential pattern in arsenic accu-
mulation over long-term exposure, where initial concentrations in tis-
sues are higher followed by decreased accumulation (Oladimeji et al.,
1984; Pedlar and Klaverkamp, 2002; Rankin and Dixon, 1994),
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Fig. 4. Total mercury (Hg) concentrations in fish by location, species, and tissue. All fish were collected in the Northwest Territories, Canada within 200 km of Yellowknife. Values are
expressed as mg/kg (ppm) wet weight. The bottom, middle and top of the box are the 25th, 50th (median) and 75th percentiles respectively. The upper “whisker” is drawn at the first
observation that exceeds the median + 1.5 x the interquartile range. Observations greater than this are flagged as “aberrant” using a circle. The lower whisker is similarly defined. Signif-
icant pairwise differences were found between sites for burbot liver, between all sites for lake whitefish liver (with exception of YK Bay-Baker Ck), and between all sites for lake whitefish
muscle (except GSL-YK Bay ). BAKER CK = Baker Pond (a widening of Baker Creek), YK BAY = Yellowknife Bay, CHITTY = Chitty Lake, GSL = the south side of Great Slave Lake (near Hay

River).

indicating that lower concentrations may be related to more efficient
excretion of arsenic with continued exposure (Dixon and Sprague,
1981).In Yellowknife Bay, the winter spawning period for burbot occurs
in the first three weeks of February (Cott et al., 2014); therefore, it could
be that these burbot had more recently migrated into the area closer to
Giant Mine for spawning purposes, reducing exposure time compared
to the lake whitefish. Burbot likely had had much more direct exposure
to the arsenic contaminated sediments in this area of Yellowknife Bay as
a result of forming writhing spawning balls of many individuals on the
lake bed (McPhail and Paragamian, 2000). Also, burbot are also known
to burrow in soft sediments (Boyer et al., 1989), and so would likely
have a higher exposure to contaminated pore water and buried contam-
inated sediments where arsenic concentrations are highest (Andrade
et al,, 2010), potentially accounting for the higher concentrations of ar-
senic in burbot from Yellowknife Bay compared to Chitty Lake.

Arsenic species

Inorganic arsenic can be reduced and methylated in the liver of fish
to organic forms of arsenic, including MMA and DMA (MclIntyre and
Linton, 2012). The relative proportion of inorganic arsenic is normally
far less than organic arsenic (de Rosemond et al., 2008; McIntyre and
Linton, 2012). In our study, of the four arsenic species sampled for in
burbot liver from Yellowknife Bay and Chitty Lake, only the organic
DMA was above detection levels. However, in more contaminated

sites this proportion can be reversed (McIntyre and Linton, 2012). We
found this to be the case with fish collected around Giant Mine, with
higher relative concentrations of inorganic As(Ill) than the other spe-
cies. Also, inorganic arsenic was higher in the livers of juvenile lake
whitefish in Yellowknife Bay than in the muscle tissue. We note that
there are other species of arsenic (such as arsenobetaine and
trimethylated arsenic) that were not detectable by the analytical
methods used, and these unidentified arsenic species may also be im-
portant. More research is needed on determining arsenic species occur-
rence in freshwater fish, including background and impacted sites so
critical tissue concentration thresholds can be established (McIntyre
and Linton, 2012). Guidelines do not currently exist for arsenic (total
or arsenic species) in fish tissue for either human (Health Canada,
2012) or for wildlife (CCME, 2000) consumption.

Mercury

Consumption guideline related to human health risk for total mercu-
ry in fish is 0.5 mg/kg wet weight (0.5 ppm) “in the edible portion of all
retail fish” (Health Canada, 2012). None of the tissue samples analyzed
from either burbot or lake whitefish from any of the sites exceeded this
consumption guideline. In northern Canada, studies have shown that
total mercury concentrations in lake whitefish muscle are quite low,
rarely exceeding guideline limits (Lockhart et al., 2005). Consistent
with past studies (e.g. Lafontaine, 1997), our research shows that the

Great Lakes Res. (2015), http://dx.doi.org/10.1016/j.jgIr.2015.11.004

Please cite this article as: Cott, P.A., et al., Arsenic and mercury in lake whitefish and burbot near the abandoned Giant Mine on Great Slave Lake, J.



http://dx.doi.org/10.1016/j.jglr.2015.11.004

8 PA. Cott et al. / Journal of Great Lakes Research xxx (2015) xXX-xXx

concentrations of mercury in burbot tissues were higher than lake
whitefish. The concentrations of mercury in fish tissues were highest
at Chitty Lake, which is a relatively productive, small boreal shield lake
(Cott et al.,, 2011). The concentrations of mercury in burbot livers
were lower than in the muscle, but the opposite for lake whitefish.

Higher concentrations of mercury in predatory fish from small
northern lakes may be a wide spread phenomenon in the north (see
Evans et al., 2005; Lafontaine, 1997; Lockhart et al., 2005, and H.K.
Swanson, unpublished data in support of the 2015 NWT State of the En-
vironment report) and underscore the need to establish ecological base-
line conditions in order to distinguish anthropogenic effects from
natural occurring sources. In general, mercury concentrations increase
with size, age, and trophic position of the fish (Evans et al., 2005; Kidd
et al, 2012), but is known to be variable among sites for lake whitefish
and burbot (Depew et al., 2013; Lockhart et al., 2005). Many factors are
thought to contribute to variation in mercury concentrations among
waterbodies, including underlying bedrock geochemistry (Evans et al.,
2005; Lockhart et al., 2005), forest disturbance (Garcia and Carignan,
1999; Kelly et al., 2006), lake size (Evans et al., 2005; Bodaly et al.,
1993), lake temperature (Bodaly et al., 1993), and dissolved organic car-
bon (Evans et al., 2005; French et al,, 2014).

Although gold mining operations which use mercury amalgamation
extraction processes are known to be sources of mercury contamination
to fish (Lockhart et al., 2005), different gold extraction processes (i.e. ore
roasting) were used at Giant Mine which did not result in significant
mercury contamination to Yellowknife Bay. Mercury contamination in
fish is rarely from direct exposure to mine effluent, but rather from
biomagnification through the aquatic food web (Wiener et al., 2003).

Mercury concentrations in burbot have been increasing significantly
over the past two decades in Great Slave Lake (Evans et al., 2013) and
the lower Mackenzie River (Carrie et al., 2009). Several factors have
been implicated for this increase including warming temperatures, in-
creasing primary production, and increased industrial emissions in
Asia. Regardless of the source, continued collection of standardized
data on contaminants in the aquatic environment will allow for moni-
toring of the situation over time.

Conclusions

As anticipated, we found that arsenic levels in burbot and lake
whitefish were typically highest at or near Giant Mine compared to
sites geographically situated outside of the impacted mine footprint
and immediate surrounding area. Detection of the inorganic As species
As(III) in lake whitefish was most common at the Giant Mine site. This
suggests that the abandoned mine site continues to be a source of arse-
nic to the aquatic food web. Total mercury concentrations were below
the Health Canada consumption guideline for all species and tissues
sampled, from all locations. Mercury concentrations were higher in
fish from the inland lake sampled compared to those from Great Slave
Lake and showed greater concentrations in fish with a higher trophic
position in the food web at all locations.

Giant Mine is an extremely expensive legacy issue, with remediation
and perpetual maintenance costs approaching $1 billion CAD
(Aboriginal Affairs and Northern Development Canada, 2012). The
focus of monitoring and remediation has been on the Giant Mine site
lease area for which the Government of Canada is responsible (INAC,
2007, 2010). The scope of the Environmental Assessment for the reme-
diation project was also limited to the lease area, including environmen-
tal impact analysis and supporting studies (Mackenzie Valley
Environmental [impact Review Board, 2008). A major limitation with
monitoring of fish and relating it to contaminated sites on large lakes
or rivers is that fish move, making it a challenge to determine their ac-
tual exposure period to contamination from that site. The high costs
and time associated with conducting long-term ecological monitoring
programs can minimize the scope or otherwise deter such programs
from being initiated (Caughlan and Oakley, 2001; Clark et al., 2010).

However, from an environmental and human health perspective it is
important to monitor contaminant levels in biota, particularly fish spe-
cies that are harvested for human consumption, especially in areas of
known contamination. While still costly (e.g. arsenic speciation analysis
is $250-$390/sample), our approach of using standard, repeatable,
techniques on exposure and reference sites using key fish species and
targeted tissues will contribute to baseline understanding, allow for re-
finement of future research projects and monitoring plans and inform
the overall remediation plan. Also, this type of information collected in
a standard way can add to the collective body of knowledge and be
used for larger temporal or regional meta-analysis studies (e.g. Evans
et al., 2005; Evans et al., 2013; Depew et al., 2013; Lockhart et al.,
2005). There is nevertheless a clear need for additional research, includ-
ing: 1) establishing the spatial extent and gradients of arsenic concen-
trations in water, sediment and fish away from Giant Mine;
2) identifying the contaminants from anthropogenic sources and
distinguishing those from potentially elevated, but otherwise natural
background conditions in the Yellowknife area; 3) investigating the var-
iation in exposure to contaminants though differences in diet or habitat,
including intra-species analysis among life stages, growth/age, and be-
tween sexes (e.g., Madenjian et al. (2015) found that male burbot had
lower levels of mercury than females due to testosterone mediated
mercury depletion); 4) developing standardized analytical methods
that can consistently detect a greater suite of arsenic species; 5) investi-
gating the potential pathways for contaminant uptake into biota in
order to pinpoint remediation efforts; and 6) monitoring of contami-
nants in fish from populations that are harvested for human
consumption.
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