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16.1 Introduction

Arsenic (As) and antimony (Sb) are chalcophilic metalloids that share numerous simila-

rities in biogeochemical properties. This chapter reviews the chemical properties, envir-

onmental/geochemical reactions, phytoaccumulation and toxicology of the two elements.

Arsenic belongs to Group 15 in the periodic table. The electron configuration is [Ar]3d10

4s2 4p3, and it has four major oxidation states (þ5, þ3, 0, and �3). Arsenic has multiple

isotopes, and most of them have very short half-life (t½) of microseconds to milliseconds.

Of these, 71As, 72As, 73As, 74As and 74As have t½ of approximately 65 h to 80 days, and
75As is the only stable isotope. In the soil and water environment, inorganic As is mainly

present in two oxidation states (þ3 and þ5). Arsenite, As(III), commonly exists as

arsenious acid, As(OH)3, in reduced environments. Conversely, an oxidized environment

contains more arsenate, As(V), as arsenic acid (for example, HAsO4
2�). Antimony also

belongs to Group 15 in the periodic table. The electron configuration is [Kr] 5s2 4d10 5p3,

and it has four major oxidation states (þ5, þ3, 0 and �3). The most common oxidation

states in low temperature environments are þ5 andþ3. Although Sb has multiple isotopes,

most of them have short t½ of<1 day. Only a few of its isotopes have t½ of more than a few

days: 122Sb (2.7 days), 124Sb (60.2 days), 126Sb (12.3 days), and 127Sb (3.85 days). Antimony

has two stable isotopes, 121Sb and 123Sb. Antimony-125 is a fission product of 235U, and has

a half life of �2.76 years. While antimonite, Sb(III), commonly exists as antimonous acid,
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Sb(OH)3, in reduced environments, antimonate, Sb(V), as Sb(OH)6
� is commonly present

in oxidized environments.

These elements have commonly been used in industrial, medical, and agricultural

applications. One of the common industrial uses of As is in tanneries for preserving animal

hides. Arsenic has also been used in agriculture as a component of insecticides, herbicides,

fungicides, algaecides, sheepdips, wood preservatives, deworming agents for livestock,

and vaccinations for poultry and swine [1,2].

Antimony was historically used in the gold extraction processes. The Sb sulfide stibnite

(Sb2S3) is the principal ore of antimony, and has a brilliant metallic luster. The color was

used for cosmetic purposes (for example, eyeliner) in ancient times. In more recent years,

stibnite is used in the semiconductor industry to produce diodes and infrared detectors. It is

also commonly used as a mixing compound with lead to strengthen the hardness of

batteries, alloys, bullets, cable sheathing, matches, medicines, plumbing, and soldering

[3,4]. It can be found in flame-retardants in plastics and textiles, and medical drugs to treat

some tropical diseases (for example, visceral leishmaniasis).

Arsenic and Sb in soil and water environments originate from indigenous sources (for

example, mineral weathering) and anthropogenic inputs (for example, mining, industrial

processes, and pesticide application). Due to their undesirable toxicological effects, these

metalloids pose threats to human health and the wider environment. In particular, As

contamination occurs worldwide, with hotspots in Thailand, Taiwan, mainland China,

Argentina, and Chile. There are also many watersheds and drinking water sources in the

United States affected by As contamination. In some parts of South East Asia, Bangladesh

and West Bengal, the total As level can be as high as 150 mg l�1 in drinking water [5], while

the maximum concentration level (MCL) set by the US Environmental Protection Agency

(USEPA) and the World Health Organization (WHO) is 10 mg l�1 [6,7].

The maximum drinking water limit for Sb was set to 5 mg l�1, though this is considered

provisional until a greater understanding of its toxicity is achieved [7]. While the MCL of

Sb is low, typical Sb concentrations in uncontaminated waters are less than 1 mg l�1 [7].

However, there are some reports of elevated Sb levels in natural geothermal systems

ranging from 500 to 100, 000 mg kg�1 [8–11].

Arsenic can have negative impacts on both human and ecological health, because of the

carcinogenicity (for example, skin, lung, and bladder), phytotoxicity and biotoxicity

[12,13]. Arsenate, As(V) is known to replace phosphate in substituted monosaccharides,

along with inhibiting ATP synthesis by uncoupling oxidative phosphorylation, leading to

the breakdown of energy metabolism [14]. Arsenite, As(III), is generally more toxic than

As(V) due to its preferential reaction with sulfhydryl groups in mammalian enzymes [15],

resulting in inhibition of the pyruvate and succinate oxidation pathways and the tricar-

boxylic acid cycle, impaired gluconeogenesis, and reduced oxidative phosphorylation.

Labile As(III) as arsenious oxide (As2O3) is absorbed through the lungs and intestines, and

biochemically acts to coagulate proteins, form complexes with coenzymes, and inhibit the

production of the essential enzyme andenosine triphosphate (ATP) in metabolic processes

[16]. Arsine gas is known to cause a dose-dependent intravascular hemolysis and multi-

system cytotoxicity in rodents (for example, [17]).

The sudden infant death syndrome drew public attention to Sb toxicity [18,19]. It was

hypothesized that stibine (SbH3) gas formed by fungal transformation of fire retardants

containing Sb in cot mattresses might be a cause of sudden death syndrome [19]. However,
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there is insufficient epidemiological evidence to support the theory [20]. In adult humans,

inhalation of stibine gas is known to cause hemolytic anemia, hemolysis, myoglobinuria,

hematuria, renal failure, nausea, vomiting, and headache. Pneumoconiosis, other respira-

tory effects, and cutaneous effects (for example, a transient and pustules known as

‘antimony spots’) have been reported in workers occupationally exposed to dusts and

fumes containing Sb [21,22]. Cardiovascular mortality and morbidity have been attributed

to inhalation of the Sb trisulfide [23]. Patients treated with antileishmaniasis agents,

sodium stibogluconate, showed side-effects of renal tubular acidosis, thrombocytopenia,

and pancreatitis [24–26]. However, the mechanism of toxicity of Sb(V) compounds is not

clearly understood.

16.2 Geogenic Occurrence

16.2.1 Arsenic

The average total As content in uncontaminated soils is approximately 5 mg As kg�1

[27,28]. Volcanic soils may contain up to 20 mg As kg�1 [15]. Due to the application of

As-containing pesticides and defoliants, the As content of contaminated soils can range up

to 2553 mg As kg�1 [29]. The average As level in agricultural soils in 12 US states was

approximately 165 mg As kg�1 [30].

Naturally occurring As is found in about 245 mineral species including arsenides,

sulfides, sulfosalts, and oxidation products such as oxides, arsenites, and arsenates.

These are generally associated with basin-filled deposits of alluvial-lacustrine origin,

and volcanic deposits [2,31]. Naturally occurring As-S minerals are arsenopyrite

(FeAsS), enargite (Cu3AsS4), orpiment (As2S3), and realgar (AsS). In terrestrial environ-

ments, inorganic forms are generally predominant over organic forms. The speciation of

the inorganic forms (arsenite and arsenate) is highly affected by pH and redox conditions.

Most of the organic fractions are associated with methyl groups (–CH3) such as metha-

nearsonic acid (MAA) and dimethylarsinic acid (DMAA) [32]. In agricultural drainage/

evaporation ponds, approximately 40 % and 15 % of total As are found as DMAA and

MAA, respectively [33]. Eventually organic As species are converted into CO2 and

inorganic As by oxidative degradation, or into volatile As compounds or arsine (AsH3)

gas by reduction and further methylation. Due to the low solubility of the volatile

compounds, they readily complex with atmospheric particulates before being deposited

on the ground [2].

16.2.2 Antimony

In geothermal systems, antimony is commonly associated with gold and sulfur [34]. The

average total Sb content in uncontaminated soils is in the order of a few micrograms per

kilogram [35,36]. Martin and Whitefield [37] reported the average Sb concentration in

soils of approximately 1 mg kg�1. The majority of natural Sb sources are mineral deposits

from hot springs, volcanic ore deposits, boreholes, and gold mines in schist [9,11].
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Elevated concentrations (8–61 mg Sb kg�1) of Sb have been observed near smelting

plants and outfalls of sewage and fertilizer facilities [38–41]. There is a report about Sb-

enriched sandstone from Zimbabwe containing total Sb of up to �5000 mg kg�1 [42].

Areas near old mining and Cu and Pb smelting can have residual Sb levels of 103–260 mg

kg�1 [39,43,44].

Naturally occurring antimony is commonly combined with S, Pb, and As to form over 100

different minerals. In hydrothermally altered rocks, Sb is often found in stibnite [Sb2S3] and/

or kermisite [Sb2S2O], guettardite, [Pb(Sb,As)2S4], cervantite [Sb(III)Sb(V)O4] and para-

docrasite [Sb(III)2(Sb(III),As)2]. Of these minerals, only stibnite (SbS3) is commercially

mined as a source for metallic antimony. A trace quantity of Sb is generally present in Ag,

Cu, and Pb ores. Like As, Sb can be volatilized as SbH3 or methylated species in the

environment [45].

16.3 Sources of Soil Contamination

Arsenic contamination sources originate from both indigenous and anthropogenic inputs,

including atmospheric deposition. Weathering of As-containing primary minerals, the

main natural source of contamination, could yield an annual global input of 45 000 Mg

As y�1 [14]. While shales and coal contain mean As concentration of 13 mg kg�1 and 25

mg kg�1, respectively, sedimentary rocks could contain As concentrations as high as 2000

mg kg�1. The major anthropogenic sources of As originate from industrial processes such

as smelting of As-containing ores and by-products of fossil fuel combustion (for example,

fly coal ash), and agricultural uses. Approximately 60 % of the anthropogenic As emissions

are largely associated with two sources: Cu-smelting and coal combustion [46]. The total As

input into the atmosphere including volcanic activity, wood preservatives grassland fires

marine aerosols and biogenic liberation is estimated to be approximately 2.8� 107 kg

As y�1 [46,47].

Agricultural applications of As include insecticides, herbicides, fungicides, algae-

cides, sheepdips, wood preservatives, deworming and antibacterial agents for livestock,

vaccination for poultry and swine, and recycled poultry litter [1,48]. Poultry litter

containing an organic As compound (Roxasone) as an antibacterial agent has been

used in agriculture at the rate of 8.96–20.16 Mg ha�1, with total As inputs in three US

states (Delaware, Maryland, and Virginia) estimated at between 20 and 50 Mg

As y�1[49].

Most Sb soil pollution originates from mining and smelting industries and from the

outfalls of sewage, shooting ranges and fertilizer facilities [1,38–41]. In the United States

alone, approximately 5.5� 106 kg of Sb-associated compounds were released into the

aquatic and terrestrial environments between 1993 and 1997, with more than 97 % released

onto the land [50]. In addition to the terrestrial inputs, significant amounts of air-borne Sb

have also contributed to overall Sb inputs. Global atmospheric input of Sb can be as high as

6.1� 103 Mg y�1. While�60 % of the atmospheric inputs are from anthropogenic sources

including the incineration of waste, fossil fuel combustion, and the smelting of metal, the

rest are from natural sources including wind-blown dust, sea salt spray, volcanic activity,

and forest fires [51–54].
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16.4 Chemical Behavior in Soils

16.4.1 Arsenic Speciation and Solubility

In general, the solubility of inorganic As increases in reduced environments. Adsorbed

As can be released through reductive dissolution of the adsorbent, for example conversion

from the ferric ion to the ferrous ion. A direct reduction of As(V) to As(III) also increases

the solubility of total As due to weak As(III) sorption on soil components. Arsenic can

form solubility products with calcium, aluminum, sulfur and iron in the soil/water

environment. The solubility constant values (10�11) for iron and aluminum arsenates are

smaller compared to that of calcium arsenate (10�5), indicating that iron and aluminum

control the availability of As in soils [29]. In oxic environments, the predominant chemical

species is arsenate, which readily binds to clay minerals. pH also affects the solubility

of arsenate. While arsenate ions precipitate out with trivalent metals, for example Al(III)

and Fe(III)) to form scorodite and amorphous aluminum arsenate at acidic pH, calcium

arsenate precipitates (for example, Ca3(AsO4)2) at alkaline pH conditions [55]. Barium

arsenate (Ba3(AsO4)2) is known to be most insoluble of the As precipitates. In reduced

systems, arsenite forms solubility products with sulfides (for example, realgar, AsS, and

orpiment, As2S3).

In low-temperature geochemical environments, inorganic As is mainly present in

two oxidation states (þ3 and þ5). Figure 16.1 shows the effects of redox potential
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Figure 16.1 Eh–pH diagram for aqueous As species in the system As–O2–H2O at 25 �C and
1 bar total pressure (Reprinted from Applied Geochemistry, 17, P.L. Smedley and D.G.
Kinniburgh, A review of the source, behavior and distribution of arsenic in natural waters,
517–568. Copyright 2002, with permission from Elsevier [56].)
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(Eh) and pH on aqueous As speciation. Arsenite, As(III), commonly exists as

arsenious acid, As(OH)3, in reduced environments (for example, Eh �200 mV < þ300

mV over a pH range of 4 to 8) [2]. It has weak acid characteristics similar to boric acid

(Equation 16.1):

As OHð Þ3 þ H2O ! As OHð Þ�4 þ Hþ; log K ¼�9:29 ð16:1Þ

A fully protonated form is expected to be predominant in reduced soil environments due to

the high pK values (pK1 ¼ 9.22, and pK2 ¼ 12.13). Conversely, oxidized environments

contain more arsenate, As(V), as arsenic acid. Dissociation constants of arsenic acid

(pK1 ¼ 2.20, pK2 ¼ 6.97, and pK3 ¼ 13.4) predict deprotonated forms of arsenic

(H2AsO4
� and HAsO4

2�) in acidic to neutral environments.

In neutral oxygenated aquatic systems, As(III) oxidation has been reported to have a

half-life of 1 year [57], and no oxidation occurred over a 37-day period in distilled,

deionized water [58]. Arsenite oxidation in a 0.0005 M NaCl solution was stable below

pH 9 after 72 h [59].

In soil and water environments, As solubility is controlled not only by the redox

potential but also by the types of sorbent available, that is Fe(III) and Mn(IV) hydroxides,

and the As minerals themselves. In general, reducing conditions and/or the presence of

reductants readily promote sorbent dissolution, causing the release of sorbed As. Increased

As solubility in reduced soils has been reported by many researchers [60–63]; however,

decreased As solubility in long-term flooded soils has also been observed [63,64].

Resorption of As on solids [65] and co-precipitation of Mn3(AsO4)2-like phases [61]

were suggested to explain the decreased As solubility under long-term and moderately

reduced conditions (0–100 mV).

The influence of redox potential on the solubility of As from several metal-arsenate

minerals was investigated in a Santa silt loam soil from northern Idaho using an equili-

brium thermodynamic study coupled with XANES (X-ray absorption near edge structure)

analysis of arsenic oxidation [66]. Arsenic solubility decreased under oxidized conditions

as: Ca3(AsO4)2 ¼ Na2AsO4 > AlAsO4 > Mn3(AsO4)2 >Fe(AsO4)2. In contrast, under

anoxic conditions (<0 mV), the relative solubilities were: Fe(AsO4)2 > Ca3(AsO4)2 ¼
Na2AsO4 > AlAsO4 > Mn3(AsO4)2. XANES analysis showed that aluminum arsenate is

rapidly converted to solid-phase arsenite, indicating the most susceptible metal-arsenate

phase occurs under reducing conditions [66].

16.4.2 Arsenic Retention in Soils

The retention of As on soils is highly dependent on the physicochemical properties of the

soils, especially the nature and abundance of crystalline and amorphous iron and alumi-

num oxides, and clay and calcium contents. Several researchers have reported that As(III)

and As(V) retention in soils are highly associated with ammonium oxalate-extractable iron

(Feox) and/or aluminum (Alox) and dithionite–citrate–bicarbonate (DCB)-extractable iron

and/or aluminum [67–74]. High As(V) retention in calcium rich soils with pH> 7 has also

been reported [75]. The sorption of As(III) and As(V) on three California soils was studied

at varying As concentration, pH, and ionic strength [69]. The soils with the highest

DCB-extractable Fe and the highest clay content had the highest affinity for As(III) and
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As(V). Sorption isotherms showed that As(V) species sorbed more strongly than As(III)

under most conditions.

Ionic strength (I) can have an influence on both the rate of the elementary reaction and

the type of surface complexation (inner- and/or outer-sphere complexation) [76,77]. Gupta

and co-workers [78] investigated the effects of ionic strength on As(III) and As(V) sorption

kinetics on alumina. As(V) sorption kinetic experiments (pH �6.6) showed that an initial

sorption rate in seawater was much slower than that in (nonsaline) water. The sorption of

As(III) at pH �8 in seawater was also slower than that in water. Arai et al. [79] also

reported two different I dependencies on As reactivity on alumina; while As(V)

was insensitive to changes in I at pH 4–8, As(III) sorption decreased with increasing

I and pH.

Arsenate sorption on soil minerals is influenced by the surface charge density of

solids and the speciation of As(V). In general, As(V) sorption on inorganic minerals

increases with decreasing pH of bulk fluid (pHb) due to (i) the negatively charged

chemical species, that is HAsO4
2� and (ii) the positively charged mineral surfaces,

when pHb < PZC (point of zero charge) of the solids. The first dissociation constant of

As(V) is approximately 2.2, followed by constants of �7 and �12.8. At most environ-

mental pH values (4–8), the arsenic species are predominantly in deprotonated forms

(negatively charged species), and the charge properties of metal oxides are positive due

to the PZC of the solids (that is, 6.5–8.5 for iron oxides, 8.2–9.1 for aluminum oxides, an

exception is manganese oxides, for example birnessite �2.8). Therefore, As(V) is

expected to sorb onto metal oxide surfaces strongly via electrostatic interaction when

pHb � PZC is less then zero, and to predominantly sorb via ligand exchange when

pHb � PZC is greater than zero.

pH-dependent sorption behavior of As(V) has been observed for ferrihydrite, hematite

and aluminum oxyhydroxides [80–85]. In general, As(V) sorption is maximized at acidic

pH, and gradually decreases with increasing pH. Figure 16.2 shows the pH-dependent

As(V) sorption on hematite surfaces.

As metal oxyhydroxides (for example, ferrihydrite, hematite, and schwertmannite)

exhibit a strong affinity for As(V) at acidic pH values [86–88], various phyllosilicate

minerals also show a similar pH-dependent As(V) sorption behavior. Arsenate sorption on

alumina, kaolinite, illite, and montmorillonite gradually increases from pH 3 to 5, and then

decreases with increasing pH up to 10 [75,82,85,89]. Conversely, the As(V) sorption

envelope on quartz showed no significant adsorption (less than 15 % of net adsorption)

between pH 2.8 and 9.5 [85]. Arai and co-workers [79] investigated As(V) sorption

complexes forming at the g-Al2O3–water interface using X-ray absorption spectroscopy

(XAS). The XAS data indicates that As(V) forms inner-sphere complexes with a bidentate

binuclear configuration, as evidenced by an As(V)–Al bond distance of � 3.11–3.15 Å.

A similar molecular configuration was reported on allophone surfaces. Several other XAS

studies indicated that arsenate inner-sphere sorption mechanisms on metal hydroxide

surfaces [91,93–96]. The results of inner-sphere surface species are consistent with the

findings of Arai and co-workers’ study [79]. The results of spectroscopic investigations are

summarized in Table 16.1.

While the sorption of As(V) on metal oxides and phyllosilicate minerals is highly

dependent on the relation between pH of the bulk solution and the PZC of solids, As(III)

sorption is more dependent on its speciation. At most environmental pH values (4–8),
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arsenite (as As(OH)3)(aq) does not have any charge, and the negative charge increases with

increasing pH due to its weak acidity (pK1 ¼ 9.22, and pK2 ¼ 12.13). As(III) sorption on

metal oxides and phyllosilicate minerals increases with increasing pH, whereas As(V)

sorption decreases with increasing pH. Figure 16.3 shows the contrasting pH dependent

sorption behavior of As(III) and As(V) on g-Al2O3 surfaces.

The As(III) sorption envelope and isotherms on goethite, kaolinite, illite, montmorilloi-

nite, and aluminum hydroxide were investigated earlier [59,83,109]. Although there were

slight differences in As(III) uptake in different sorbents, As(III) sorption generally

increased with increasing pH from 4 to 6, and then gradually decreased. A similar

pH-dependent As(III) sorption was also observed in goethite and in arid soils that had

high (> 4000 mg kg�1) DCB-extractable iron [97]. Raven and co-workers [86] reported

the biphasic As(III) sorption reactions on ferrihydrite; the initial fast sorption was nearly

completed within the first few hours, and followed by slow uptake. At initial As concen-

trations of 0.27–13.3 mol As mol�1 Fe ferrihydrite, the As(III) sorption was greater at

higher pH. At the highest initial arsenite concentration of 13.3 mol As kg�1 of ferrihydrite,

a distinct sorption maximum was observed for arsenite adsorption at approximately

pH 9.0, which corresponds closely to the first pKa (�9.2) of H3AsO3.

The presence of As(III) inner-sphere surface species on aluminum oxide, goethite, and

birnessite has been reported in several spectroscopic studies (see Table 16.2). While most

mineral surfaces retain As(III) via ligand exchange mechanisms, there are a few reports

about the formation of As(III) outer-sphere surface complexes on aluminum oxide and

ferrihydrite surfaces [79,101].

The oxidation of As(III) in geomedia containing oxidants (for example, manganese

oxides) has been reported by several researchers [99,110–113]. Arsenite can be readily
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Figure 16.2 Arsenate sorption kinetics at the hematite–water interface, with suspension
density 4g l�1, ionic strength ¼ 0.01 M NaCl, and [As(V)]total ¼ 1.35 mM.
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oxidized to As(V) at the mineral surface and the mineral–water interface either by

surface catalysis or direct oxidation. For example, Scott and Morgan [110] reported

that the uptake of As(III) by synthetic birnessite (d-MnO2) increased with decreasing pH,

and oxidation products [110]. The reaction, which was independent of oxygen concen-

tration, indicated that birnessite acted as a direct oxidant for As(III). The reaction rate

was positively correlated to the molar ratio of MnO2/As(III), and the respective reaction

order was 1.5 [111].

Surface-catalyzed As(III) oxidation on birnessite was shown in molecular scale analy-

sis, using XANES [99,112,114]. To explain the reaction mechanisms, several researchers

suggest the importance of Mn(IV) and/or Mn(III) in birnessite contributing to the initial

reactivity of manganese oxides in the experimental systems [115–118].

Table 16.1 A summary of sorption mechanisms of arsenate, arsenite, antimonite, and
antimonate in geomedia

Adsorbate Adsorbent Suggested surface species References

As(III) g-Al2O3 Inner-sphere bidentate and outer-sphere [79]
As(III) Goethite Inner-sphere bidentate [97]

Inner-sphere bidentate [98]
As(III) Birnessite Inner-sphere bidentate [99]
As(III) Hydrous Mn oxides Inner-sphere bidentate [100]
As(III) Ferrihydrite Inner-sphere bidentate and outer-sphere [101]

Inner-sphere bidentate [102]
As(III) Amorphous Al oxides Outer-sphere [101]
As(V) g-Al2O3 Inner-sphere bidentate [79]
As(V) Gibbsite Inner-sphere bidentate [100]

Inner-sphere bidentate [103]
As(V) HFO Inner-sphere bidentate [104]

Ferrihydrite [93,105]
As(V) Goethite Inner-sphere bidentate [93,105]

Lepidocrocite, and
Akagenite
Goethite Inner-sphere bidentate and [94]

Inner-sphere monodentate
Goethite Inner-sphere bidentate [92]
Goethite Inner-sphere bidentate [96]
Goethite Inner-sphere bidentate [98]

As(V) Amorphous Fe oxides [101]
As(V) Hematite Inner-sphere bidentate [86]
As(V) Green rust and

Lepidocrocite
Inner-sphere bidentate [106]

As(V) Birnessite Inner-sphere bidentate [95]
As(V) Birnessite Inner-sphere bidentate [91]
As(V) Allophane Inner-sphere bidentate [90]
Sb(III) Goethite Inner-sphere bidentate [107]
Sb(V) Goethite Inner-sphere bidentate [107]
Sb(V) Amorphous Fe

oxyhydroxide
Inner-sphere [108]
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16.4.3 Arsenic Desorption in Soils

The extent of contaminant release greatly affects the bioavailability and transport

processes in aquatic and terrestrial environments. Slow desorption and irreversible/hys-

teretic reactions have been reported in several studies. Slow As(V) desorption was

observed in goethite and aluminum oxide [92,119,120]. The desorption rate was signifi-

cantly slower than the rate of adsorption under similar reaction conditions. Some have

found that incubation times strongly influence the reversibility of adsorbed As(V) from

soils and soil components (aluminum oxide, goethite, halloysite, kaolinite, illite, mon-

tmorillonite, and chlorite) [113,119–121]. The As(V) recovery decreased with increasing

aging time. Arai and Sparks [119] reported that the As(V) release from aluminum oxide

decreased with increasing aging time from 3 days to 1 year at pH 4.5 and 7.8. The longer

the residence time (3 days–1 year), the greater the decrease in As(V) desorption at both pH

values, suggesting irreversible reactions. Lin and Puls [122] also reported the irreversible

As(V) sorption on clay mineral surfaces. The As(V) recovery decreased with increasing

aging time from 1 to 75 days, and the effect was most pronounced in halloysite and

kaolinite.

Several researchers tested the effects of ligands on As(V) release from soil components.

O’Reilly and co-workers [92] reported that phosphate was more effective than sulfate in

removing As(V). Jackson and Miller compared the ability of phosphate and hydroxyl

ions to remove various As compounds (that is, As(III), As(V), dimethylarsenic acid,

monomethylarsonic acid, p-arsanilic acid, and roxasone) from goethite and amorphous
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Figure 16.3 Arsenate and arsenite sorption envelopes on g-Al2O3 (As(III) and As(V))total¼ 1 mM,
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iron oxyhydroxide [123]. Although phosphate released As(III) from goethite surfaces, it

was not as effective as hydroxyl ions. They reported that hydroxyl ions removed>70 % of

all As compounds on these mineral surfaces. The effect of alkaline pH on As release was

also documented by Masscheleyn et al. [61].

16.4.4 Antimony Speciation and Solubility

Like arsenic, the valence state of Sb greatly affects the solubility in the low-temperature

geochemical environments. This means the solution speciation of Sb(III) and Sb(V)

influences its retention and transport processes in soils. As discussed above, the speciation

of oxyanions is influenced by pH. Oxyanion sorption on soil components is a function of

both the net surface charge density of the sorbent and the chemical speciation of the

sorbate, which in turn are dependent on the pH of the bulk fluid (pHb). Antimonite (Sb(III))

commonly exists as antimonous acid, Sb(OH)3, in the reduced environment [35,124,125].

It has weak acid characteristics similar to boric acid as shown in Equation (16.2).

Sb OHð Þ3 þ H2O ¼ Sb OHð Þ�4 þ Hþ; log K¼�11:82 ð16:2Þ

A fully protonated form is expected to be predominant under reduced conditions due to the

high pK value. In the presence of aqueous sulfide under reduced conditions, thioantimony

complexes (for example, Sb(III)S2
� and Sb(III)2S4

2�) are known to readily form at neutral to

alkaline conditions [10,126]. Under reducing conditions, solubility of Sb is limited by the

solubility of Sb(III) sulfides (for example, stibnite) and oxides (for example, Sb(OH)3, Sb2O3

(valentinite, senarmontite), Sb2O4 (cervantite)). Krupka and Serne [127] demonstrated the

solubility calculation of these species under the total Sb concentration (Sbt) of 10�14.6 mol

l�1. The system was undersaturated with respect to these solids (Figure 16.4). When Sbtotal

increases to 10�7 mol l�1, the solubility products (Sb2O4, Sb2S3, Sb2O4, and/or Sb(OH)3)

readily form at acidic to alkaline pH values under reducing conditions (�500 mV to

750S mV) (Figure 16.5).

In addition to the sulfide complexes, Sb(III) is also known to make complexes with

chlorine at high chloride concentrations. Under reducing conditions, the aqueous species

of Sb(III) readily complex with dissolved Cl� to form SbCl2þ, SbCl2
þ, SbCl3

0(aq), and

SbCl4
� in acidic aqueous solutions [128].

Conversely, in oxidized environments antimonite, Sb(V) is the dominant Sb species

[35,129]. Due to its larger atomic size, the coordination of Sb(V) is different from that of

arsenate. It is octahedrally coordinated with six oxygen atoms. A protonation constant of

antimonite is shown in Equation (16.3).

Sb OHð Þ5 þ H2O ¼ Sb OHð Þ�6 þ Hþ; log K ¼ �2:47 ð16:3Þ

This equation predicts negatively charged species (Sb(OH)6
�) in acidic to neutral envir-

onments. Antimonate is very soluble in oxic environments [130]. Although the general

thermodynamic prediction of Sb(III) species can be applied to reduced environments,

Sb(III) species can also be detected in oxic conditions [35]. Researchers have suggested

that the metastability of Sb(III) under oxic conditions may have been linked to biotic

processes and/or a slow kinetic effect of Sb(III) oxidation. Similarly, Sb(V) is frequently

found in anoxic systems [35]. Metastability of Sb(V) might be attributed to the formation
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of Sb(V) thiocomplexes (for example, SbS4
3�) and/or a slow Sb(V) reduction process in

anoxic environments. The presence of Sb(V) sulfide complexes under reducing conditions

have been reported by several researchers [131–133].

While the aqueous speciation at low concentrations of total dissolved Sb (<100 mM) can

be explained by the studies mentioned above [131–133], Sb(V) may undergo polymeriza-

tion when dissolved antimony concentration is >0.001 M under acidic conditions, result-

ing in polynuclear species such as Sb12(OH)64
4� and Sb12(OH)66

6� [129]. No polymerized

Sb(III) aqueous species have been reported.

16.4.5 Antimony Adsorption and Desorption in Soils

Unlike arsenic, the sorption and desorption processes of Sb in geomedia have not been

extensively investigated. However, several researchers have studied the macroscopic

Sb(III) and Sb(V) sorption in metal oxyhydroxides, phyllosilicate minerals and soils

[108,134–137].

In an earlier investigation, Crecelius et al. [135] reported strong sorption of anionic

Sb(V) hydrolytic species in uncontaminated Puget Sound sediments from Washington,

USA. The sorption increased with decreasing pH, and the sorbed Sb(V) fraction was

associated with extractable iron and aluminum components in the sediments. Ambe [134]

investigated the sorption kinetics of Sb(V) on �-Fe2O3 surfaces at pH 4. The rate of

sorption was proportional to the square of both the concentration of Sb(V)t and the

H2O

H2O

O2

H2
Sb(OH)3

0 (aq)

Sb(OH)5
0 (aq)

Sb(OH)4
–

Sb(OH)6
–

Sb(OH)2
+

1.0

0.5

0

–0.5

0 2 4 6 8 10
pH

E
h 

(V
)

12 14

HSb2S4
–

Sb2S4
2–

Figure 16.4 Eh–pH diagram of aqueous speciation of antimony (calculated at 25 �C and a
concentration of 10�14.6 mol l�1 total dissolved antimony ( Reproduced with permission from
K.M. Krupka and R.J. Serne, Geochemical factors affecting the behavior of antimony, cobalt,
europium, technetium, and uranium in vadose sediments, Pacific Northwest National Laboratory,
2002 [127].)
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surface area of �-Fe2O3. The sorption capacity of the �-Fe2O3 sample for Sb(V) ions was

� 7 mg g�1, which is much less than the calculated value of monolayer coverage (45 mg

g�1). Subsequent desorption studies indicated the slow desorption of Sb(V) from the

�-Fe2O3 surfaces at pH 4–10.

Tighe et al. [136] studied Sb(V) sorption in two organic rich soils, and two model phases

mimicking those dominant in these soils, namely a solid humic acid and an amorphous

Fe(OH)3, at pH 2.5–7 [136]. Antimonate sorption increased with decreasing pH in these

soils and in the humic acid. In contrast, the amorphous ferric oxyhydroxide showed less

pH dependency of Sb(V) sorption within the pH range examined.

Effects of ionic strength and pH on Sb sorption were investigated on goethite surfaces

[137]. Antimonate sorption on goethite decreases with increasing pH from 4 to 10.

However, the uptake of Sb(V) was reduced at pH > 6 when ionic strength was increased

from 0.01 M to 0.1 M KClO4. The authors suggested that the sorption phenomena in the

higher ionic strength solutions was caused by the formation of KSb(OH)6
0 ion pair [137].

On the contrary, antimonite, Sb(III) sorption was not strongly affected by changes in the pH

or ionic strength [137]. Antimonite adsorption was insensitive to changes in I at pH 2–6.

A modified triple-layer model was successfully used to describe the inner-sphere Sb(III)

and Sb(V) sorption processes in goethite under the reaction conditions studied [137].

More recently, a few spectroscopic studies were conducted to investigate the sorption

mechanisms of Sb(III) and Sb(V) on mineral surfaces [106,107]. Scheinost et al. [107]

H2O

H2O

O2

H2
Sb(OH )3(solid )

Stibnite (Sb2S4)

Sb(OH)5
0 (aq)

Sb(OH)4
–

Sb(OH)6
–

Sb(OH)2
+

Sb2O4

1.0

0.5

0

–0.5

0 2 4 6 8 10
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E
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)
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HSb2S4
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Sb2S4
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Figure 16.5 Eh–pH diagram of aqueous speciation and solubility products of antimony. (The
diagram was calculated at 25 �C and a concentration of 10�7 mol/L total dissolved antimony.)
Solubility products are shown shaded ( Reproduced with permission from K.M. Krupka and
R.J. Serne, Geochemical factors affecting the behavior of antimony, cobalt, europium,
technetium, and uranium in vadose sediments, Pacific Northwest National Laboratory,
2002 [127].)
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reported that the presence of specific Sb–Fe interatomic distances corresponded to the

edge sharing inner-sphere surface species of Sb(III) and Sb(V) on goethite surfaces

(Table 16.1). McComb and co-workers [108] used Attenuated Total Reflectance infrared

(IR) spectroscopy to understand Sb(V) retention at the amorphous iron oxyhydroxide–

water interface. The chemisorption of Sb(V) increased with decreasing pH from 8 to 3.

They suggested a ligand exchange reaction (that is, inner-sphere sorption mechanism)

based on the Fourier transform infrared (FTIR) spectra observation; the loss of an OH

stretching mode upon the Sb(V) reaction on the mineral surfaces (Table 16.1). They also

observed an increase in the extent of Sb(V) release at alkaline pH values.

Belzile et al. [138] studied the Sb(III) sorption in amorphous iron oxyhydroxides and

birnessite. They reported rapid surface catalyzed Sb(III) oxidation on these surfaces at

different pH values, determined via differential pulse adsorptive stripping voltammetry

analysis. Leuz and co-workers [137] also reported the surface catalyzed oxidation of

Sb(III) on goethite surfaces.

16.5 Risks from Arsenic and Antimony in Soils

Due to various anthropogenic inputs to (for example, mining, smelting industries) and

indigenous sources in (for example, mineral weathering) soils, As and Sb are often

transported to surface waters and groundwaters, resulting in aqueous concentrations of

these elements greater than the current MCL in many parts of the world [2,8,9,11,139].

High concentrations of As and Sb in drinking water supplies raise serious concerns

regarding protection of human and ecological health. In recent years many researchers

have assessed the environmental risks of As and Sb accumulation in terrestrial biota, such

as plant species at contaminated sites.

As described above in Section 16.4, solubility and mobility of As and Sb are highly

influenced by pH, redox status and types of adsorbents in soils. Antimony and As are

considered relatively immobile under oxidizing conditions due to the strong fixation

mechanisms of their pentavalent species in soil matrices. However, some studies have

shown that a fraction of these elements may be bioavailable in oxic environments,

depending on soil contamination levels and the specific plant species growing at con-

taminated sites. Arsenic and Sb in soils can be readily taken up by a wide variety of plant

species [140,141]. Background As and Sb content in terrestrial vascular plants ranges from

0.2–50 mg g�1 and 0.009–1.5 mg g�1, respectively [140,142–144]. In terrestrial vascular

plants, the background Sb content was found to range from 0.2 to 50 mg g�1 [140,142,145].

Tyler and co-workers [146] reported the amounts of As and Sb in developing, maturing,

and wilting leaves. The amounts of As and Sb were very low in leaves (<1 mg per 100

leaves). However, total element concentrations gradually increased throughout the grow-

ing season and usually in the subsequent winter.

While the above studies show a wide range of the background As and Sb concentrations

in plants growing at uncontaminated sites, bioaccumulation of As and Sb can be elevated

in some plant species at or near mining sites [38,147,148]. Some plant species (for

example, Agrostis canina, Achillea tenuis, Pseudosuga taxifolia, and Pityrogramma

calomelanos, Pteris vittata, and moss species (for example, Pohlia wahlenbergii and
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Brachythecium cf. reflexum) can accumulate high levels (>1000 mg kg�1) of As and Sb

from soils [149–157]. The results of metalloid phytoaccumulation studies are summarized

in Table 16.2. While many focused on the measurements of operationally defined chemical

extractable and/or total As and Sb concentrations in plant tissues, some researchers pointed

out the importance of chemical speciation with respect to toxicity and phytoaccumulation

processes. Recent research has shown the presence of As(III), As(V), Sb(III), Sb(V), and

methylated As and Sb species in plant tissues (Table 16.3). It is apparent that phytoaccu-

mulation of As and Sb differs across plant species growing at contaminated sites.

However, the relationship between phytoaccumulation mechanisms and the chemical

speciation found in plants and soils is not well understood.

16.6 Conclusions and Future Research Needs

This chapter has discussed the chemical properties of As and Sb, toxicity, and reactivity in

soil–water–plant systems. Although these elements share numerous similarities in biogeo-

chemical properties, their reactivity is highly influenced by changes in environmental

conditions. Whereas the trivalent states of As and Sb are mobile in the reduced soil–water

systems, the pentavalent species are relatively immobile under oxidizing conditions due to

the strong fixation mechanisms in soil matrices.

The metalloid accumulation in plant species readily occurs at As and Sb naturally con-

taminated sites. Some shrubs, grasses, reeds, and mosses can tolerate As and Sb and largely

remove these metalloids from surface soils. Populations of a variety of plant species colonized

at contaminated sites are responding to these metalloids by exclusion or accumulation.

The extent/rate of bioaccumulation and sorption/desorption processes are highly influ-

enced by the chemical species specific in the plant–water–soil systems. Unfortunately, the

chemical speciation of As and Sb in soils and plant tissues are rarely correlated with

reaction processes (for example, plant uptake and desorption processes) at the field scales

and soil physicochemical properties (for example, redox status, pH, and hydrologic

properties). Using modern microscopic and spectroscopic techniques (for example, trans-

mission electron microscope spectroscopy, synchrotron based X-ray techniques), solid-

state speciation in soils and biological-media can be better characterized, and these research

findings will further lead to better toxicological/risk assessment of As and Sb in field-scale

settings. These comprehensive research results will be helpful in making better regulatory

decisions, and in designing effective in situ remediation technologies and environmental

management programs to enhance environmental quality and ecological health.
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