January 2016

# **REVISED FINAL REPORT ON**

# Assessment of Regional Soil Quality, Giant Mine, Yellowknife, NT

Submitted to: Mr. Greg Wright, M.Sc. - Project Manager, Environment AECOM Canada Ltd. 18817 Stony Plain Road Edmonton, AB T5S 0C2



Report Number: 1313770044-9000 Document Control Number: 405-Site-Wide Soils-18-RPT-0001-Rev3\_20160129

#### Distribution:

One Copy: Public Works and Government Services Canada, Edmonton, AB One Copy: AECOM Canada Ltd., Edmonton, AB One Copy: Golder Associates Ltd., Edmonton, AB



REPORT

# **Executive Summary**

Public Works and Government Services Canada (PWGSC) retained AECOM Canada Ltd. (AECOM) and, as a sub-consultant, Golder Associates Ltd. (Golder) to provide environmental support services associated with the remediation of Giant Mine, located approximately 5 km north of Yellowknife, Northwest Territories (hereafter referred to as the Site).

The overall purpose of the regional soil sampling program was to characterize the concentration and distribution of metals in shallow soils across the undeveloped areas of the Site. Arsenic has been historically identified in the shallow soil at the Site and is therefore the primary contaminant of concern for this assessment. For a specific subset of soil samples, the mineralogical composition of arsenic bearing particles was assessed using advanced mineralogical techniques. The results of this analysis provide insight into the origin, mineralogical composition, particle size and texture of arsenic in soil. It is anticipated that this information will provide valuable insight into site closure decisions with respect to soil remediation, future land use management and risk assessment.

The results of this soil quality assessment provide key environmental data which facilitate the development of closure strategies for the Giant Mine lands. By understanding the speciation of arsenic, the owner can make specific conclusions with respect to the likely wide area distribution of elevated arsenic in shallow soil, and develop predictive tools. We can also develop expanded research into the potential degradation of these materials.

The field strategy involved the collection of large number (354) of shallow soil samples across undisturbed areas, and analysing all samples for bulk chemistry. The results of the bulk chemistry analysis were used to select a subset of 50 samples for arsenic speciation testing. Sample stations were established at 103 locations across the Site.

Researchers with the Jamieson Research Group (JRG) at Queen's University were retained to complete the soil quality testing based on both the specialized analytical tools available at the Queen's University and their experience and knowledge of Giant Mine soils.

Multiple discrete samples were collected at each station for the purposes of assessing vertical distribution of arsenic. The soil quality data was also reviewed with respect to lateral distance from the former Roaster Stack.

The following points summarize our conclusions.

The bulk chemistry results confirm the presence of elevated concentrations of total arsenic in shallow soil within the undisturbed areas of the Site. These elevated concentrations are particularly pronounced in the outcrop terrain. The highest concentrations were recorded in the outcrop terrain less than 1 km from the former Roaster Stack. The majority of soil samples submitted for bulk chemistry analysis recorded concentrations of total arsenic below the current soil quality criteria (Section 5.1.1.4).



- Soil samples selected for arsenic speciation were based on the bulk chemistry data. Samples containing total arsenic concentrations greater than 500 µg/g were identified as potential candidates for arsenic speciation testing (as discussed in Section 4.2.3.1). Consequently, the arsenic speciation results should be interpreted based on this sample selection criteria. The arsenic speciation results indicate that the former Roaster Stack is the primary source of the anthropogenic arsenic in the shallow soils on the Site. Arsenic trioxide derived from stack emissions is present as either the most or second-most abundant form of arsenic in over 85% (i.e., 70% primary and 15% secondary) of the 50 soil samples assessed using arsenic speciation techniques. Arsenopyrite derived from waste rock and tailings was present as the most or second-most abundant form of arsenic in over 30% (i.e., 15% primary and 15% secondary) of the 50 soil samples examined for arsenic speciation.
- The present results provide irrefutable mineralogical evidence of the presence of three primary miningrelated constituents in shallow soil at the Site: (i) arsenic trioxide; (ii) arsenopyrite; and (iii) roaster oxides. The presence of these constituents at elevated concentrations confirms anthropogenic influence on regional shallow soil quality. The quantity of arsenic trioxide/arsenopyrite/roaster oxide grains typically decreased with depth.
- The dominant abundance of arsenic trioxide grains, with minimal evidence of either arsenopyrite or arsenic sulphide suggests Roaster Stack deposition. It is acknowledged that the selection of samples for arsenic speciation testing was biased with samples containing higher total arsenic concentrations (above 500 µg/g).
- The primary or secondary abundance of arsenic trioxide is evident in outcrop samples across the entire Site. Elevated concentrations of arsenic trioxide are particularly pronounced in the outcrop terrain less than 1 km from the former Roaster Stack. Conversely, a significant decline in the number of arsenic trioxide grains present in shallow soil was recorded beyond 1 km from the Roaster Stack. With one exception, no samples contained greater than 100 grains of arsenic trioxide when located greater than 1 km from the Roaster Stack.
- Elevated concentrations of arsenic trioxide in the shallow soil will require a remediation or risk management strategy to avoid potential exposure in the future should areas of the Site become accessible to the public. Any active remediation program should consider what actions may be required to protect workers from potential exposure during the execution of the program.
- Future application of automated mineralogy techniques will be dependent upon ongoing land use planning and risk assessment studies. Automated mineralogy testing will likely continue to be required during the pre-remediation stages of the project. The method is important for informing land use decisions and providing input to risk assessment. Should future remedial works be considered in undisturbed areas, it is considered unlikely that the collection of extensive additional automated mineralogy data will be necessary.

The following points summarize our recommendations.

- The existing data should be reviewed in the context of human health and ecological risk. The application of the current soil quality guideline for total arsenic should be reviewed in the context of the bulk chemistry and arsenic speciation data presented herein.
- The potential presence of arsenic trioxide within the developed areas of the Site should be assessed. The appropriate level of PPE for workers should be established based on the results of this assessment.





# **Table of Contents**

| 1.0 |                |                                                          |     |  |  |  |  |  |  |
|-----|----------------|----------------------------------------------------------|-----|--|--|--|--|--|--|
| 2.0 | 2.0 BACKGROUND |                                                          |     |  |  |  |  |  |  |
|     | 2.1            | Forms of Arsenic                                         | 1   |  |  |  |  |  |  |
|     | 2.1.1          | Roaster Particles                                        | . 2 |  |  |  |  |  |  |
|     | 2.1.2          | Mine Waste Particles                                     | . 2 |  |  |  |  |  |  |
|     | 2.2            | Terrain Conditions                                       | 3   |  |  |  |  |  |  |
|     | 2.3            | Historical Investigations                                | 4   |  |  |  |  |  |  |
|     | 2.4            | Roaster Stack – Historical Emissions                     | . 5 |  |  |  |  |  |  |
|     | 2.5            | Mineralogical Characterization                           | . 6 |  |  |  |  |  |  |
| 3.0 | SCOPE          | OF WORK                                                  | 7   |  |  |  |  |  |  |
| 4.0 | METHO          | DDS                                                      | 7   |  |  |  |  |  |  |
|     | 4.1            | Field Methods                                            | . 8 |  |  |  |  |  |  |
|     | 4.1.1          | Sample Collection                                        | . 8 |  |  |  |  |  |  |
|     | 4.1.2          | Sample Locations                                         | . 8 |  |  |  |  |  |  |
|     | 4.1.3          | Key Challenges to Consistent Soil Sampling               | . 9 |  |  |  |  |  |  |
|     | 4.1.4          | Health and Safety Protocols                              | . 9 |  |  |  |  |  |  |
|     | 4.2            | Laboratory Methods                                       | . 9 |  |  |  |  |  |  |
|     | 4.2.1          | Sample Preparation                                       | 10  |  |  |  |  |  |  |
|     | 4.2.2          | Bulk Chemistry Analysis                                  | 10  |  |  |  |  |  |  |
|     | 4.2.3          | Arsenic Speciation Testing                               | 10  |  |  |  |  |  |  |
|     | 4.2.3.1        | Sample Selection                                         | 10  |  |  |  |  |  |  |
|     | 4.2.3.2        | Mineral Liberation Analysis/Scanning Electron Microscope | 11  |  |  |  |  |  |  |
|     | 4.2.3.3        | Grain Mount Methodology                                  | 11  |  |  |  |  |  |  |
|     | 4.2.3.4        | MLA Mineral Reference Library                            | 11  |  |  |  |  |  |  |
|     | 4.2.4          | Comparison of Bulk Chemistry and Arsenic Speciation Data | 12  |  |  |  |  |  |  |
| 5.0 | RESUL          | TS                                                       | 12  |  |  |  |  |  |  |
|     | 5.1            | Soil Quality Variation with Depth                        | 12  |  |  |  |  |  |  |
|     | 5.1.1          | Bulk Chemistry Results                                   | 12  |  |  |  |  |  |  |



# ASSESSMENT OF REGIONAL SOIL QUALITY - GIANT MINE

| 8.0 | LIMITA  | ITIONS                                           | 42 |
|-----|---------|--------------------------------------------------|----|
| 7.0 | CONCL   | LUSIONS                                          | 40 |
|     | 6.3     | Summary                                          | 40 |
|     | 6.2.4   | Risk Communication                               |    |
|     | 6.2.3   | Site Remediation                                 |    |
|     | 6.2.2   | Human Health and Ecological Risk Assessment      |    |
|     | 6.2.1   | Land Use and Risk Management Planning            |    |
|     | 6.2     | Future Applications                              |    |
|     | 6.1     | Current Assessment                               |    |
| 6.0 | MINER   | ALOGICAL CHARACTERIZATION                        |    |
|     | 5.3     | Summary of Findings                              |    |
|     | 5.2.4   | Summary of Lateral Distribution                  | 33 |
|     | 5.2.3.2 | Arsenic Speciation Results                       |    |
|     | 5.2.3.1 | Bulk Chemistry                                   | 31 |
|     | 5.2.3   | Distant Stations (>2 km from Roaster Stack)      | 31 |
|     | 5.2.2.2 | Arsenic Speciation Results                       | 31 |
|     | 5.2.2.1 | Bulk Chemistry                                   |    |
|     | 5.2.2   | Mid-Range Stations (1 to 2 km)                   | 29 |
|     | 5.2.1.2 | Arsenic Speciation Results                       |    |
|     | 5.2.1.1 | Bulk Chemistry Results                           | 27 |
|     | 5.2.1   | Near Source Stations (0 to 1 km)                 | 27 |
|     | 5.2     | Soil Quality Variation with Lateral Distribution |    |
|     | 5.1.2.3 | Wetland                                          | 23 |
|     | 5.1.2.2 | Forest                                           |    |
|     | 5.1.2.1 | Outcrop                                          |    |
|     | 5.1.2   | Arsenic Speciation Results                       |    |
|     | 5.1.1.4 | Comparison with Current Soil Quality Criteria    |    |
|     | 5.1.1.3 | Wetland                                          |    |
|     | 5.1.1.2 | Forest                                           |    |
|     | 5.1.1.1 | Outcrop                                          |    |





| CLOSURE | 43      |
|---------|---------|
|         | CLOSURE |

#### GRAPHS

| Graph 1: Concentration of Total As (µg/g) in Outcrops vs Depth         | .14  |
|------------------------------------------------------------------------|------|
| Graph 2: Concentration of Total As (µg/g) in Forest Stations vs Depth  | . 17 |
| Graph 3: Concentration of Total As (µg/g) in Wetland Stations vs Depth | . 19 |

#### TABLES

| Table 1: Achieved Station and Sample Distributions                                                     | 8  |
|--------------------------------------------------------------------------------------------------------|----|
| Table 2: Terrain Type versus Soil Analytical Testing Program                                           | 11 |
| Table 3: Achieved Distribution of Bulk Chemistry Sampling Stations                                     | 12 |
| Table 4: Bulk Chemistry Maximums based on Depth Ranges                                                 | 20 |
| Table 5: Bulk Chemistry Minimums based on Depth Ranges                                                 | 20 |
| Table 6: Bulk Chemistry Averages based on Depth Ranges                                                 | 20 |
| Table 7: Arsenic Soil Quality Criteria Exceedances                                                     | 21 |
| Table 8: Classification of Terrain and Sample Depth for Arsenic Speciation Samples                     | 21 |
| Table 9: Arsenic Speciation Maximums based on Depth                                                    | 25 |
| Table 10: Arsenic Speciation Minimums Based on Depth                                                   | 25 |
| Table 11: Arsenic Speciation Averages Based on Depth                                                   | 25 |
| Table 12: Achieved Sample Sizes for Bulk Chemistry by Distance from Roaster Stack and Terrain Type     | 26 |
| Table 13: Achieved Sample Sizes for Arsenic Speciation by Distance from Roaster Stack and Terrain Type | 26 |
| Table 14: Bulk Chemistry Maximum Analytical Results Based on Distance from the Stack                   | 34 |
| Table 15: Bulk Chemistry Minimum Analytical Results Based on Distance from the Stack                   | 34 |
| Table 16: Bulk Chemistry Average Analytical Results Based on Distance from the Stack                   | 34 |
| Table 17: Arsenic Speciation Maximum Values Based on Distance to Roaster Stack                         | 35 |
| Table 18: Arsenic Speciation Minimum Values Based on Distance to Roaster Stack                         | 35 |
| Table 19: Arsenic Speciation Averages Based on Distance to Roaster Stack                               | 35 |

#### APPENDICES

#### FIGURES

Figure 1: Regional Soil Sample Locations Figure 2: Regional Soil Sample Locations by Terrain Type Figure 3: Regional Soil Samples Submitted for Speciation Figure 4: Regional Soil Samples Vertically Deliniated





Figure 5: Regional Soil Sample Locations with Arsenic Lab Results (1 of 3)

Figure 6: Regional Soil Sample Locations with Arsenic Lab Results (2 of 3)

Figure 7: Regional Soil Sample Locations with Arsenic Lab Results (3 of 3)

#### APPENDIX A

Queen's University Final Report

APPENDIX B Soil Descriptions

**APPENDIX C** Site Reconnaissance Photographs



# 1.0 INTRODUCTION

Public Works and Government Services Canada (PWGSC) retained AECOM Canada Ltd. (AECOM) and, as a sub-consultant, Golder Associates Ltd. (Golder) to provide environmental support services associated with the remediation of Giant Mine, located approximately 5 km north of Yellowknife, Northwest Territories (hereafter referred to as the Site).

As part of this environmental support services contract, the Golder/AECOM team was requested by PWGSC to assess regional soil quality across undeveloped areas of the Site. Authorization to proceed was provided by PWGSC on September 10, 2014.

Golder has retained the Jamieson Research Group (JRG) at Queen's University in Kingston, Ontario to provide analytical and technical support to this project. This group is led by Dr. Heather Jamieson, an international expert on the environmental effects of mining activities specializing in arsenic mineralogy and speciation. Dr. Jamieson and her team have carried out extensive research on arsenic mineralogy at various mine sites around the world and are currently engaged in academic research relating to mining activities throughout northern Canada, including the Giant Mine area. Golder has retained the JRG to complete both bulk chemistry analyses of 354 shallow soil samples, as well as arsenic speciation testing on a subset of 50 samples. The JRG report entitled "Characterization of Soil Samples at Giant Mine, NWT", dated February 6, 2015, is provided in Appendix A.

The purpose of the regional soil sampling program was to characterize the distribution of arsenic in shallow soils across the undeveloped areas of the Site. The results of this program will provide key data for a future risk assessment which will inform future discussion and decisions regarding end land use.

# 2.0 BACKGROUND

# 2.1 Forms of Arsenic

The presence of arsenic in shallow soils at the Site may be broadly grouped into either natural or anthropogenic categories. Natural concentrations of arsenic are elevated in the Giant Mine and surrounding Yellowknife area. Naturally occurring arsenic in shallow soils is supplemented by anthropogenic arsenic compounds released during historical mining activities in the area.

The elevated naturally occurring concentrations of arsenic in the area are a result of local geology, with the presence of massive sulphide deposits close to surface. As a result, the natural soil and rock in the area have arsenic concentrations in the range of 3 micrograms ( $\mu$ g) per (/) gram (g) to 150  $\mu$ g/g<sup>1</sup>.

The national guideline for inorganic arsenic in industrial soil of 50  $\mu$ g/g<sup>2</sup> has been superseded to reflect local conditions in the Northwest Territories; a remediation objective of 340  $\mu$ g/g<sup>3</sup> applies to Yellowknife area soils. The current soil quality criteria for arsenic is based on total arsenic concentration and no criteria currently exist for the various speciated forms of arsenic discussed herein. It is anticipated that the relative concentrations of the various forms of arsenic in shallow soil will be a relevant consideration with respect to assessing human health and ecological risk as redevelopment of the Site proceeds.

<sup>&</sup>lt;sup>3</sup> Government of Northwest Territories, Department of Environment and Natural Resources. November 2003. Environmental Guideline for Contaminated Site Remediation.



<sup>&</sup>lt;sup>1</sup> Environmental Sciences Group, Royal Military College of Canada. February 2001. Arsenic Levels in the Yellowknife Area: Distinguishing Between Natural and Anthropogenic Inputs.

<sup>&</sup>lt;sup>2</sup> Canadian Council of Ministers for the Environment. 2001. Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health: Arsenic (Inorganic) (1997). Updated in Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.



The Giant Mine Roaster Complex operated at the Site from 1949 to 1999. Airborne releases from the historical operation of the Roaster Complex represent the primary source of anthropogenic contaminant input across the undeveloped areas of the Site. Secondary sources of anthropogenic contaminants include aerially dispersed dust from tailings and waste rock impacted areas, roadways, and the mill area.

These two sources of anthropogenic arsenic have contributed to increased arsenic concentrations, above regional normal, within undisturbed areas surrounding the Site. Each source (i.e., Roaster-derived arsenic dust and tailings-derived arsenic) can be identified due to their unique mineralogy. The following paragraphs briefly describe the arsenic mineralogy of these forms.

# 2.1.1 Roaster Particles

Regional anthropogenic effects on soil quality have partly resulted from the historical aerial dispersion of Roaster dust (Section 2.4). The soil quality studies (referenced in Section 2.3) have shown that these anthropogenic materials consist of two primary components:

- Arsenic trioxide [As (III)] is the primary component of Roaster dust (typically 80%) and occurs in two typical mineral habits (arsenolite and clauderite). Antimony (Sb) bearing arsenic trioxide ([As,Sb]<sub>2</sub>O<sub>3</sub>) is also present and partly explains the persistent nature of this mineral.
- Roaster-derived iron-oxides (ROs) may contain up to 7% arsenic mixed as arsenic (III) and arsenic (V). These nanocrystalline iron oxide structures are comprised of maghemite, hematite and magnetite.

The presence of other arsenic related materials in Roaster particles is secondary in terms of occurrence and concentration in the environment. Other arsenic related materials include the following:

- Arsenates (As [V]) are the stable secondary arsenic phase and occur in many forms. This weathering mineral is present in surface soils but has not been recorded in significant amounts regionally.
- Arsenic is present as an adsorbed phase onto a variety of iron and manganese oxides, organic matter and clay minerals.

# 2.1.2 Mine Waste Particles

Secondary sources of arsenic include aerially dispersed dust from tailings impoundments and waste rock areas. These secondary sources are likely dominated by arsenopyrite and are potentially prevalent in the undisturbed areas.

Previous investigations (Section 2.3) have confirmed the presence of arsenic in soil within localized undeveloped areas of the Site. These investigations have been of limited scope, but provided sufficient information to confirm the need for further investigation. The primary concern involves the potential presence of elevated concentrations of arsenic trioxide in the shallow soil which may be accessible to the public following remediation. For the purposes of this study, shallow soil is defined as native materials typically from 0 to 1 meters (m) below grade. It should be noted that some soil samples were collected at depths below 1 m for the purposes of vertical delineation.



# 2.2 Terrain Conditions

The terrain conditions at the Site consist of a combination of the following:

- Disturbed lands as a result of mining activities, including tailings ponds, mining pits and developed areas such as roads and buildings.
- Undisturbed lands consisting of scrub forest areas, wetlands and bedrock outcrops. These lands have not been physically disturbed by historical mining operations.

Historically, the investigation of elevated concentrations of arsenic across the Site has been restricted to the disturbed lands.

The terrain conditions in the undisturbed lands consist of approximately 60% bedrock outcrops, with organic sediments comprised of peaty organic soils, scrub forest and wetlands constituting the remainder of the terrain. These lands are typically poorly drained. Many of the outcrop areas have vegetation in depressions. The native soil consists of till and gravel deposits, overlain by glaciolacustrine clays and silts. Areas with peaty organic soils can be up to 1.0 m thick in some areas.

Bedrock outcrops are predominant at higher elevations. The main portions of the outcrop typically consist of bare, smooth rock surfaces with crevices, or hollows, which collect soil. Vegetation within the outcrop areas is limited to the outcrop crevice areas, or hollows (typically less than 10% of the outcrop area); and the lower lying areas between outcrops. These bedrock outcrop crevices have been the focus of research by Wrye<sup>4</sup>, Bromstad<sup>5</sup>, and Bromstad and Jamieson<sup>6</sup> in recent years. Bedrock outcrop soils were investigated as these areas were deemed to have the potential to accumulate aerially dispersed contaminants (i.e., both arsenic trioxide and ROs), primarily from the historical operation of the Roaster Complex.

Vegetated or forested areas occur in lower lying areas between the outcrops. The forested areas typically consist of small, stunted spruce and birch, with small bushes frequently intermixed. The short growing season and dry climate result in generally small and stunted vegetation. The subsurface soil conditions in the vegetated areas are likely to consist of organic deposits that are typically less than 0.50 m thick, underlain by glaciolacustrine clays and silts. These materials overlay glacial till, which is discontinuous and typically less than 2.0 m thick. Wrye found that arsenic concentrations are typically low (<100  $\mu$ g/g) on the surface (within the organic layer), and increase to a maximum concentration (approximately 300  $\mu$ g/g) at the transition zone from the base of the organics to the top of the glaciolacustrine materials<sup>7</sup>. Arsenic concentrations in the underlying glacial till are likely typical of natural background concentrations.

Wetlands occur in poorly drained areas between the outcrops. The wetlands are small, marshy areas situated on the edges of ponds and within hollows. Vegetation in these areas typically consists of small bushes and grasses. The subsurface soil conditions in the wetlands likely consist of organic deposits that are typically over 1.0 m thick, underlain by glaciolacustrine clays and silts.

<sup>&</sup>lt;sup>7</sup> Wrye, L.A., 2008. Distinguishing between Natural and Anthropogenic Sources of Arsenic in Soils from the Giant Mine, Northwest Territories and the North Brookfield Mine, Nova Scotia.



<sup>&</sup>lt;sup>4</sup> Wrye, L.A., 2008. Distinguishing between Natural and Anthropogenic Sources of Arsenic in Soils from the Giant Mine, Northwest Territories and the North Brookfield Mine, Nova Scotia.

<sup>&</sup>lt;sup>5</sup> Bromstad, M.J., 2011. The Characterization, Persistence and Bioaccessibility of Roaster-Derived Arsenic in Surface Soils at Giant Mine, Yellowknife, NT.

<sup>&</sup>lt;sup>6</sup> Bromstad, M.J., and Jamieson, H.E., 2011. The Persistence and Mobility of Roaster-Derived Arsenic in Surface Soils at Giant Mine, NT.

# 2.3 Historical Investigations

As part of the development of the scope of work for the current regional soil quality assessment, Golder reviewed and summarizes herein the following documents:

- "Arsenic Levels in the Yellowknife Area: Distinguishing Between Natural and Anthropogenic Inputs".
   Environmental Sciences Group, Royal Military College of Canada, Kingston, Ontario. February 2001.
- "Distinguishing between Natural and Anthropogenic Sources of Arsenic in Soils from the Giant Mine, Northwest Territories and the North Brookfield Mine, Nova Scotia", Wrye, L.A., 2008.
- "The Characterization, Persistence and Bioaccessibility of Roaster-Derived Arsenic in Surface Soils at Giant Mine, Yellowknife, NT", Bromstad, M.J., 2011.
- "The Persistence and Mobility of Roaster-Derived Arsenic in Surface Soils at Giant Mine, NT", Bromstad, M.J., and Jamieson, H.E., 2011.
- "Letter Report on Shallow Soil Sampling Programs Giant Mine, Yellowknife, Northwest Territories", Fiddler, S., and Cole, A. 2014.

The majority of research at the Site has focused on outcrop soils within the undisturbed lands. The outcrop soils were defined as soils found in bedrock depressions that were suitable for "trapping" arsenic-rich dust from the historical Roaster Stack emissions via washing down dust from the bedrock surface into the outcrops, a process termed the "wash down effect"<sup>6</sup>, which results in accumulation of arsenic-containing particles over time in the outcrop soils. These depressions represent a natural system of contaminant concentration from historical Roaster Stack emissions.

Research into the potential impacts of the Roaster Complex historical emissions within the undisturbed lands was initiated by  $Wrye^8$ . This research focussed on three areas to assess potential shallow soil and bedrock outcrop soil concentrations of arsenic: an area near the Town Site and southeast of the Roaster Complex, a location adjacent to the Roaster Complex, and an area east of Pocket Lake, west of the Roaster Complex. Both shallow soil and bedrock outcrops were sampled in these areas. It was concluded following initial sampling of outcrop areas that elevated concentrations of arsenic were present in the soil in these bedrock depressions. These arsenic concentrations were significantly higher than those which could be explained through natural processes; arsenic was frequently recorded at concentrations greater than (>) 1,000  $\mu$ g/g. Wrye<sup>8</sup> concluded these studies as follows:

- Aerial emissions from the Roaster Complex have persisted in the shallow soil environment.
- It is possible to distinguish between natural and anthropogenic sources of arsenic using advanced laboratory techniques.
- Arsenic bearing Roaster Oxides were identified in shallow soils.
- The "wash down effect" impacted the concentrations of arsenic in shallow soil adjacent to the bedrock outcrops.

<sup>&</sup>lt;sup>8</sup> Wrye, L.A., 2008. Distinguishing between Natural and Anthropogenic Sources of Arsenic in Soils from the Giant Mine, Northwest Territories and the North Brookfield Mine, Nova Scotia.



Subsequent research focussed on characterizing the lateral extent of the elevated concentrations of arsenic within outcrop depressions across the Site, and developing a theory to explain the presence of these elevated arsenic concentrations. Bromstad<sup>9</sup> sampled 40 outcrop locations and concluded that Roaster derived arsenic is widely present within bedrock outcrop soils. The arsenic concentrations in these samples frequently exceeded the industrial land use soil quality criteria of 340  $\mu$ g/g<sup>10</sup>. The persistence of arsenic in shallow soils was explained by several factors:

- the influence of antimony which lowers the solubility of arsenic trioxide;
- the cold, dry climate which affects dissolution; and
- the "trapping" of sediment in depressions with no drainage points.

Arsenic in its various forms can be examined analytically as grains, where texture and size are documented. Textural evidence suggests that at the grain scale, arsenic trioxide is changing slowly over time. The slow reaction kinetics supports the preceding factors explaining the persistence of arsenic in shallow soils, in particular, that the cold, dry climate limits arsenic trioxide dissolution and weathering, and antimony content within arsenic trioxide limits its solubility.

Arsenic trioxide is present in the greatest proportion in soils in these bedrock outcrops, but ROs represent the second-most abundant form of arsenic. In the upper organic rich soils, the higher porosity allows for precipitation to channel through the soil. Consequently, contact between the arsenic trioxide grains and precipitation is of very short duration and dissolution reactions and weathering are likely slowed.

Golder and AECOM completed a regional soil sampling program in 2013 (summarized in document number 310-As Soil Samp-8-LET-0001-Rev2\_20140303 dated March 3, 2014). Results of the regional soil sampling program identified 14 undisturbed locations at the Site where the concentrations of total arsenic were greater than the industrial soil quality criteria of 340  $\mu$ g/g. Eleven soil samples, collected from the upper 0.10 m, contained detectable concentrations of arsenite, which ranged from 0.15  $\mu$ g/g to 3.95  $\mu$ g/g, and 20 soil samples, collected from the upper 0.10 m, contained detectable concentrations of arsenic concentrations of arsenate ranging from 13.5  $\mu$ g/g to 1,063  $\mu$ g/g. Both of these forms of arsenic confirm the presence of Roaster-derived emissions within the upper 0.10 m of undisturbed soils across the Site.

# 2.4 Roaster Stack – Historical Emissions

Throughout the 50 year mining history at the Site, operations included a roasting process to liberate gold from arsenopyrite. This process produced arsenic rich gas as a by-product, which was released as an aerial emission from the Roaster Complex. The primary form of arsenic released to the environment from the stack was arsenic trioxide, which is soluble and should not persist in the environment over the long term. During the initial two years of operation, this gas was emitted directly to the atmosphere.

<sup>&</sup>lt;sup>9</sup> Bromstad, M.J., 2011. The Characterization, Persistence and Bioaccessibility of Roaster-Derived Arsenic in Surface Soils at Giant Mine, Yellowknife, NT.

<sup>&</sup>lt;sup>10</sup> Government of Northwest Territories, Department of Environment and Natural Resources. November 2003. Environmental Guideline for Contaminated Site Remediation.

In 1951, the owners of the mine implemented a process to control stack emissions. From 1951 to 1999, stack emissions were captured, and arsenic trioxide dust was stored on-Site. A reported 237,000 tonnes of arsenic trioxide dust was transferred to underground storage caverns on the Site. The initial stack release of arsenic trioxide dust, combined with historical re-distribution of the dust, has resulted in arsenic contamination of the shallow soil materials across the Site.

# 2.5 Mineralogical Characterization

Automated laboratory techniques used for mineralogical characterization of soil and sediment are an emerging geoscience field. The recent rapid advances in computing and data processing have resulted in the development of analytical tools that allow for the rapid and comprehensive mineralogical characterization of geological samples. These automated mineralogy techniques have been adopted from mining applications to assess soil quality.

Although these techniques have been successfully applied for university research purposes with respect to the assessment of soil quality, there is limited current commercial capability for the analysis of soil or sediment quality using automated mineralogy. As a result, the commercial "track record" of case histories where the successful application of automated mineralogy to assess former mine sites is not extensive. The lack of relevant case studies necessitates the requirement to provide additional background and justification for the application of these methods for this project.

The field of automated mineralogy and specifically the application of Mineral Liberation Analyser/Scanning Electron Microscope (MLA/SEM) has grown significantly in the past 10 years. The MLA/SEM became commercially available in 2000, and is marketed by the FEI Company. Other SEM systems are now also commercially available for mineral analysis. The use of these systems was initially focussed on metallurgical processing, with particular application for optimizing ore processing in the mining industry. The application of the MLA/SEM has expanded into a wide variety of geoscience research fields, where it is advantageous to definitively verify the mineralogical composition or is necessary to assess geological processes or characteristics of sedimentary rock.

This application of automated mineralogy within the environmental field is currently led by university researchers, with the development of methods to characterize a range of geologic materials (including soil and sediment) for a variety of environmental applications. The use of the MLA/SEM for environmental research at mine sites has been led the JRG at Queen's University.

Manual mineralogy studies have been carried out for environmental projects but were extremely tedious, and were highly reliant on operator experience. Due to the time required and expense, the mineralogical characterization of soil was not a common practice with respect to environmental applications. In addition, the information offered limited practical benefit, given that the vast majority of regulatory guidelines and risk calculations relied primarily on total element concentrations.

With the gradual overall advancement of automated mineralogy within the field of soil quality assessment, the information provided by the MLA/SEM is technically reliable (much less prone to operator error) and is statistically representative. In addition, the results of this analysis provide insight into the origin, particle size, and texture of soil particles. The application of the MLA/SEM in the field of "forensic" soil science is currently evolving, as the technique enables the identification of the source of environmental impairment.





The MLA/SEM automated mineralogy method was used in this assessment for the purposes of mineral characterization. The method has been calibrated to focus on speciation of arsenic bearing particles, including the assessment of anthropogenic arsenic. This method of arsenic speciation testing is further described in Section 4.

# 3.0 SCOPE OF WORK

The scope of work for this Project was developed by Golder in collaboration with AECOM, PWGSC and the JRG. The scope of work was developed to assess the potential presence of anthropogenic arsenic in shallow soil across the Site. The work plan incorporated the requirement for depth control during sample collection, a direct result of the conclusions drawn from previous shallow soil sampling programs completed at Giant Mine (Section 2.3). The scope of work for this project was developed to provide wide spread geographic coverage of undeveloped areas of the Site (Figure 1) and to collect shallow soil samples within several distinct terrain types (Figure 2).

The primary objective of this project was to assess the presence or absence of anthropogenic arsenic within the undeveloped areas across the Site. A secondary objective involved the interpretation of the variation of arsenic concentration laterally and with depth, as well as with terrain type. An additional project objective included confirmation of the "source" of anthropogenic arsenic. If the primary source of anthropogenic arsenic involved aerial deposition of particles from the former Roaster Stack, it is likely that the elevated concentrations of arsenic are present in the upper soil horizon, and that concentrations decrease with depth.

To meet these objectives, the field methods involved the collection of shallow soil samples across undisturbed areas which were analysed for bulk chemistry (Section 5). Multiple discrete samples were collected at each station to assess vertical distribution of arsenic. The results of the bulk chemistry analysis were then used to select a subset of samples for arsenic speciation testing (Figure 3, Section 5).

The following sections of this report describe the field methods (Section 4.1), laboratory methods (Section 4.2), and results (Section 5.0) of the present study. Section 5.1 of this report discusses soil quality variation with depth, Section 5.2 describes soil quality variation with distance from the Roaster Stack, and Section 5.3 presents a summary of the findings. A discussion of the current and potential future use of mineralogical characterization methods is presented in Section 6. Conclusions and recommendations are provided in Section 7. Limitations of the study are presented in Section 8.

# 4.0 METHODS

The present study was designed based on a two-staged approach. The initial stage involved collection and interpretation of soil quality data based on both terrain type and sample depth, and the second stage involved collection and interpretation of soil quality data based on both terrain type and distance from the former Roaster Stack. The two-staged approach proceeded as follows:

- Soil Quality Variation with Depth: The undeveloped lands were broadly grouped into three terrain types: outcrop, forest and wetland. The sampling strategy provided representative coverage of the three main terrain types across the entire lease land area. Samples were collected and assessed based on depth (Figure 4).
- 2) **Soil Quality Variation with Distance from the former Roaster Stack:** Given the Roaster Stack was likely the primary source of historical air-borne emissions which had the potential to impair regional soil quality across the Site (Section 2.4), the sampling strategy provided representative coverage by terrain type and geographic distance from the former Roaster Stack.



# 4.1 Field Methods

# 4.1.1 Sample Collection

This sampling program involved the collection of shallow soil samples by both trowel and hand auger and various depths and distances from the former Roaster Stack. Care was taken to clean sample equipment between sample stations to prevent cross contamination. A total of 354 discrete soil samples were collected from 103 stations across the Site. Up to five discrete samples of 250 mL each were collected from each station, as local ground conditions allowed, to provide data for vertical delineation. For the purposes of this report, shallow soil samples were considered as ranging from 0 to 0.10 m, intermediate depth soil samples ranged from a depth of 0.10 to 0.25 m, and deep samples were considered to be greater than 0.25 m in depth. Lateral distribution was achieved by defining distance ranges from the former Roaster Stack, as follows:

- "near-source stations": Samples located 0 1 km from the former Roaster Stack;
- "mid-range stations": Samples located 1 2 km from the former Roaster Stack; and
- "distant stations": Samples located greater than 2 km from the former Roaster Stack.

Samples were placed in heavy duty plastic sample bags, labelled and secured with packing tape.

Soil samples were logged in the field and shipped to the JRG at Queen's University for bulk chemical analysis and arsenic speciation testing. The results of this bulk chemical testing were used to identify a subset of samples for arsenic speciation testing.

# 4.1.2 Sample Locations

Each sample station was plotted on a map and GPS coordinates were recorded to confirm locations (Figure 1). A photograph was taken of each sample station and observations were recorded, including: bedrock shape and drainage, presence and type of vegetation, soil type, thickness of the overburden, and organic content and moisture content of the soil sample (Appendix B).

Sample stations were established to provide adequate geographic coverage, and aimed to provide the following sampling distribution: (i) bedrock outcrops (70%); (ii) forested areas (15%) and (iii) wetlands (15%). The achieved sample distribution had a greater proportion of forested areas and less bedrock outcrops (Table 1).

| Terrain Type | No. of Samples (% of total) | No. of Stations (% of total) |
|--------------|-----------------------------|------------------------------|
| Outcrop      | 124 (35)                    | 56 (55)                      |
| Wetland      | 90 (25)                     | 19 (18)                      |
| Forest       | 140 (40)                    | 28 (27)                      |
| Totals       | 354                         | 103                          |

#### Table 1: Achieved Station and Sample Distributions



# 4.1.3 Key Challenges to Consistent Soil Sampling

Consistent sampling methods and strategies were employed throughout the program. Previous soil sampling programs were completed by researchers at Queen's University, as detailed in Section 2.3, which focused on specific outcrop locations. Based on previous work by Bromstad (2011), two main challenges associated with soil sampling in the area have been identified which were incorporated into the sampling program as follows:

1) Variability of Depth, Soil Maturity, Organic Matter and Heterogeneity. The concentration of arsenic in outcrop soil varies with depth, soil type and the presence of organic matter. The collection of soil cores was not possible in most areas due to the thin overburden thickness; therefore, when thin overburden soils were encountered, samples were collected from 0.0 to 0.05 m and 0.05 to 0.10 m.

With respect to organic matter, it was critical that all green organics and large masses of organics were removed from the sample. However, it was also recognized that arsenic readily adsorbs to organics, consequently organic matter was retained as part of the sample. Pieces of organics larger than 15 mm were removed. The remaining organic fragments remained in place. The samples did not have greater than 50% organics.

2) Variability in Arsenic Concentrations within a Given Outcrop Hollow. The "wash down" effect traps arsenic in topographic lows or pockets within outcrops. Before sampling an outcrop, the area was assessed and likely "pockets" identified. Pockets of soil which existed as small "bowls" with few drainage exits for runoff were identified as potential sample stations. Historical stack emissions included the deposition of sulphur dioxide. As a result, bedrock locations where lichen was healthy and vegetation seems to have been unaffected by aerial deposition were interpreted likely not to have significant roaster derived arsenic.

Wind direction plays a role in arsenic distribution. Based on the Yellowknife Airport wind rose, the predominant wind directions are from the east (and northeast and southeast); as well as from the northwest. The wind rarely blows from the southwest. Wind direction was a good predictor of elevated arsenic in shallow soil.

## 4.1.4 Health and Safety Protocols

A health and safety plan was developed prior to commencing field activities. The primary exposure route to arsenic during the execution of the field program was dermal exposure; therefore, nitrile gloves and coveralls were used at all times during the soil sampling program.

In addition, field personnel completed a safety orientation prior to commencing the field investigation, which detailed Site-specific health and safety requirements (e.g., vehicle operation on the Site required adherence to specific speed limits, Site-specific vehicle safety equipment and protocols.). As part of the mine safety plan, field staff was required to check-in daily with mine staff. Golder field personnel were required to identify planned sampling locations daily, and the two-person field crew remained together at all times for health and safety purposes.

# 4.2 Laboratory Methods

Researchers from JRG developed an analytical program for interpretation of arsenic speciation. A detailed discussion of the laboratory analytical methods is presented in the JRG Queen's University Final Report (Appendix A), and is summarized below.



The analytical program was completed in two stages: (i) bulk chemical analysis was initially completed on all 354 samples; and (ii) the results of the bulk chemical analysis was used to select 50 soil samples for arsenic speciation testing that contained elevated arsenic concentrations.

# 4.2.1 Sample Preparation

Soil samples were shipped to the JRG and Analytical Services Unit (ASU) at Queen's University. Upon receipt samples were inventoried. Samples were homogenized by drying and grinding, after which a sub-sample was collected. Each sample was spread on paper and air dried at room temperature for one to six days. Samples were photographed and described. The description included grain size, moisture, colour and organic content.

Following drying, visible rock and organic material was discarded and a portion of the sample was further processed using a ceramic mortar and pestle. The fine material from this process was then analyzed. Possible sources of bias with respect to the sample composition are discussed in Appendix A.

# 4.2.2 Bulk Chemistry Analysis

Samples were digested with hydrochloric and nitric acid for five hours and filtered prior to analysis. Thirty elements (including arsenic) were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES). Gold was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS). Total carbon was analysed by combustion (i.e., as  $CO_2$ ) in a LECO Truspec CN analyser. The results of the bulk chemistry analysis are reported as total micrograms per gram ( $\mu$ g/g).

# 4.2.3 Arsenic Speciation Testing

# 4.2.3.1 Sample Selection

Samples were selected for arsenic speciation testing based on the following criteria:

- Arsenic concentrations from bulk chemistry testing. The results of the bulk chemistry testing allowed identification of soil samples with high total arsenic concentrations (i.e., for arsenic speciation testing a high arsenic concentration was considered >500 µg/g), which increased the likelihood of identifying a variety of forms of arsenic.
- Potential for vertical delineation of arsenic. The potential for decreasing arsenic concentrations with increasing depth has been previously recognized; therefore, samples for arsenic speciation testing were identified as those where higher bulk concentrations were recorded throughout the soil profile.
- Variation in terrain type. Although the majority of soil samples were collected from outcrop locations (i.e., the dominant terrain across the Site), samples for arsenic speciation were also chosen from forest and wetland areas.
- Geographical distribution. Samples for arsenic speciation were selected to ensure adequate geographical coverage.

Based on the above criteria, 50 samples were selected for arsenic speciation testing (Table 2).



|                                                | 21  |                    | , , , , , , , , , , , , , , , , , , , ,            |                                                     |
|------------------------------------------------|-----|--------------------|----------------------------------------------------|-----------------------------------------------------|
| Terrain No. of No. of<br>Type Samples Stations |     | No. of<br>Stations | Samples Selected for Arsenic<br>Speciation Testing | Stations Selected for Arsenic<br>Speciation Testing |
| Outcrop                                        | 124 | 56                 | 31                                                 | 15                                                  |
| Wetland                                        | 90  | 19                 | 13                                                 | 5                                                   |
| Forest                                         | 140 | 28                 | 6                                                  | 3                                                   |
| Totals                                         | 354 | 103                | 50                                                 | 23                                                  |

Table 2: Terrain Type versus Soil Analytical Testing Program

# 4.2.3.2 Mineral Liberation Analysis/Scanning Electron Microscope

Arsenic speciation was performed using a Mineral Liberation Analyser (MLA) and scanning electron microscope (SEM). The unit is equipped with high-resolution back scatter electron (BSE) image analysis, advanced X-ray identification techniques, and computer software to automate the microscope operation. The MLA SEM technique allows for comprehensive compilation of porosity, grain size and shape data for soil samples, in conjunction with documenting key mineralogical properties through the classification of X-ray spectra.

# 4.2.3.3 Grain Mount Methodology

A representative sample selected for MLA SEM testing was obtained from the prepared soil sample. Grain mount technology produces a thin section of soil by blending the soil with graphite and an epoxy, such that separation and mapping of the individual soil particles may be achieved. The method for preparing soil sample for MLA SEM analysis is described in detail in Appendix A.

In brief, arsenic speciation results were principally based on the classification of individual soil grains. Grains were classified in terms of composition/mineralogy, number and size for the various particles. Evidence for the presence of anthropogenic arsenic in shallow soil was, therefore, based on the definitive identification of both arsenic trioxide and arsenopyrite grains.

Differentiating between the potential sources of anthropogenic arsenic is challenging, and subject to interpretation. Two main sources are present: (i) Roaster Stack emissions and (ii) dust from tailings and waste rock associated with mining activities. In most locations, one source is dominant over the other, and in some locations both are evident.

# 4.2.3.4 MLA Mineral Reference Library

JRG and Queen's University have developed an extensive library of reference minerals which was used to identify soil particles. Samples were compared to the profiles in the library via a best-fit matching process. Each particle profile is unique, and when unknown particles were identified by the MLA (i.e., there was no matching profile in the reference library), the particle was examined by an experienced mineralogist and classified based on conventional optical microscopic methods and added to the reference library.

The MLA reporting focussed on two particle details, including: (i) particle counts (i.e., the number of particles of a specific mineral), and (ii) the approximate area of all similar particles (as a percent of the total). When both the number of mineral particles and particle size was confirmed, the approximate concentrations of the various total metals were estimated.



# 4.2.4 Comparison of Bulk Chemistry and Arsenic Speciation Data

Arsenic in shallow soil was characterized by both ICP bulk chemistry and MLA SEM arsenic speciation. The ICP bulk analysis measured the concentrations of total metals (including arsenic) for all soil samples. The MLA SEM provided a grain scale assessment of a subset of samples, mapping all grains and thereby allowing further assessment of arsenic minerals and arsenic-containing particles.

The two laboratory methods operate independently, and there were challenges with respect to correlating results for the two methods from the same soil sample. The heterogeneous nature of soil samples plays a significant factor in correlating results. This "nugget effect" (as described in the JRG Report) may result in significant differences in concentration of arsenic within the same sample based on the presence or absence of one or two significant "nuggets".

Furthermore, the characterization of arsenic within "nano-scale" particles (i.e., particles at dimensions of roughly 1 to 100 nanometres) including various iron oxides represents a challenge. The actual concentration of arsenic within these small-scale particles cannot be measured and must be estimated. Manual techniques were used to confirm the shape and potential composition of these particles.

Although the difficulty in correlation of results represents a challenge, the strategy of using both methods was successful and effective. The screening of samples using ICP bulk analysis allowed the identification of samples with elevated arsenic concentrations, thereby optimizing the number of samples processed by MLA SEM analysis.

# 5.0 RESULTS

This section first describes soil quality variation with depth (Section 5.1) and then presents the results of soil quality variation with lateral distribution from the former Roaster Stack (Section 5.2). Each section is subdivided into two sections which review the results of (i) bulk chemistry and (ii) arsenic speciation data. The soil quality data is further discussed based on the three primary terrain types, including (i) outcrops; (ii) forest; and (iii) wetland. The lateral distribution of arsenic is also considered and discussed in the context of proximity to the former Roaster Stack. A discussion of the comparison of the bulk chemistry data to current criteria is also provided.

# 5.1 Soil Quality Variation with Depth

## 5.1.1 Bulk Chemistry Results

The distribution of bulk chemistry sampling stations was spread between terrain types and depth (Table 3). A total of 354 soil samples were collected from 103 sample stations. The bulk chemistry data was used to select samples for arsenic speciation testing. Total arsenic concentrations for all 354 soil samples are presented on Figures 5 through 7.

| Table of Achieved Distribution of Dank enterned y stations |         |         |        |             |  |  |  |  |  |  |  |
|------------------------------------------------------------|---------|---------|--------|-------------|--|--|--|--|--|--|--|
| Depth                                                      | Outcrop | Wetland | Forest | Grand Total |  |  |  |  |  |  |  |
| Shallow                                                    | 107     | 35      | 52     | 194         |  |  |  |  |  |  |  |
| Mid-Range                                                  | 16      | 18      | 28     | 62          |  |  |  |  |  |  |  |
| Deep                                                       | 1       | 37      | 60     | 98          |  |  |  |  |  |  |  |
| Grand Total                                                | 124     | 90      | 140    | 354         |  |  |  |  |  |  |  |

| <b>Table 3: Achieved Distribution</b> | n of Bulk Chemistry | Sampling Stations |
|---------------------------------------|---------------------|-------------------|
|---------------------------------------|---------------------|-------------------|



Discussions of bulk chemistry results, based on soil depth and terrain type are provided in the sections below. Refer to Tables 4, 5 and 6 for maximum, minimum and average total arsenic, antimony and gold concentrations based on depth distribution.

# 5.1.1.1 Outcrop

A total of 124 samples representing approximately 35% of the samples collected were submitted for bulk chemistry analysis from the outcrop terrain. Due to the typical shallow soil within the outcrops, the vast majority of soil samples collected (i.e., 86%) were obtained from 0.0 to 0.10 m depth and were considered shallow samples. Only one soil sample was collected at a depth greater than 0.25 m in outcrop terrain.

Vertical delineation (i.e., two or more samples) was achieved at a total of 15 outcrop stations across the Site. Vertical delineation was not possible at 41 of the 56 outcrop stations. Arsenic concentration versus sample depth for outcrop soils was considered, and arsenic concentrations decrease with depth in outcrop soils (Graph 1).

# 5.1.1.1.1 Shallow Depth Samples

The shallow soil depth within the outcrop terrain represents the stratum where the vast majority of the historical anthropogenic arsenic had been identified. The documented concentrations of the three key indicator parameters were as follows:

- The total arsenic concentration identified in shallow soil samples from outcrop sample stations ranged from 17,000 µg/g (Station II-OC-5) to 20 µg/g (Station VIII-OC-1). The average arsenic concentration in shallow soil samples from outcrop sample stations was 1804 µg/g.
- The total antimony concentration identified in shallow soil samples from outcrop sample stations ranged from 900 μg/g (Station II-OC-5) to less than 1.0 μg/g (Station V-OC-2). The average antimony concentration in shallow soils from outcrop sample stations was 57 μg/g.
- The total gold concentration identified in shallow soil samples from outcrop sample stations ranged from 3.1 µg/g (Station II-OC-5) to less than 0.01 µg/g (Stations V-OC-2, VI-OC-2, VI-OC-3, VI-OC-5, VII-OC-2, VII-OC-4, VII-OC-7, VII-OC-8, VII-OC-9, VIII-OC-1, VIII-OC-2). The average gold concentration in shallow soil samples from outcrop sample stations was 0.22 µg/g.

Based on the review of this bulk chemistry data, a total of 53 (49%) soil samples collected from the shallow zone exceed the 340  $\mu$ g/g applicable arsenic criteria. The highest concentrations of arsenic, antimony, and gold in shallow soil samples were identified from the outcrops situated close to the former Roaster Stack.

## 5.1.1.1.2 Intermediate Depth and Deep Samples

Soil quality data was collected from a total of seventeen intermediate depth outcrop stations across the Site. A deep soil sample (>0.25 m) was collected at one station.

A total of sixteen intermediate depth soil samples were collected from outcrop stations. The soil samples were collected and submitted for analysis of arsenic, antimony and gold. The documented concentrations of the three key indicator parameters were as follows:

The total arsenic concentration identified in intermediate depth soil samples from outcrops ranged from 3,400 μg/g (Station II-OC-6) to 14 μg/g (Station VII-OC-8). The average arsenic concentration in intermediate depth soil samples from outcrops was 595 μg/g.



- The total antimony concentration identified in intermediate depth soil samples from outcrop sample stations ranged from 45 μg/g (Station II-OC-6) to 3.2 μg/g (Station VII-OC-9). The average antimony concentration in intermediate depth soils from outcrop sample stations was 11.48 μg/g.
- The total gold concentration identified in intermediate depth soil samples from outcrop sample stations ranged from 0.073 µg/g (Station II-OC-6) to less than 0.01 µg/g (Stations II-OC-5, II-OC-6, IX-OC-4, IX-OC-6). The average gold concentration in intermediate depth soil samples from outcrop sample stations was 0.02 µg/g.

One deep soil sample was collected from an outcrop location (Station V-OC-2). The arsenic concentration recorded for this sample was 44  $\mu$ g/g and antimony and gold concentrations were 2.2  $\mu$ g/g and <0.01  $\mu$ g/g, respectively.

The assessment of the vertical distribution of arsenic, antimony and gold was possible in 27% of the outcrop stations. A pattern of decreasing concentration with depth was recorded for total arsenic, antimony and gold across these outcrop stations.

In summary, a total of 81 of the 124 samples submitted for bulk chemical analysis within the outcrop terrain contain arsenic concentrations which exceed applicable criteria. Seventy-four of these samples were collected from the shallow soil, and seven of these samples were collected from intermediate depth.



#### Graph 1: Concentration of Total As (µg/g) in Outcrops vs Depth



# 5.1.1.2 Forest

A total of 140 samples (approximately 40% of the samples collected) were submitted for bulk chemistry analysis from the forest terrain (Table 3). Four to five samples were collected from each of the 28 forest stations across the Site. Vertical delineation was possible all 28 forest stations. These stations represent complete vertical profiles, with soil samples collected from all three depth strata. A graph illustrating the arsenic concentration versus sample depth for forest soils is presented in Graph 2.

The average arsenic concentration in the shallow forest soils exceeded the applicable soil quality criteria of  $340 \mu g/g$ . The total arsenic concentrations were generally lower compared to those recorded in the outcrop terrain. The average antimony and gold concentrations in the forest shallow soils were comparable to the outcrop soils. The intermediate depth results for the total arsenic concentrations in forest stations were significantly lower compared to the intermediate depth outcrop samples. The total antimony and total gold concentrations within the intermediate depth zone were comparable with the outcrop soils. The deep soil results for the total arsenic, antimony and gold concentrations in forest stations were comparable to the deep outcrop sample. The following sections discuss the bulk chemistry analytical results based on shallow, intermediate depth, and deep soil profiles in forest sample stations.

# 5.1.1.2.1 Shallow Depth Samples

Fifty-two shallow soil samples were collected from forest sample stations. At the majority of the 28 forest stations, two shallow soil samples were collected. The following points summarize the total arsenic, antimony and gold concentrations recorded within the shallow forest stations.

- The total arsenic concentration identified in shallow soil samples from forest sample stations ranged from 3,600 µg/g (Station IX-F-4) to 28 µg/g (Station VII-F-2). The average arsenic concentration in shallow soil samples from forest sample stations was 463 µg/g.
- The total antimony concentration identified in shallow soil samples from forest sample stations ranged from 570 μg/g (Station IX-F-4) to 1.3 μg/g (Station VII-F-2). The average antimony concentration in shallow soil samples from forest sample stations was 58 μg/g.
- The total gold concentration identified in shallow soil samples from forest sample stations ranged from 48 μg/g (Station IX-F-4) to less than 0.01 μg/g (Stations II-F-3, V-F-1, VI-F-3, VII-F-2). The average gold concentration in shallow soil samples from forest sample stations was 1.16 μg/g.

The average total arsenic concentration in the shallow forest soils exceeded applicable soil quality criteria (340  $\mu$ g/g). The total arsenic concentrations within the shallow soils were lower compared to those recorded in the outcrop terrain, while the average antimony and gold concentrations in the forest shallow soils were comparable to the outcrop soils.

## 5.1.1.2.2 Intermediate Depth Samples

Twenty-eight intermediate depth soil samples were collected from forest stations. The following points summarize the chemical analytical results for total arsenic, antimony and gold.

The total arsenic concentration identified in intermediate depth soil samples from forest stations ranged from 1,300 μg/g (Station IV-F-2) to 13 μg/g (Station VIII-F-5). The average arsenic concentration in intermediate depth soil samples from forest sample stations was 162 μg/g.



- The total antimony concentration identified in intermediate depth soil samples from forest stations ranged from 93 µg/g (Station IV-F-2) to less than 1.0 µg/g (Stations VI-F-2, VI-F-3, VI-F-4, VIII-F-3, VIII-F-5). The average antimony concentration in intermediate depth soil samples from forest sample stations was 11.75 µg/g.
- The total gold concentration identified in intermediate depth soil samples from forest stations ranged from 0.86 µg/g (Station IX-F-4) to less than 0.01 µg/g (Stations I-F-1, II-F-1, II-F-3, IV-F-1, IX-F-3, VI-F-1, VI-F-4, VII-F-1, VII-F-2, VIII-F-2, VIII-F-3, VIII-F-5). The average gold concentration in intermediate depth soil samples from forest stations was 0.08 µg/g.

The intermediate depth results for the total arsenic concentrations in forest stations were significantly lower compared to the intermediate depth outcrop samples, while total antimony and total gold concentrations within were comparable with the outcrop soils at intermediate depth.

# 5.1.1.2.3 Deep Samples

Sixty (60) deep soil samples were collected from forest stations. The following points summarize the chemical analytical results for total arsenic, antimony, and gold.

- The total arsenic concentration identified in deep soil samples from forest sample stations ranged from 290 μg/g (Station IX-F-1) to 5 μg/g (Station IX-F-1). The average arsenic concentration in deep soil samples from forest sample stations was 38 μg/g.
- The total antimony concentration identified in deep soil samples from forest sample stations ranged from 26 μg/g (Station IX-F-4) to less than 1.0 μg/g (Stations II-F-1, II-F-3, IV-F-1, V-F-1, V-F-2, VI-F-1, VI-F-3, VI-F-3, VI-F-4, VII-F-1, VII-F-2, VIII-F-5, IX-F-1, IX-F-3). The average antimony concentration in deep soil samples from forest sample stations was 2.11 μg/g.
- The total gold concentration identified in deep soil samples from forest sample stations ranged from 0.2 µg/g (Station IX-F-4) to less than 0.01 µg/g (Station I-F-1, I-F-2, II-F-2, III-F-2, IV-F-2, V-F-2, VI-F-1, VI-F-2, VI-F-3, VI-F-3, VI-F-4, VII-F-1, VII-F-2, VIII-F-2, VIII-F-3, VIII-F-4, VIII-F-5, IX-F-1, IX-F-3). The average gold concentration in deep soil samples from forest sample stations was 0.02 µg/g.

The deep soil results for the total arsenic, antimony and gold concentrations in forest stations were comparable to the deep outcrop sample.

In summary, a total of 18 of the 140 samples submitted for bulk chemical analysis within the forest terrain contain arsenic concentrations which exceed applicable criteria. Sixteen of these samples were collected from the shallow soil, and two of these samples were collected from intermediate depth.





Graph 2: Concentration of Total As  $(\mu g/g)$  in Forest Stations vs Depth

# 5.1.1.3 Wetland

A total of 90 samples (approximately 25% of the samples collected) were submitted for bulk chemistry analysis from the wetland terrain (Table 3). Up to five samples were collected from each of the 19 wetlands stations across the Site, compromising 18% of all stations. Vertical delineation was possible at all 19 wetland stations. These stations also represent complete vertical profiles, with soil samples collected from all three depth strata. A graph illustrating the arsenic concentration versus sample depth for wetland soils is presented in Graph 3.

The following discusses the bulk chemistry analytical results based on shallow, mid-range, and deep soil profiles in wetland sample stations.

# 5.1.1.3.1 Shallow Depth Samples

Thirty-five shallow soil samples were collected from wetland sample stations. At the majority of the 19 wetland stations, two shallow soil samples were collected. The following points summarize the total arsenic, antimony, and gold concentrations recorded within the shallow wetland stations.

- The total arsenic concentration identified in shallow soil samples from wetlands ranged from 1,500 μg/g (Station VI-WL-1A) to 18 μg/g (Station VIII-WL-2). The average arsenic concentration in shallow soil samples from wetlands was 488 μg/g.
- The total antimony concentration identified in shallow soil samples from wetland sample stations ranged from 270 μg/g (Station IV-WL-2) to less than 1.0 μg/g (Station IV-WL-3). The average antimony concentration in shallow soil samples from wetland sample stations was 53 μg/g.



The total gold concentration identified in shallow soil samples from wetland sample stations ranged from 4.4 μg/g (Station III-WL-1) to less than 0.01 μg/g (Stations VIII-WL-1, VIII-WL-2). The average gold concentration in shallow soil samples from wetland sample stations was 0.38 μg/g.

The average arsenic concentration in the shallow wetland soils exceeded applicable soil quality criteria (340  $\mu$ g/g). The total arsenic concentrations were generally lower compared to those recorded in the outcrop and forest terrain. In the shallow wetland stations, the maximum arsenic and antimony concentrations were the lowest concentrations reported. The average antimony and gold concentrations in the wetland shallow soils were comparable to both the shallow forest and outcrop soils.

# 5.1.1.3.2 Intermediate Depth Samples

Eighteen intermediate depth soil samples were collected from wetland sample stations. The following points summarize the total arsenic antimony and gold concentrations recorded within the intermediate depth wetland stations.

- The total arsenic concentration identified in intermediate depth soil samples from wetland sample stations ranged from 2,800 μg/g (Station IV-WL-2) to 11 μg/g (Station VIII-WL-2). The average arsenic concentration in intermediate depth soil samples from wetland sample stations was 491 μg/g.
- The total antimony concentration identified in intermediate depth soil samples from wetland sample stations ranged from 800 μg/g (Station IV-WL-2) to less than 1.0 μg/g (Station VIII-WL-2). The average antimony concentration in in intermediate depth soil samples from wetland sample stations was 79 μg/g.
- The total gold concentration identified in intermediate depth soil samples from wetland sample stations ranged from 4 µg/g (Station III-WL-1) to less than 0.01 µg/g (Stations II-WL-2, VIII-WL-1, VIII-WL-2, IX-WL-2). The average gold concentration in intermediate depth soil samples from wetland sample stations was 0.38 µg/g.

The average total arsenic concentration in the intermediate depth wetland soils exceeded applicable soil quality criteria ( $340 \mu g/g$ ). For similar depth, the total arsenic concentrations were generally lower than those recorded in the outcrop terrain, and higher compared to the forest stations. The average antimony concentrations in the wetland intermediate depth soils were significantly higher compared to the mid-range samples collected in the forest and outcrop soils.

## 5.1.1.3.3 Deep Samples

Thirty-seven deep soil samples were collected from wetland sample stations (Table 3). The following points summarize the total arsenic, antimony and gold concentrations recorded within the deep wetland samples.

- The total arsenic concentration identified in deep soil samples from wetland sample stations ranged from 3,400 µg/g (Station IV-WL-2) to 4.9 µg/g (Station V-WL-3). The average arsenic concentration in deep soil samples from wetland stations was 198 µg/g.
- The total antimony concentration identified in deep soil samples from wetland sample stations ranged from 1,100 µg/g (Station IV-WL-2) to less than 1.0 µg/g (Stations I-WL-2, II-WL-2, V-WL-2, V-WL-3, VIII-WL-2). The average antimony concentration in deep soil samples from wetland stations was 63.40 µg/g.



The total gold concentration identified in deep soil samples from wetland sample stations ranged from 2 μg/g (Station IV-WL-2) to less than 0.01 μg/g (Stations IV-WL-3, IV-WL-5, V-WL-1, VII-WL-1, VIII-WL-1, VIII-WL-2). The average gold concentration in deep soil samples from wetland stations was 0.09 μg/g.

The maximum total arsenic concentrations in the deep wetland soils were the highest recorded from all terrain types and were greater than the applicable arsenic criteria (340  $\mu$ g/g). Antimony concentrations were similarly elevated.

In summary, a total of 21 of the 89 samples submitted for bulk chemical analysis within the wetland terrain contain arsenic concentrations which exceed the applicable soil quality criteria of 340  $\mu$ g/g. The average arsenic concentration exceeds the soil quality criteria in shallow wetland soil. Fifteen samples were collected from the shallow soil, four of these samples were collected mid-range depth, and two samples were collected from deep wetland stations. Although elevated, the maximum arsenic and antimony concentrations were low compared to the outcrop and forest terrain samples. The average antimony and gold concentrations in the wetland shallow soils were comparable to both the shallow forest and outcrop soils.



Graph 3: Concentration of Total As (µg/g) in Wetland Stations vs Depth





# **ASSESSMENT OF REGIONAL SOIL QUALITY - GIANT MINE**

#### Table 4: Bulk Chemistry Maximums based on Depth Ranges

|                     | Outcrop (n=124) |           |              | Depth               | Forest (n=90) |              |           | Depth               | Wetland (n=140) |           |           |
|---------------------|-----------------|-----------|--------------|---------------------|---------------|--------------|-----------|---------------------|-----------------|-----------|-----------|
| Depth Ranges        | As (µg/g)       | Sb (µg/g) | Au<br>(µg/g) | Ranges              | As<br>(µg/g)  | Sb<br>(µg/g) | Au (µg/g) | Ranges              | As (µg/g)       | Sb (µg/g) | Au (µg/g) |
| Shallow (n=107)     | 17,000          | 900       | 3            | Shallow<br>(n=35)   | 1,500         | 270          | 4         | Shallow<br>(n=52)   | 3,600           | 570       | 48        |
| Mid-Range<br>(n=16) | 3,400           | 45        | 0            | Mid-Range<br>(n=18) | 2,800         | 800          | 4         | Mid-Range<br>(n=28) | 1,300           | 93        | 1         |
| Deep<br>(n=1)       | 44              | 2         | 0            | Deep (n=37)         | 3,400         | 1,100        | 2         | Deep (n=60)         | 290             | 26        | 0         |

#### Table 5: Bulk Chemistry Minimums based on Depth Ranges

|                     | Outcrop (n=124) |           |              | Depth               | Forest (n=16) |              |           | Depth               | Wetland (n=1) |           |           |  |
|---------------------|-----------------|-----------|--------------|---------------------|---------------|--------------|-----------|---------------------|---------------|-----------|-----------|--|
| Depth Ranges        | As (µg/g)       | Sb (µg/g) | Au<br>(µg/g) | Ranges              | As<br>(µg/g)  | Sb<br>(µg/g) | Au (µg/g) | Ranges              | As (µg/g)     | Sb (µg/g) | Au (µg/g) |  |
| Shallow (n=107)     | 20              | 1         | 0            | Shallow<br>(n=35)   | 28            | 1.0          | <0.01     | Shallow<br>(n=52)   | 18            | <1        | <0.01     |  |
| Mid-Range<br>(n=16) | 14              | 3         | 0            | Mid-Range<br>(n=18) | 13            | <1           | <0.01     | Mid-Range<br>(n=28) | 11            | <1        | <0.01     |  |
| Deep<br>(n=1)       | 44              | 2         | 0            | Deep (n=37)         | 5             | <1           | <0.01     | Deep (n=60)         | 5             | <1        | <0.01     |  |

#### Table 6: Bulk Chemistry Averages based on Depth Ranges

|                     | Outcrop (n=124) |           |              | Depth               | Forest (n=16) |              |           | Depth               | Wetland (n=1) |              |              |
|---------------------|-----------------|-----------|--------------|---------------------|---------------|--------------|-----------|---------------------|---------------|--------------|--------------|
| Depth Ranges        | As (µg/g)       | Sb (µg/g) | As<br>(µg/g) | Ranges              | Sb<br>(µg/g)  | Au<br>(µg/g) | Au (µg/g) | Ranges              | As<br>(µg/g)  | Sb<br>(µg/g) | Au<br>(µg/g) |
| Shallow (n=107)     | 1,804.29        | 57.91     | 0.22         | Shallow<br>(n=35)   | 463.27        | 58.24        | 1.16      | Shallow<br>(n=52)   | 488.29        | 52.93        | 0.51         |
| Mid-Range<br>(n=16) | 595.25          | 11.48     | 0.02         | Mid-Range<br>(n=18) | 162.54        | 11.75        | 0.08      | Mid-Range<br>(n=28) | 491.61        | 79.04        | 0.38         |
| Deep<br>(n=1)       | 44.00           | 2.20      | 0.01         | Deep (n=37)         | 38.89         | 2.11         | 0.02      | Deep (n=60)         | 198.53        | 63.40        | 0.09         |



# 5.1.1.4 Comparison with Current Soil Quality Criteria

The results of the bulk chemistry data has been compared to the current arsenic soil quality criteria. A total of 120 soil samples exceeded the Government of Northwest Territories Remediation Criteria for total arsenic in the Yellowknife Area Soils and Sediment (GNWT 2003) concentration of 340 µg/g for industrial land use purposes (Table 7).

The highest concentrations of total arsenic were recorded in the outcrop soils, with typically lower concentrations recorded in wetland and forest areas. The shallow soil samples typically contained the highest concentrations of total arsenic.

| Soil Depth Range   | Outcrop | Wetland | Forest | Grand Total |  |
|--------------------|---------|---------|--------|-------------|--|
| Shallow            | 74      | 15      | 16     | 105         |  |
| Intermediate Depth | 7       | 4       | 2      | 13          |  |
| Deep               | -       | 2       | -      | 2           |  |
| Grand Total        | 81      | 21      | 18     | 120         |  |

#### Table 7: Arsenic Soil Quality Criteria Exceedances

## 5.1.2 Arsenic Speciation Results

Arsenic speciation testing was completed on a total of 50 samples from 23 sample stations across the Site (Table 8).

| Depth Interval     | Outcrops | Wetlands | Forest | Grand Total |
|--------------------|----------|----------|--------|-------------|
| Shallow            | 28       | 8        | 4      | 40          |
| Intermediate Depth | 3        | 3        | 2      | 8           |
| Deep               | -        | 2        | -      | 2           |
| Total Samples      | 31       | 13       | 6      | 50          |
| Total Stations     | 15       | 5        | 3      | 23          |

#### Table 8: Classification of Terrain and Sample Depth for Arsenic Speciation Samples

Approximately 70% of the 23 sample stations were dominated by arsenic trioxide, which is particularly prevalent in outcrop terrain and is attributed to Roaster Stack emissions as the source. When arsenopyrite and roaster oxides particles dominated the sample, the source of elevated arsenic was attributed to dust from waste rock and tailings. Approximately 15% of the samples stations were predominantly influenced by waste rock and tailings. The remaining 15% of the stations were influenced by both sources.

Vertical delineation supported by arsenic speciation data was completed at 8 of the 23 sample stations, and 80% of the samples submitted for arsenic speciation testing were collected from the shallow soil zone. The majority of samples (62%) were submitted for arsenic speciation from the outcrop terrain.

A discussion of the arsenic speciation analytical results based on terrain type and depth is provided below. Refer to Tables 9, 10 and 11 for maximum, minimum, and average values of arsenic trioxide grains and arsenopyrite grains based on depth distribution.



# 5.1.2.1 Outcrop

The majority (90%) of outcrop soil samples were collected from the shallow soil within the outcrop terrain (Table 7). The following discusses the arsenic speciation analytical results based on shallow, intermediate depth, and deep soil profiles in outcrop sample stations. No deep soil samples were collected from the outcrop stations due to local soil conditions, and only three intermediate depth soil samples were collected. Consequently, vertical delineation of arsenic speciation within the outcrop terrain was limited to three stations.

## 5.1.2.1.1 Shallow Depth Samples

Twenty-eight shallow soil samples collected from outcrop stations were selected for arsenic speciation. The vast majority (90%) of outcrop soil samples submitted for arsenic speciation testing were collected from the shallow soil zone.

Of the 28 samples submitted for arsenic speciation testing, 23 samples (82%) were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains in shallow soil samples from outcrop sample stations ranged from to 1 (Station III-OC-5) to 2,259 (Station II-OC-5). The average number of grains of arsenic trioxide in shallow soil samples from outcrop stations was 211.

No samples collected from the shallow outcrop soil zone were dominated by grains of arsenopyrite.

Three shallow outcrop soil samples contained grains of both arsenic trioxide and arsenopyrite. The number of arsenic trioxide grains in these samples ranged from 437 (Station IX-OC-2) to 1 (Station III-OC-5). The number of arsenopyrite grains in these samples ranged from 256 (Station IX-OC-2) to 0 (Station IX-OC-2).

Two shallow outcrop soil samples contained no grains of arsenic trioxide or arsenopyrite.

## 5.1.2.1.2 Intermediate Depth Samples

Three intermediate depth soil samples collected from outcrop stations were selected for arsenic speciation. These samples represent 9% of the total number of outcrop soil samples submitted for arsenic speciation testing.

The number of arsenic trioxide grains in intermediate depth soil samples from outcrop stations ranged from 5 (Station IX-OC-4) to 3 (Station VIII-OC-4). The average number of arsenic trioxide grains in shallow soil samples from outcrop stations was 4. One sample (Station II-OC-5) consisted of grains of both arsenic trioxide and arsenopyrite.

A reduction in grain counts was recorded from the shallow to intermediate depth soil zone in the outcrop samples, indicative of the shallow nature of anthropogenic arsenic in the outcrops.

No samples from deep soil profiles from outcrops were submitted for arsenic speciation.

In summary, within the 31 outcrop soil samples submitted for arsenic speciation testing, arsenic trioxide was dominant in 25 samples (80%), with 23 of these samples situated in the shallow soil stratum. Arsenopyrite was measured in low concentrations in the shallow soils, and typically decreased with depth. The number of arsenic trioxide grains in shallow soil samples frequently exceeded 1,000.



# 5.1.2.2 Forest

Six soil samples collected from forest stations were selected for arsenic speciation (Table 7). Four of these samples were collected from the shallow soil zone. The following discusses the arsenic speciation analytical results based on shallow and intermediate depth soil profiles in forest sample stations. No arsenic speciation testing was completed on the deep soil samples collected from the forest terrain.

## 5.1.2.2.1 Shallow Depth Samples

Four shallow soil samples collected from forest stations were selected for arsenic speciation. Three of the four samples were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains in shallow soil samples from forest stations ranged from 23 (Station III-F-2) to 947 (Station IV-F-2). The average number of arsenic trioxide grains in shallow soil samples from outcrop stations was 354.

A single soil sample was dominated by grains of arsenopyrite (Station IX-F-4), with 1,647 grains recorded. No samples were dominated by both grains of arsenic trioxide and arsenopyrite.

# 5.1.2.2.2 Intermediate Depth Samples

Two intermediate depth soil samples collected from forest stations were selected for arsenic speciation. One sample (Station IV-F-2) was dominated by arsenic trioxide grains (260 grains recorded), and the second sample (Station IX-F-4) was dominated by arsenopyrite grains (392 grains recorded).

A reduction in grain counts was recorded from the shallow to mid-range soil zone in the forest samples. This suggests a shallow nature of anthropogenic arsenic in the forest terrain.

No samples from deep soil profiles from forest stations were submitted for arsenic speciation

In summary, arsenic trioxide grains were in moderate abundance (typically 270 grains) in shallow forest soils, and decreased with depth. The number of arsenic trioxide grains in shallow soil samples was less than the outcrop soils. Similar to the outcrop soils, a reduction in arsenic trioxide grain counts was recorded from the shallow to intermediate depth soil zone, which suggests anthropogenic arsenic source in the forest terrain. Three of the four forest soil samples were dominated by grains of arsenic trioxide, and a single soil sample was dominated by grains of arsenopyrite.

## 5.1.2.3 Wetland

The following discusses arsenic speciation based on shallow, intermediate depth, and deep soil profiles in the wetland stations. Approximately 12% of soil samples were collected from wetland terrain (Table 7). Arsenic speciation testing was completed on soil samples collected from all three soil depth profiles in the wetland terrain.

## 5.1.2.3.1 Shallow Depth Samples

Eight shallow soil samples collected from wetland stations were selected for arsenic speciation (Table 7). No shallow wetland soil samples were dominated by arsenic trioxide grains. Five samples were dominated by grains of arsenopyrite. The arsenopyrite grain counts ranged from 343 (Station VI-WL-1A) to 60 (Station VI-WL-1B). The average number of grains of arsenopyrite in shallow soil samples from wetland stations was 150. Three samples (obtained from Station III-WL-1) were dominated by both grains of arsenic trioxide (grain counts ranging from 61 to 7) and arsenopyrite (grains counts ranging from 74 to 27).





The lack of abundant arsenic trioxide in the shallow wetland terrain soil is a distinguishing characteristic, and differentiates this terrain from both outcrops and forest areas.

#### 5.1.2.3.2 Intermediate Depth Samples

Three intermediate depth soil samples collected from wetland stations were selected for arsenic speciation testing. No samples were dominated by arsenic trioxide grains. Of the three samples submitted, two samples were dominated by grains of arsenopyrite. The number of arsenopyrite grains in intermediate depth soil samples from wetland stations ranged from 369 (Station IV-WL-2) to 58 (Station V-WL-2). The average number of grains of arsenopyrite in intermediate depth soil samples from wetland stations was 213. One sample (Station V-WL-2) was dominated by 90 grains of arsenopyrite.

#### 5.1.2.3.3 Deep Samples

Two deep soil samples collected from one wetland station (Station IV-WL-2) were selected for arsenic speciation. Both soil samples were dominated by grains of arsenopyrite, indicative of tailing ponds as the arsenic source. The number of arsenopyrite grains in deep soil samples from wetland stations ranged from 1529 to 883.

In summary, within the 13 wetland soil samples submitted for arsenic speciation, arsenic trioxide grains were either not present or were present in very low abundance (i.e., maximum grain count 61). Conversely, arsenopyrite was present in high concentration, and typically increased with depth. The lack of abundant arsenic trioxide in the shallow wetland terrain soil is a distinguishing characteristic, and differentiates wetlands from both outcrops and forest areas.





# ASSESSMENT OF REGIONAL SOIL QUALITY - GIANT MINE

Table 9: Arsenic Speciation Maximums based on Depth

| Soil Sample Depth | Outcrop (n=31)                         |                                    | Soil               | Fores                                  | st (n=6)                           | Soil               | Wetland (n=13)                         |                                    |
|-------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|
|                   | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) |
| Shallow (n=28)    | 2,259                                  | 256                                | Shallow<br>(n=4)   | 947                                    | 1,647                              | Shallow<br>(n=8)   | 61                                     | 343                                |
| Mid-Range (n=3)   | 5                                      | 1                                  | Mid-Range<br>(n=2) | 260                                    | 392                                | Mid-Range<br>(n=3) | 6                                      | 369                                |
| Deep (n=0)        | -                                      | -                                  | Deep (n=0)         | -                                      | -                                  | Deep (n=2)         | 48                                     | 1,529                              |

#### Table 10: Arsenic Speciation Minimums Based on Depth

| Soil Sample Depth | Outcrop (n=31)                         |                                    | Soil               | Fores                                  | st (n=6)                           | Soil               | Wetland (n=13)                         |                                    |
|-------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|
|                   | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) |
| Shallow (n=28)    | 0                                      | 0                                  | Shallow<br>(n=4)   | 17                                     | 0                                  | Shallow<br>(n=8)   | 0                                      | 27                                 |
| Mid-Range (n=3)   | 2                                      | 0                                  | Mid-Range<br>(n=2) | 6                                      | 1                                  | Mid-Range<br>(n=3) | 0                                      | 58                                 |
| Deep (n=0)        | -                                      | -                                  | Deep (n=0)         | -                                      | -                                  | Deep (n=2)         | 7                                      | 883                                |

#### Table 11: Arsenic Speciation Averages Based on Depth

| Soil Sample Depth | Outcrop (n=31)                         |                                    | Soil               | Fores                                  | t (n=6)                            | Soil               | Wetland (n=13)                         |                                    |
|-------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|--------------------|----------------------------------------|------------------------------------|
|                   | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) | Sample<br>Depth    | Arsenic Trioxide<br>(Number of grains) | Arsenopyrite<br>(Number of grains) |
| Shallow (n=28)    | 211.96                                 | 12                                 | Shallow<br>(n=4)   | 270.25                                 | 414.5                              | Shallow<br>(n=8)   | 11.625                                 | 111.75                             |
| Mid-Range (n=3)   | 3.33                                   | 0.3333                             | Mid-Range<br>(n=2) | 133                                    | 196.5                              | Mid-Range<br>(n=3) | 2                                      | 172.33                             |
| Deep (n=0)        | -                                      | -                                  | Deep (n=0)         | -                                      | -                                  | Deep (n=2)         | 27.5                                   | 1,206                              |

# 5.2 Soil Quality Variation with Lateral Distribution

The correlation between the lateral dispersion of arsenic from the former Roaster Stack source and the results of bulk chemistry/speciation testing is considered presently. The results are considered based on the following distance ranges from the former Roaster Stack:

- 1) "near-source stations": located 0 1 km from the former Roaster Stack;
- 2) "mid-range stations": located 1 2 km from the former Roaster Stack; and
- 3) "distant stations": located greater than 2 km from the former Roaster Stack.

The distribution of bulk chemistry soil quality data based on distance from the former Roaster Stack and terrain type is presented in Table 12.

| Distance from<br>Roaster Stack<br>(km) | Outcrop  |         | Wetland  |         | Foi      | rest    | Total    | Total   |
|----------------------------------------|----------|---------|----------|---------|----------|---------|----------|---------|
|                                        | Stations | Samples | Stations | Samples | Stations | Samples | Stations | Samples |
| 0 - 1                                  | 13       | 31      | 8        | 40      | 10       | 48      | 31       | 119     |
| 1 - 2                                  | 21       | 41      | 4        | 20      | 9        | 43      | 34       | 104     |
| >2                                     | 22       | 53      | 7        | 29      | 9        | 49      | 38       | 131     |
| <b>Total Stations</b>                  | 56       | -       | 19       | -       | 28       | -       | 103      | -       |
| Total Samples                          | -        | 125     | -        | 89      | -        | 140     | -        | 354     |

Table 12: Achieved Sample Sizes for Bulk Chemistry by Distance from Roaster Stack and Terrain Type

The distribution of arsenic speciation soil quality data based on both distance from the former Roaster Stack and terrain is presented in Table 13.

| Distance To           | Outcrop  |         | Wetland  |         | For      | est     | Total    | Total   |
|-----------------------|----------|---------|----------|---------|----------|---------|----------|---------|
| Roaster Stack<br>(km) | Stations | Samples | Stations | Samples | Stations | Samples | Stations | Samples |
| 0 - 1                 | 8        | 18      | 1        | 4       | 3        | 6       | 12       | 28      |
| 1 - 2                 | 3        | 7       | 1        | 3       | -        | -       | 4        | 10      |
| >2                    | 4        | 6       | 3        | 6       | -        | -       | 7        | 12      |
| <b>Total Stations</b> | 15       | -       | 5        | -       | 3        | -       | 23       | -       |
| Total Samples         | -        | 31      | -        | 13      | -        | 6       | -        | 50      |

Samples selected for arsenic speciation were more heavily weighted to the area within 1 km of the Roaster Stack, with 56% of the samples and 52% of the stations selected for arsenic speciation testing situated within this area (Table 8). The majority of samples (62%) were selected from outcrop terrain. No samples were selected for arsenic speciation within the forest areas beyond 1 kilometer (km) from the Roaster Stack.



# 5.2.1 Near Source Stations (0 to 1 km)

# 5.2.1.1 Bulk Chemistry Results

A total of 31 sample stations were located within 1 km of the Roaster Stack, and 119 samples (33% of the total) were collected from these stations. A discussion of the bulk chemistry analytical results based on terrain type is provided below. Refer to Tables 14, 15 and 16 for maximum, minimum, and average total arsenic, antimony and gold concentrations based on distance from the Roaster Stack.

## 5.2.1.1.1 Outcrop

A total of 31 soil samples were collected from 13 sample stations situated within outcrop terrain located within 1 km of the roaster stack. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within 1 km of the roaster stack ranged from 17,000 µg/g (Station II-OC-5) to 150 µg/g (Station IX-OC-1). The average arsenic concentration on outcrops within 1 km of the Roaster Stack was 4,600 µg/g.
- The total antimony concentration measured on outcrops within 1 km of the roaster stack ranged from 900 μg/g (Station II-OC-5) to 6 μg/g (Station IX-OC-1). The average antimony concentration on outcrops within 1 km of the Roaster Stack was 124 μg/g.
- The total gold concentration measured on outcrops within 1 km of the roaster stack ranged from 3.1 μg/g (Station II-OC-5) to 0.015 μg/g (Station IX-OC-1). The average gold concentration on outcrops within 1 km of the Roaster Stack was 0.50 μg/g.

The highest concentrations of arsenic, antimony and gold in outcrop soil within 1 km of the Roaster Stack were measured south of the Roaster Stack.

## 5.2.1.1.2 Forest

A total of 48 soil samples were collected from 10 stations situated within forest terrain located within 1 km of the Roaster Stack. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured in forest stations ranged from 3,600 μg/g (Station IX-F-4) to 7.3 μg/g (Station IV-F-1). The average arsenic concentration in forest stations was 474 μg/g.
- The total antimony concentration measured in forest sample stations within 1 km of the Roaster Stack ranged from 570 μg/g (Station IX-F-4) to less than 1 μg/g (Stations II-F-3, IV-F-1, II-F-3, and IV-F-1). The average antimony concentration in forest stations within 1 km of the Roaster Stack was 57.78 μg/g.
- The total gold concentration measured in forest stations within 1 km of the Roaster Stack ranged from 48 μg/g (Station IX-F-4) to less than 0.01 μg/g (Stations II-F-3, III-F-2, IV-F-1, IV-F-2, IX-F-1). The average gold concentration in forest stations was 1.52 μg/g.

The maximum arsenic, antimony, and gold concentrations in forest stations were identified east of the Roaster Stack.



# 5.2.1.1.3 Wetland

A total of 40 soil samples were collected from eight (8) stations situated within wetland terrain. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within wetland sample stations within 1 km of the Roaster Stack ranged from 3,400 μg/g (Station IV-WL-2) to 13 μg/g (Station I-WL-2). The average arsenic concentration in wetland sample stations within 1 km of the Roaster Stack was 461 μg/g.
- The total antimony concentration measured within wetland sample stations within 1 km of the Roaster Stack ranged from 1,100 µg/g (Station IV-WL-2) to less than 1 µg/g (Stations IV-WL-5, IV-WL-5, II-WL-2, IX-WL-2, I-WL-2, IV-WL-3). The average antimony concentration in wetland sample stations within 1 km of the Roaster Stack was 123 µg/g.
- The total gold concentration measured within wetland sample stations within 1 km of the Roaster Stack ranged from 2.1 μg/g (Station IV-WL-1) to less than 0.01 μg/g (Stations II-WL-2, IV-WL-3, IV-WL-5, IX-WL-2). The average gold concentration in wetland sample stations within 1 km of the Roaster Stack was 0.42 μg/g.

The maximum arsenic, antimony and gold concentrations in wetlands were located west to northwest of the Site.

#### 5.2.1.1.4 Summary of Bulk Chemistry Results

In summary, bulk chemistry results indicate the following:

- highest concentrations of total arsenic were identified in outcrops;
- lowest concentrations of total arsenic were identified in wetlands; and
- elevated antimony and gold was widespread throughout terrain types within 1 km of the Roaster Stack.

These results suggest Roaster Stack emissions are the dominant anthropogenic influence of soil quality within 1 km of the Roaster Stack.

## 5.2.1.2 Arsenic Speciation Results

Arsenic speciation testing was completed on a total of 12 stations within 1 km of the Roaster Stack. Arsenic speciation testing was completed on a total of 28 samples within this area. A discussion of the arsenic speciation analytical results based on terrain type is provided below. Refer to Tables 17, 18 and 19 for maximum, minimum, and average values of arsenic trioxide grains and arsenopyrite grains based on distance from the Roaster Stack.

## 5.2.1.2.1 Outcrop

Eighteen (18) soil samples collected from outcrop stations within 1 km of the Roaster Stack were selected for arsenic speciation analysis. Fourteen (14) samples were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains in outcrop sample stations ranged from 2,259 (Station II-OC-5) to 1 (Station III-OC-5). The average number of grains of arsenic trioxide samples from outcrop stations was 253.

No samples collected from outcrop stations were dominated by grains of arsenopyrite.



Four outcrop soil samples contained grains of both arsenic trioxide and arsenopyrite. The number of arsenic trioxide grains in these samples ranged from 437 (Station IX-OC-2) to 1 (Station III-OC-5). The number of arsenopyrite grains in these samples ranged from 256 (Station IX-OC-2) to 0 (Station IX-OC-2).

#### 5.2.1.2.2 Forest

Six soil samples collected from forest stations were selected for arsenic speciation. Four forest samples were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains ranged from 947 (Station IV-F-2) to 6 (Station III-F-2). The average number of grains of arsenic trioxide from forest stations was 224.

Two soil samples were dominated by grains of arsenopyrite. The arsenopyrite grain counts ranged from 1,647 (Station IX-F-4) to 0 (Station IX-F-4). The average number of grains of arsenopyrite in soil samples from forest stations was 341.

#### 5.2.1.2.3 Wetland

Four soil samples collected from wetland stations were selected for arsenic speciation. No samples were dominated by arsenic trioxide grains; all four samples were dominated by grains of arsenopyrite. The arsenopyrite grain counts ranged from 1,529 (Station IV-WL-2) to 113 (Station IV-WL-2). The average number of grains of arsenopyrite from wetland stations was 723.

#### 5.2.1.2.4 Summary of Arsenic Speciation Results

In summary, the arsenic speciation results indicate the following:

- arsenic trioxide dominates the arsenic composition of outcrop soils, and arsenopyrite was present in several outcrop soil samples;
- the arsenic composition within four of the six forest soil samples was dominated by arsenic trioxide, and the other two samples were dominated by arsenopyrite; and
- arsenopyrite dominates the total arsenic composition of wetland soils.

## 5.2.2 Mid-Range Stations (1 to 2 km)

## 5.2.2.1 Bulk Chemistry

A total of 33 stations were located 1 to 2 km from the Roaster Stack. A total of 105 samples (30%) were taken from these locations. A discussion of the analytical results based on terrain type is provided below.

## 5.2.2.1.1 Outcrop

A total of 42 soil samples were collected form 21 sample stations situated within outcrop terrain. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within outcrops ranged from 3200 μg/g (Station III-OC-2) to 51 μg/g (Station VIII-OC-2). The average arsenic concentration in outcrop samples was 927 μg/g.
- The total antimony concentration measured within outcrops ranged from 170 µg/g (Station III-OC-2) to 3.5 µg/g (Station VIII-OC-2). The average antimony concentration in outcrop samples was 39 µg/g.
- The total gold concentration measured within outcrops ranged from 0.73 μg/g (Station III-OC-2) to less than 0.01 μg/g (Station VIII-OC-2). The average gold concentration in outcrop samples was 0.15 μg/g.


The maximum arsenic, antimony, and gold concentrations in outcrops were south to southwest of the Roaster Stack. The minimum concentrations were identified northeast of the Roaster Stack.

### 5.2.2.1.2 Forest

A total of 43 soil samples were collected from 9 sample stations situated within forest terrain. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within forest sample stations ranged from 510 μg/g (Station IX-F-3) to 5 μg/g (Station II-F-1). The average arsenic concentration in forest samples was 112 μg/g.
- The total antimony concentration measured within forest sample stations ranged from 78 μg/g (Station I-F-2) to less than 1 μg/g (Stations II-F-1, VIII-F-2, VIII-F-3, VIII-F-5, and IX-F-3). The average antimony concentration in forest samples was 16 μg/g.
- The total gold concentration measured within forest sample stations ranged from 0.32 μg/g (Station I-F-2) to less than 0.1 μg/g (Stations I-F-1, I-F-2, II-F-1, VIII-F-1, VIII-F-2, VIII-F-3, VIII-F-4, VIII-F-5, and IX-F-3). The average gold concentration in forest samples was 0.09 μg/g.

The maximum arsenic concentration in forest samples was measured east of the former Roaster Stack. Maximum antimony and gold concentrations were measured southeast of the Roaster Stack.

#### 5.2.2.1.3 Wetland

A total of 20 soil samples were collected from three sample stations situated within wetland terrain. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within wetland samples ranged from 2700 μg/g (Station III-WL-1) to 6.2 μg/g (Station VIII-WL-2). The average arsenic concentration in wetland samples was 302 μg/g.
- The total antimony concentration measured within wetland sample stations ranged from 470 μg/g (Station III-WL-1) to less than 1 μg/g (Station VIII-WL-2). The average antimony concentration in wetland samples was 55 μg/g.
- The total gold concentration measured within wetland sample stations ranged from 4.4 μg/g (Station III-WL-1) to 0.014 μg/g (Station I-WL-1). The average gold concentration in wetland samples from the Roaster Stack was 0.75 μg/g.

The maximum arsenic, antimony, and gold concentrations for wetlands were located south to southwest of the former Roaster Stack.

### 5.2.2.1.4 Summary of Bulk Chemistry Results

In summary, bulk chemistry results indicate the following:

- highest concentrations of total arsenic were identified in outcrops;
- lower concentrations of total arsenic were identified in both the forest and wetland terrains; and
- elevated antimony and gold was widespread throughput terrain types between 1 and 2 km from the Roaster Stack.



# 5.2.2.2 Arsenic Speciation Results

Arsenic speciation testing was completed on a total of four stations within 1 to 2 km from the Roaster Stack. Speciation testing was completed on a total of 10 samples within this area. A discussion of the analytical results based on terrain type is provided below.

### 5.2.2.2.1 Outcrop

Seven soil samples collected from outcrops stations were selected for arsenic speciation. Six of the samples were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains ranged from 1041 (Station II-OC-9) to 0 (Station II-OC-9). The average number of grains of arsenic trioxide from outcrop stations was 181. One sample (Station II-OC-9) had no grains of either arsenic trioxide or arsenopyrite.

#### 5.2.2.2.2 Forest

No forest sample stations were selected for detailed speciation 1 to 2 km from the Roaster Stack.

### 5.2.2.2.3 Wetland

Three soil samples collected from wetland station (Station III-WL-1) were selected for arsenic speciation. No samples were dominated by arsenic trioxide grains. All three samples were composed of both grains of arsenic trioxide and arsenopyrite. The number of arsenic trioxide grains ranged from 61 to 7. The number of arsenopyrite grains ranged from 74 to 27.

### 5.2.2.2.4 Summary of Arsenic Speciation Results

In summary, the arsenic speciation results indicate the following:

- a decrease in the number of arsenic trioxide grains was recorded in the outcrop soils located 1 to 2 km from the former Roaster Stack as compared to the near source stations 0 to 1 km; and
- the arsenic composition of wetland samples was dominated by both arsenic trioxide and arsenopyrite, but the number of grains recorded for both of these minerals was significantly lower as compared to the near Roaster Stack zone.

## 5.2.3 Distant Stations (>2 km from Roaster Stack)

## 5.2.3.1 Bulk Chemistry

A total of 130 soil samples (37%) were collected from 39 stations located >2 km from the Roaster Stack. A discussion of the analytical results based on terrain type is provided below.

### 5.2.3.1.1 Outcrop

A total of 51 soil samples were collected from 22 stations situated within outcrop terrain. The following points summarize analytical results of total arsenic, antimony and gold.

- The total arsenic concentration measured within outcrops ranged from 3600 μg/g (Station V-OC-2) to 14 μg/g (Station VII-OC-8). The average arsenic concentration in outcrops was 413 μg/g.
- The total antimony concentration measured within outcrops ranged from 120 μg/g (Station VI-OC-1) to less than 1.0 μg/g (Station V-OC-2). The average antimony concentration in outcrops was 16.93 μg/g.





The total gold concentration measured within outcrops ranged from 0.39 μg/g (Station VI-OC-5) to less than 0.01 μg/g (Stations V-OC-2, V-OC-4, V-OC-6, VI-OC-2, VI-OC-5, VII-OC-2, VII-OC-3, VII-OC-6, VII-OC-7, VII-OC-9, VIII-OC-1). The average gold concentration in outcrops was 0.06 μg/g.

The maximum arsenic, antimony and gold concentrations were measured northwest of the Roaster Stack.

# 5.2.3.1.2 Forest

A total of 49 soil samples were collected from 9 sample stations within forest terrain. The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within forest sample stations ranged from 580 μg/g (Station VI-F-3) to 6.3 μg/g (Station VI-F-2). The average arsenic concentration in forest sample stations was 69 μg/g.
- The total antimony concentration measured within forest sample stations ranged from 85 μg/g (Station VI-F-4) to was less than 1.0 μg/g (Stations V-F-1, V-F-2, VI-F-1, VI-F-2, VI-F-3, VI-F-4, VII-F-1, VII-F-2). The average antimony concentration in forest sample stations > 2 km from the Roaster Stack was 14 μg/g.
- The total gold concentration measured within forest sample stations ranged from 0.33 μg/g (Station VII-F-1) to was less than 0.01 μg/g (Stations III-F-1, V-F-1, V-F-2, VI-F-1, VI-F-2, VI-F-3, VI-F-4, VII-F-1, VII-F-2). The average gold concentration in forest sample stations was 0.07 μg/g.

The maximum arsenic, gold and antimony concentrations in forest stations were measured northwest of the Site.

### 5.2.3.1.3 Wetland

A total of 30 soil samples were collected from three sample stations situated within wetland The following points summarize analytical results of total arsenic, antimony, and gold.

- The total arsenic concentration measured within wetland stations ranged from 1500 μg/g (Station VI-WL 1A) to 4.9 μg/g (Station V-WL-3). The average arsenic concentration in wetland stations was 292 μg/g.
- The total antimony concentration measured within wetland stations ranged from 160 μg/g (Station V-WL-1) to less than 1 μg/g (Stations V-WL-2, V-WL-3, and VIII-WL-1). The average antimony concentration in wetland stations was 18 μg/g.
- The total gold concentration measured within wetland stations ranged from 0.54 μg/g (Station V-WL-1) to less than 0.01 μg/g (Stations V-WL-1, V-WL-3, VI-WL-1B). The average gold concentration in wetland stations was 0.13 μg/g.

The maximum arsenic, antimony, and gold concentration in wetland stations were located northwest of the former Roaster Stack.

## 5.2.3.1.4 Summary of Bulk Chemistry Results

The bulk chemistry results within the distant zone are lower compared to those recorded within the mid-range zone. Overall, the highest concentrations of total arsenic were identified in outcrops and lower concentrations of total arsenic were identified in both the forest and wetland terrains.



# 5.2.3.2 Arsenic Speciation Results

Arsenic speciation testing was completed on a total of seven stations greater than 2 km from the Roaster Stack. Speciation testing was completed on a total of 12 samples within this area. A discussion of the analytical results based on terrain type is provided below.

### 5.2.3.2.1 Outcrop

Six soil samples collected from outcrop stations were selected for arsenic speciation, and five of the samples were dominated by grains of arsenic trioxide. The number of arsenic trioxide grains ranged from 70 (Station II-OC-9) to 0 (Station II-OC-9). The average number of grains of arsenic trioxide from outcrop stations was 20. One sample (Station II-OC-9) had no grains of either arsenic trioxide or arsenopyrite.

#### 5.2.3.2.2 Forest

No forest sample stations were selected for arsenic speciation from sample stations beyond 2 km from the former Roaster Stack.

### 5.2.3.2.3 Wetland

Six soil samples collected from wetland stations were selected for arsenic speciation. Five soil samples were dominated by grains of arsenopyrite. The number of arsenopyrite grains ranged from 343 (Station VI-WL-1A) to 58 (Station VI-WL-1B). The average number of grains of arsenopyrite from wetland stations was 130.

One sample contained both grains of arsenic trioxide and arsenopyrite. The number of arsenic trioxide grains was six. The number of arsenopyrite grains was 90.

### 5.2.3.2.4 Summary of Arsenic Speciation Results

In summary, the arsenic speciation results from distant stations indicated the following:

- a decrease in the number of arsenic trioxide grains was recorded in the outcrop soils beyond 2 km from the Roaster Stack, but outcrop samples were still dominated by arsenic trioxide grains; and
- the arsenic in the wetland samples was dominated by arsenopyrite; however, the number of grains recorded was less as compared to the Mid-Range and Near Source Stations.

## 5.2.4 Summary of Lateral Distribution

There was a pronounced decline in the number of arsenic trioxide grains measured in the shallow soil within the outcrop terrain beyond 1 km from the Roaster Stack. Similar decreases in both arsenic trioxide and arsenopyrite were observed in forest and wetland terrains.





# **ASSESSMENT OF REGIONAL SOIL QUALITY - GIANT MINE**

| Distance                   | Out          | crop (n=1    | 25)          | Distance                                      | Fo    | rest (n=14   | 40)          | Distance                   | We           | tland (n=    | (n=89)       |  |
|----------------------------|--------------|--------------|--------------|-----------------------------------------------|-------|--------------|--------------|----------------------------|--------------|--------------|--------------|--|
| From Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) | u From Roaster As<br>/g) Stack (km) (µg/g) (µ |       | Sb<br>(µg/g) | Au<br>(µg/g) | From Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) |  |
| 0 - 1 (n=31)               | 17,000       | 900          | 3.1          | 0 - 1 (n=48)                                  | 3,600 | 570          | 48           | 0 - 1 (n=40)               | 3,400        | 1,100        | 2.1          |  |
| 1 - 2 (n=41)               | 3,200        | 170          | 0.73         | 1 - 2 (n=43)                                  | 510   | 78           | 0.32         | 1 - 2 (n=20)               | 2,700        | 470          | 4.4          |  |
| >2 (n=53)                  | 3,600        | 120          | 0.39         | >2 (n=49)                                     | 580   | 85           | 0.33         | >2 (n=29)                  | 120          | 160          | 0.54         |  |

#### Table 14: Bulk Chemistry Maximum Analytical Results Based on Distance from the Stack

#### Table 15: Bulk Chemistry Minimum Analytical Results Based on Distance from the Stack

| Distance                   | Outo         | crop (n=1    | 25)          | Distance                   | Fo           | rest (n=14   | 10)          | Distance From         | We           | tland (n=    | (n=89)       |  |
|----------------------------|--------------|--------------|--------------|----------------------------|--------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--|
| From Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) | From Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) | Roaster Stack<br>(km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) |  |
| 0 - 1 (n=31)               | 150          | 6            | 0.015        | 0 - 1 (n=48)               | 7.3          | <1           | <0.01        | 0 - 1 (n=40)          | 13           | <1           | 0.017        |  |
| 1 -2 (n=41)                | 51           | 3.5          | <0.01        | 1 - 2 (n=43)               | 5            | <1           | <0.01        | 1 -2 (n=20)           | 6.2          | <1           | 0.014        |  |
| >2 (n=53)                  | 14           | <1           | <0.01        | >2 (n=49)                  | 6.3          | <1           | <0.01        | >2 (n=29)             | 4.9          | <1           | <1           |  |

## Table 16: Bulk Chemistry Average Analytical Results Based on Distance from the Stack

| Distance                   | Outo         | rop (n=12    | 5)           | Distance              | Foi          | rest (n=14   | ł0)          | Distance From         | We           | tland (n=8   | n=89)        |  |
|----------------------------|--------------|--------------|--------------|-----------------------|--------------|--------------|--------------|-----------------------|--------------|--------------|--------------|--|
| From Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) | Roaster<br>Stack (km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) | Roaster Stack<br>(km) | As<br>(µg/g) | Sb<br>(µg/g) | Au<br>(µg/g) |  |
| 0 - 1 (n=31)               | 4,600.32     | 124.58       | 0.50         | 0 - 1 (n=48)          | 474.13       | 57.78        | 1.52         | 0 - 1 (n=40)          | 461.30       | 123.68       | 0.42         |  |
| 1 - 2 (n=41)               | 927.38       | 39.84        | 0.15         | 1 - 2 (n=43)          | 112.78       | 16.79        | 0.09         | 1 - 2 (n=20)          | 302.88       | 55.49        | 0.75         |  |
| >2 (n=53)                  | 413.08       | 16.93        | 0.06         | >2 (n=49)             | 68.71        | 13.89        | 0.07         | >2 (n=29)             | 292.51       | 17.67        | 0.13         |  |





|                                      | Outcr                                        | op (n=31)                             |                                      | Fore                                         | est (n=6)                             |                                      | ١                                            | Wetland (13)                       |
|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|
| Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of grains) |
| 0 - 1 (n=18)                         | 2,259                                        | 256                                   | 0 - 1 (n=6)                          | 947                                          | 1,647                                 | 0 - 1 (n=4)                          | 48                                           | 1,529                              |
| 1 - 2 (n=7)                          | 1,041                                        | 2                                     | 1 - 2 (n=0)                          | -                                            | -                                     | 1 - 2 (n=3)                          | 61                                           | 74                                 |
| >2 (n=6)                             | 70                                           | 1                                     | >2 (n=0)                             | -                                            | -                                     | >2 (n=6)                             | 6                                            | 343                                |

#### Table 17: Arsenic Speciation Maximum Values Based on Distance to Roaster Stack

#### Table 18: Arsenic Speciation Minimum Values Based on Distance to Roaster Stack

|                                      | Outcr                                        | Outcrop (n=31)                        |                                      | Fore                                         | est (n=6)                             |                                      | ١                                            | Wetland (13)                       |
|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|
| Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of grains) |
| 0 - 1 (n=18)                         | 1                                            | 0                                     | 0 - 1 (n=6)                          | 6                                            | 0                                     | 0 - 1 (n=4)                          | 0                                            | 113                                |
| 1 - 2 (n=7)                          | 0                                            | 0                                     | 1 - 2 (n=0)                          | -                                            | -                                     | 1 - 2 (n=3)                          | 7                                            | 27                                 |
| >2 (n=6)                             | 0                                            | 0                                     | >2 (n=0)                             | -                                            | -                                     | >2 (n=6)                             | 0                                            | 58                                 |

#### Table 19: Arsenic Speciation Averages Based on Distance to Roaster Stack

|                                      | Outcr                                        | Outcrop (n=31)                        |                                      | Fore                                         | est (n=6)                             |                                      | ١                                            | Wetland (13)                       |
|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------|
| Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of<br>grains) | Distance<br>to Roaster<br>Stack (km) | Arsenic<br>Trioxide<br>(Number<br>of grains) | Arsenopyrite<br>(Number of grains) |
| 0 - 1 (n=18)                         | 253.11                                       | 18.50                                 | 0 - 1 (n=6)                          | 224.5                                        | 0                                     | 0 - 1 (n=4)                          | 14                                           | 723.50                             |
| 1 - 2 (n=7)                          | 181.42                                       | 0.42                                  | 1 - 2 (n=0)                          | -                                            | -                                     | 1 - 2 (n=3)                          | 27                                           | 48.33                              |
| >2 (n=6)                             | 19.83                                        | 0.16                                  | >2 (n=0)                             | -                                            | -                                     | >2 (n=6)                             | 2.83                                         | 130.66                             |

# 5.3 Summary of Findings

The vertical and lateral distribution of arsenic in shallow soil across undeveloped areas of the Site has been characterized in the context of three primary terrain types. This assessment confirms that the shallow soil across the entire Site has been impaired by two primary mining-related anthropogenic sources: former Roaster Stack emissions and dust from mine rock and tailings. Arsenic trioxide is associated with Roaster Stack emissions, while arsenopyrite is associated with dust from mine rock and tailings.

Aerial dispersion and transport of both sources has occurred, likely throughout the operating mining period. The results of this assessment confirm the critical importance of depth control during soil sample collection. The highest concentrations of arsenic were recorded in shallow soil, and these concentrations decreased with depth. The overall decrease in concentrations of arsenic with increasing distance from the former Roaster Stack was also confirmed. This vertical and lateral distribution pattern is a <u>primary line of evidence</u> to suggest the presence of anthropogenic arsenic in shallow soil across undisturbed areas of the Site.

The results of arsenic speciation analysis serve as the <u>secondary line of evidence</u> with respect to anthropogenic arsenic. These results provide "forensic" mineralogical evidence of the presence of three primary mining-related constituents in shallow soil: (i) arsenic trioxide; (ii) arsenopyrite; and (iii) roaster oxides. The presence of these minerals/particles at elevated concentrations confirms anthropogenic influence on shallow soil quality.

Differentiating between the potential sources of anthropogenic arsenic is challenging, and subject to interpretation. In most locations, one source (i.e., emissions versus dust) is dominant over the other, and in some locations both are evident.

The abundance of arsenic trioxide grains, with minimal evidence of either arsenopyrite or arsenic sulphide, suggests Roaster Stack deposition. This distribution is common in approximately 70% of the sample stations, and is particularly prevalent in outcrop terrain. Conversely, when arsenopyrite and roaster oxides (typical of tailings) dominate the sample, the source of elevated arsenic is likely attributed to dust from waste rock and tailings. About 15% of the sample stations were predominantly influenced by waste rock and tailings. The remaining 15% of the stations were influenced by both sources.

Vertical delineation of arsenic in soil was assessed based on both bulk chemistry and arsenic speciation data and indicated the following:

- 1) High concentrations of arsenic (primarily consisting of arsenic trioxide) were present in the shallow outcrop soils. The results suggest that these arsenic impaired soils are both wide spread and shallow (typically less than 200 mm in depth).
- 2) High concentrations of arsenic (consisting of both arsenic trioxide and arsenopyrite) were present in the forest areas. Arsenic trioxide was measured at lower concentrations in forest soils compared to the outcrop soils.
- 3) Elevated arsenic (either arsenic trioxide or arsenopyrite) was found in the shallow wetland soil. However, the concentrations of arsenic were significantly lower in the wetland areas and arsenic trioxide was not dominant in the shallow soils.



Lateral delineation of arsenic in soil was assessed based on the potential influence of emissions from the former Roaster Stack. Soil quality data was considered based on geographic distance from the former Roaster Stack (i.e., 0 to 1 km, 1 to 2 km, or greater than 2 km from the stack). Although the majority of the data is from the near source stations, this segregation of data provided evidence to suggest that arsenic concentrations in shallow soil (particularly arsenic trioxide) were decreasing with distance from the former Roaster Stack.

# 6.0 MINERALOGICAL CHARACTERIZATION

The section summarizes the role of mineralogical characterization, and specifically arsenic speciation using MLA/SEM automated mineralogy methods with respect the overall interpretation of shallow soil quality, and provides recommendations with respect to the future application of this technique.

# 6.1 Current Assessment

Although arsenic had been historically identified in the shallow soil at the Site, minimal environmental investigation work had been previously completed with respect to shallow soil in the undisturbed areas of the Site. The two staged approach to the current assessment has been previously described in Sections 3 and 4. This assessment was therefore developed to address several key questions (see below). The results of the bulk chemistry testing were used as the primary source of information to respond to Questions 1, 2 and 3. The results of arsenic speciation testing were principally used to respond to Question 4.

1) Are elevated arsenic concentrations present in undistributed areas?

The results of bulk chemistry results confirm that elevated concentrations of total arsenic are present in shallow soil across the entire lease lands. Although the total arsenic concentrations in shallow soil vary significantly, the concentrations are significantly elevated compared to natural background for the Yellowknife area.

2) Do arsenic concentrations in soil vary laterally and vertically?

The bulk chemistry results (total arsenic concentrations) were also used to confirm that that elevated concentrations of arsenic are frequently present in the upper 20 mm of soil. In addition, it was concluded that the elevated concentrations of arsenic are present in within 1 kilometer of the former Roaster Stack, and decrease in concentration with greater distance from the former stack.

3) Do arsenic concentrations in soil vary with terrain type?

The bulk chemistry results were the primary line of evidence to support the conclusion that the elevated concentrations of arsenic (significantly exceeding regional background concentrations) are present within all terrain types, with the total arsenic concentrations concentrated in bedrock crevasses.

4) What is the potential source of arsenic impairment in shallow soil?

MLA/SEM arsenic speciation techniques were successfully used to verify that former Roaster Stack emissions were the primary anthropogenic source of arsenic impairment in shallow soil. The results of the automated mineralogy testing definitively confirmed the presence of arsenic trioxide in shallow soil samples within the undisturbed areas.



The "staged" testing program proved successful in meeting the objectives of the assessment. The bulk chemistry test results provided the primary line of evidence to suggest the presence of anthropogenic arsenic in shallow soil. These results were then reviewed to identify a subset of samples for automated mineralogy testing. This strategy ensured that the selected samples likely had a significant number of arsenic grains available for identification. In addition, the total arsenic concentration from the bulk chemistry testing was used in conjunction with the mineralogical grain counts to "back calculate" the speciated proportions of arsenic in the sample. Automated mineralogy testing was therefore used to supplement the bulk chemistry data, and identify the likely source of arsenic impairment in shallow soil.

# 6.2 Future Applications

The project is moving into land use planning, risk assessment and remediation phases. Each phase of the project will likely require additional field assessment of soil quality in the undisturbed lands. Future soil quality testing may be considered either "routine" or "specialized".

- "Routine" testing typically involves using conventional commercial methods to obtain chemical and physical soil data. This routine testing is typically economical, and may be completed in short time frames. Routine testing will typically include bulk chemistry testing (ICP/MS) and particle grain size testing.
- "Specialized" testing typically uses university research resources/techniques to address specific scientific issues. This testing is often costly and not completed rapidly (in comparison with commercial labs). Specialized testing will typically include arsenic speciation testing and bioaccessibility testing.

It is anticipated that both categories of soil quality testing may play a role in future assessment work. The following paragraphs discuss future phases of the project and how arsenic speciation testing of soil may potentially be used to support information needs of the project.

# 6.2.1 Land Use and Risk Management Planning

Future land use alternatives for the undisturbed areas of Giant Mine lease are currently under consideration. It is understood that land use alternatives may include potential residential or recreational activities. Alternatively, significant portions of the undisturbed lands may be isolated from the public.

Although future land use decisions will be made primarily based on consultation with First Nations and the public, decisions will also be informed by both current soil quality data and the outcome of future ecological and human health risk assessment (refer to Section 6.2.2). The level of effort assigned to future assessment of soil quality (including arsenic speciation testing) across the Giant Mine lease will therefore depend on the future land use requirements. For example, land identified for sensitive land use (including future remediation or risk management) will likely require a greater degree of assessment compared to those areas where access may be permanently restricted.

Land use planning decisions within the undisturbed areas will take into account both the bulk chemistry data and arsenic speciation data presented herein. Arsenic speciation data allows the owner to provide important "forensic evidence" which describes not only the presence of total arsenic in shallow soil (determined through bulk chemistry), but confirms the origin, method of transport and potential distribution of arsenic in shallow soil. Arsenic speciation data therefore significantly reduces uncertainty with respect to the interpretation of the soil quality data, and provides a rational explanation of the current soil quality conditions.



Additional soil quality data will likely be needed to inform/assess the economic viability of various land use options. It is anticipated that the future assessment of shallow soil quality will include both bulk chemistry data collection to assess total concentrations of metals, and targeted arsenic speciation testing to confirm the source of arsenic and potentially inform risk assessment or remediation alternatives.

# 6.2.2 Human Health and Ecological Risk Assessment

It is understood that a regional ecological and human health risk assessment may proceed for the purposes of evaluating the current and future ecological and human health risks within the undisturbed areas on the Giant Mine lease lands. This risk assessment will be supported by a wide range of existing environmental site data.

It is likely that the risk assessment will rely predominantly on the existing bulk chemistry soil quality data, supplemented with existing bioaccessibility testing (Physiologically-based Extraction Testing - PBET) data. Arsenic speciation information will be used to confirm/correlate with the results of the bioaccessibility testing. These two sets of analysis will likely be interpreted in parallel to support the risk assessment.

It is known that mineralogical characterization testing provides insight into particle origin, mineralogical composition, size and texture, and this information may be used to assess human health and ecological risk from both the ingestion and inhalation pathways. The potential requirement for additional arsenic speciation data will be determined by the risk assessment team. The existing arsenic speciation data (described herein) may not likely be sufficient to allow interpretation/prediction of risk.

## 6.2.3 Site Remediation

It is unknown whether soil remedial work will be undertaken within undisturbed areas of the Giant Mine lease lands. Remedial soil sampling programs intended to support wide-area remediation or management programs must be tailored to provide confidence in soil quality over large areas. Sampling programs must therefore be designed to both provide statistical confidence in the soil quality data, while providing an economical strategy for site characterization.

The collection of soil samples for analysis of total arsenic is the primary tool associated required to complete site characterization. It is possible that field screening methods may be developed to characterize total arsenic concentrations in shallow soil as the remedial program proceeds. It is envisioned that both arsenic speciation testing the bioaccessibility testing will have limited application during the remedial phase of the project.

# 6.2.4 Risk Communication

The presence of arsenic trioxide in the shallow soil as a result of historical mining and processing activities is well known to local First Nations and the public. It is possible that arsenic speciation testing of soil or dust samples will be required throughout the project for the purposes of communicating the effectiveness of management controls implemented during the remedial program.



# 6.3 Summary

Automated mineralogy techniques have a specialized role in the characterization of soil at Giant Mine. With respect to the current assessment, automated mineralogy methods have been used in conjunction with the bulk chemistry analytical data to provide the "forensic evidence" necessary to identify the source of environmental impairment in soil. The technique is specialized and should be used in conjunction bulk chemistry data and other specialized analytical methods (e.g. PBET/bioaccessibility testing) to characterize soil.

Future applications of automated mineralogy techniques will be dependent upon ongoing land use planning and risk assessment studies. Automated mineralogy testing requirements will likely continue to be required during these pre-remediation stages of the project. The method is critical for informing land use decisions and providing input to risk assessment. Should confirmation of the source of arsenic impairment be necessary, arsenic speciation testing may be used (in conjunction with other methods) to resolve the issue. Should remedial works be considered in undisturbed areas, it is considered unlikely that the collection of extensive additional automated mineralogy data will be necessary.

# 7.0 CONCLUSIONS

The following points summarize our conclusions.

- The bulk chemistry results confirm the presence of elevated concentrations of total arsenic in shallow soil within the undisturbed areas of the Site. These elevated concentrations are particularly pronounced in the outcrop terrain. The highest concentrations were recorded in the outcrop terrain less than 1 km from the former Roaster Stack. The majority of soil samples submitted for bulk chemistry analysis recorded concentrations of total arsenic below the current soil quality criteria (Section 5.1.1.4).
- Soil samples selected for arsenic speciation were based on the bulk chemistry data. Samples containing total arsenic concentrations greater than 500 µg/g were identified as potential candidates for arsenic speciation testing (Section 4.2.3.1). Consequently, the arsenic speciation results should be interpreted based on this sample selection criteria. The arsenic speciation results indicate that the former Roaster Stack is the primary source of the anthropogenic arsenic in the shallow soils on the Site. Arsenic trioxide derived from stack emissions is present as either the most or second-most abundant form of arsenic in over 85% (i.e., 70% primary and 15% secondary) of the 50 soil samples assessed using arsenic speciation techniques. Arsenopyrite derived from waste rock and tailings was present as the most or second-most abundant form of arsenic in over 30% (i.e., 15% primary and 15% secondary) of the 50 soil samples examined for arsenic speciation.
- The present results provide irrefutable mineralogical evidence of the presence of three primary mining-related constituents in shallow soil at the Site: (i) arsenic trioxide; (ii) arsenopyrite; and (iii) roaster oxides. The presence of these constituents at elevated concentrations confirms anthropogenic influence on regional shallow soil quality. The quantity of arsenic trioxide/arsenopyrite/roaster oxide grains typically decreased with depth.
- The dominant abundance of arsenic trioxide grains, with minimal evidence of either arsenopyrite or arsenic sulphide suggests Roaster Stack deposition. It is acknowledged that the selection of samples for arsenic speciation testing was biased with samples containing higher total arsenic concentrations (above 500 μg/g).



- The primary or secondary abundance of arsenic trioxide is evident in outcrop samples across the entire Site. Elevated concentrations of arsenic trioxide are particularly pronounced in the outcrop terrain less than 1 km from the former Roaster Stack. Conversely, a significant decline in the number of arsenic trioxide grains present in shallow soil was recorded beyond 1 km from the former Roaster Stack. With one exception, no samples contained greater than 100 grains of arsenic trioxide when located greater than 1 km from the Roaster Stack.
- Elevated concentrations of arsenic trioxide in the shallow soil will require a remediation or risk management strategy to avoid potential exposure in the future should areas of the Site become accessible to the public. Any active remediation program should consider what actions may be required to protect workers from potential exposure during the execution of the program.
- Future application of automated mineralogy techniques will be dependent upon ongoing land use planning and risk assessment studies. Automated mineralogy testing will likely continue to be required during the pre-remediation stages of the project. The method is important for informing land use decisions and providing input to risk assessment. Should remedial works be considered in undisturbed areas, it is considered unlikely that the collection of extensive additional automated mineralogy data will be necessary.

The following points summarize our recommendations.

- The existing data should be reviewed in the context of both land use planning and human health/ ecological risk. The application of the current soil quality guideline for total arsenic should be reviewed in the context of the bulk chemistry and arsenic speciation data presented herein.
- The potential presence of arsenic trioxide within the developed areas of the Site should be assessed. The appropriate level of PPE for workers should be established based on the results of this assessment.



# 8.0 LIMITATIONS

This report was prepared for the exclusive use of AECOM Canada Ltd. and Public Works and Government Services Canada. The report, which specifically includes all tables, figures, and appendices, is based on data and information collected during the Site activities conducted by Golder Associates Ltd. and is based solely on the conditions of the property at the time of the Site field program and data obtained by Golder Associates Ltd. as described in this report.

The services performed as described in this report were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The content of this report is based on information collected during our assessment, our present understanding of the Site conditions, and our professional judgement in light of such information at the time of this report. This report provides a professional opinion and therefore no warranty is either expressed, implied, or made as to the conclusions, advice and recommendations offered in this report. This report does not provide a legal opinion regarding compliance with applicable laws. With respect to regulatory compliance issues, it should be noted that regulatory statutes and the interpretation of regulatory statues are subject to change. The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.





# 9.0 CLOSURE

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

Sincerely,

GOLDER ASSOCIATES LTD.

Diana Yo

Diana Young, B.Sc., A.I.T. Environmental Scientist

Arthur Cole, P.Eng. Principal, Senior Environmental Engineer



DY/AC/sb

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.

\\golder\gal\edmonton\active\2013\1377 geosciences 2013\13 1377 0044 aecom canada, environmental services, giant mine\project\9000 - contaminated soil characterization\report\revised final report\1313770044-9000 rev final gm reg soil qual assess\_29jan16.docx



# **FIGURES**

Figure 1: Regional Soil Sample Locations
Figure 2: Regional Soil Sample Locations by Terrain Type
Figure 3: Regional Soil Samples Submitted for Speciation
Figure 4: Regional Soil Samples Vertically Deliniated
Figure 5: Regional Soil Sample Locations with Arsenic Lab Results (1 of 3)
Figure 6: Regional Soil Sample Locations with Arsenic Lab Results (2 of 3)
Figure 7: Regional Soil Sample Locations with Arsenic Lab

Figure 7: Regional Soil Sample Locations with Arsenic Lab Results (3 of 3)







PWGSC - A1 - 841X594

|                                                                         | Public Works and<br>Government Services<br>Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada CANA CANA CANA CANA CANA CANA CANA CAN |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | Région de l'ouest<br><b>PRELIMINARY</b><br>NOT FOR CONSTRUCTION                                                                                         |
| VI-F-4<br>VI-F-4<br>VI-OC-4<br>VI-OC-5<br>VI-OC-5<br>VI-OC-2<br>VI-OC-2 |                                                                                                                                                         |
|                                                                         |                                                                                                                                                         |
|                                                                         |                                                                                                                                                         |
|                                                                         |                                                                                                                                                         |
|                                                                         | 0     1313770044-9000     30JUL15       Revision/<br>Revision/<br>Revision     Description/Description     Date/Date                                    |
|                                                                         | Client/client<br>PUBLIC WORKS<br>GOVERNMENT SERVICES<br>CANADA                                                                                          |
|                                                                         | Project title/Titre du projet<br>GIANT MINE<br>REMEDIATION PROJECT<br>YELLOWKNIFE, N.W.T.                                                               |
|                                                                         | Approved by/Approuve par<br>AC                                                                                                                          |
|                                                                         | Designed by/Concept par<br>SF<br>Drawn by/Dessine par                                                                                                   |
|                                                                         | PWGSC Project Manager/Administrateur de Projets TPSGC<br>CHRIS DOUPE<br>PWGSC, Architectural and Engineering Resources Manager/                         |
|                                                                         | Client/client<br>PWGSC                                                                                                                                  |
|                                                                         | REGIONAL SOIL SAMPLE LOCATIONS<br>BY TERRAIN TYPE                                                                                                       |
| 800 1,200                                                               |                                                                                                                                                         |
| METRES                                                                  | Project No./No. du<br>projetSheet/FeuilleRevision no./La Révision<br>no.13-1377-0044<br>90002<br>OF 50                                                  |



|                                                              | Public Work<br>Governmen<br>Canada<br>REAL PF<br>SERVI                                                                                                                                                                        | s and Travaux public:<br>Services Services gouve<br>Canada<br>ROPERTY SERVIC<br>Western Region<br>CES IMMOBILIERS<br>Région de l'ouest<br><b>LINNINAI</b><br>RCONSTRUC | s et<br>ernementaux<br>ES<br>S<br><b>RY</b> TION |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| VI-F-4<br>VI-F-4<br>VI-OC-4<br>VI-OC-2<br>VI-OC-2<br>VI-OC-2 |                                                                                                                                                                                                                               |                                                                                                                                                                        |                                                  |
|                                                              | 0 Revision/ Des Client/client PUE                                                                                                                                                                                             | 1313770044-9000<br>cription/Description                                                                                                                                | JULI5                                            |
|                                                              | Project title/Titre du p<br>REME<br>YELL<br>Approved by/Approuve<br>AC                                                                                                                                                        | rojet<br>GIANT MINE<br>DIATION PROJECT<br>OWKNIFE, N.W.T.                                                                                                              | г<br>                                            |
|                                                              | Designed by/Concept<br>SF<br>Drawn by/Dessine par<br>PWGSC Project Manage<br>CHRIS DOUPE<br>PWGSC, Architectural<br>Ressources Architectura<br>Client/client<br>PWGSC<br>Drawing title/Titre du<br>REGIONAL SC<br>SUBMITTED F | oar<br>r/Administrateur de Projo<br>nd Engineering Resource<br>al et de Directeur d'Ingén<br>dessin<br>DIL SAMPLES<br>OR SPECIATION                                    | ets TPSGC<br>s Manager/<br>nierie, TPSGC         |
| 800 1,200<br>METRES                                          | Project No./No. du<br>projet<br>13-1377-0044<br>9000                                                                                                                                                                          | Sheet/Feuille<br><b>3</b><br>OF 5                                                                                                                                      | Revision no./<br>La Révision<br>no.<br>0         |



|                                                               | Public Works and<br>Government Services       Travaux publics et<br>Services gouvernementaux<br>Canada         REAL PROPERTY SERVICES<br>Western Region         SERVICES IMMOBILIERS<br>Région de l'ouest |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | PRELIMINARY<br>NOT FOR CONSTRUCTION                                                                                                                                                                       |
| VI-E-4<br>VI-E-4<br>VI-U-0C-4<br>VI-E-2<br>VI-OC-2<br>VI-OC-2 |                                                                                                                                                                                                           |
|                                                               |                                                                                                                                                                                                           |
|                                                               |                                                                                                                                                                                                           |
|                                                               | 0 1313770044-9000 30JUL15                                                                                                                                                                                 |
|                                                               | Client/client<br>PUBLIC WORKS<br>GOVERNMENT SERVICES<br>CANADA                                                                                                                                            |
|                                                               | Project title/Titre du projet<br>GIANT MINE<br>REMEDIATION PROJECT<br>YELLOWKNIFE, N.W.T.                                                                                                                 |
|                                                               | Approved by Approving and                                                                                                                                                                                 |
|                                                               | AC<br>Designed by/Concept par                                                                                                                                                                             |
|                                                               | SF<br>Drawn by/Dessine par                                                                                                                                                                                |
|                                                               | PWGSC Project Manager/Administrateur de Projets TPSGC<br>CHRIS DOUPE                                                                                                                                      |
|                                                               | PWGSC, Architectural and Engineering Resources Manager/<br>Ressources Architectural et de Directeur d'Ingénierie, TPSGC                                                                                   |
|                                                               | PWGSC<br>Drawing title/Titre du dessin<br>REGIONAL SOIL SAMPLES<br>VERTICALLY DELINIATED                                                                                                                  |
| 800 1,200                                                     |                                                                                                                                                                                                           |
| METRES                                                        | Project No./No. du<br>projetSheet/FeuilleRevision no./<br>La Révision<br>no.13-1377-004449000OF 5                                                                                                         |



E LOC'N: Y:\Voncouver2\CAD\Client\PWGSC\Giant\_Mine\99\_PR0JECTS\13-1377-0044\16000\16005\1313770044-16000-16005-F01.dwg Layout:5 ARSENIC LAB RESULTS (1 OF 3) Friday, January 28, 2016 11:51:32 AM

PWGSC - A1 - 841X594

# LEGEND

- REGIONAL SOIL SAMPLE LOCATION
   LEASE BOUNDARY
   ROASTER STACK
- NOTES
- 1. ALL UNITS ARE IN METRES UNLESS OTHERWISE GMRP COORDINATE SYSTEM.

# REFERENCES

1. AERIAL PHOTO DATED 2009, PROVIDED BY PUB CANADA

| GOLDER SITE |          | 10 (cm)<br>5        |
|-------------|----------|---------------------|
|             | 5        | 15                  |
| I-F-1       | 15       | 30                  |
|             | 60       | 100                 |
|             | 0        | 5                   |
| I-F-2       | 5        | <u>15</u><br>30     |
| 112         | 30       | 60                  |
|             | 60       | 100                 |
|             | 5        | <u> </u>            |
| II-F-1      | 15       | 30                  |
|             | 30       | 60                  |
|             | 0        | 5                   |
|             | 5        | 15                  |
| 11-F-2      | 30       | <u> </u>            |
|             | 60       | 100                 |
|             | 0        | <u> </u>            |
| II-F-3      | 15       | 30                  |
|             | 30       | 60                  |
|             | 0        | <u> </u>            |
| III-F-1     | 5        | 15                  |
|             | <u> </u> | 30                  |
|             | 0        | 5                   |
| וו_ב ס      | 5<br>1 E | 15                  |
| 111-F-2     | 30       | 55                  |
|             | 55       | 100                 |
| I-0C-1      | <u> </u> | 5<br>15             |
| I-0C-2      | 2        | 7                   |
| I-OC-3      | 2        | 5                   |
| II-OC-1     | 5        | 10                  |
| II-OC-10    | 0        | 5                   |
|             | 0        | <u> </u>            |
| 11-0C-11    | 5        | 10                  |
| II-OC-2     | <u> </u> | 10                  |
| II-OC-3     | 0        | 5                   |
|             | 5        | <u> </u>            |
| II-OC-4     | 5        | 15                  |
|             | 15       | 20                  |
| II-OC-5     | 3        | 10                  |
|             | 10       | 20                  |
| II-OC-6     |          | <u> </u>            |
|             | 15       | 20                  |
| II-OC-7     | <u> </u> | <u>    10</u><br>16 |
| II_OC_8     | 0        | 12                  |
| n=0€*0      | 12       | 15                  |
| II-OC-9     | 3        | 10                  |
|             | 10       | 15                  |
| III-OC-1    | 5        | 5<br>15             |
| III-0C-2    | 0        | 8                   |
|             | 8<br>0   | <u>15</u><br>5      |
| III-OC-3    | 5        | 9                   |
| III-OC-5    | 0        | 5                   |
|             | 0        | 5                   |
|             | 5        | 9                   |
| III-OC-7    | 5        | 10                  |
| III-OC-8    | 0        | 5                   |
|             | 5        | 3                   |
| IX-OC-2     | 3        | 10                  |
|             | 10       | 25<br>5             |
| IX-OC-3     | 5        | 10                  |
|             | 0<br>E   | 5                   |
| I-WL-1      | 15       | 30                  |
|             | 30       | 60                  |
|             | 0        | <u> </u>            |
|             | 5        | 15                  |
| I-WL-2      | 15<br>30 | <u>30</u>           |
|             | 60       | 100                 |
|             | 0        | 5                   |
| II-WL-2     | 15       | 30                  |
|             | 30       | 60                  |
|             | 60<br>0  | <u>100</u>          |
|             | 5        | 15                  |
| III-WL-1    | 15<br>२० | <u>30</u>           |
|             | 60       | 100                 |

0 SCALE A

|                                |              |             | ∎*                                  | Public Works an<br>Government Ser<br>Canada<br>REAL PRO<br>We | d Travaux publi<br>rvices Services gour<br>Canada<br>PERTY SERVIC<br>estern Region | cs et<br>vernementaux<br>CES  |
|--------------------------------|--------------|-------------|-------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|
|                                |              |             |                                     | SERVICE<br>Ré                                                 | ES IMMOBILIER<br>gion de l'ouest                                                   | S                             |
| NOTED. COC                     | ORDINATE SYS | STEM IS THE |                                     | PREL                                                          | .IMINA                                                                             | RY                            |
|                                | GOVERNMENT   | SERVICES    |                                     | NOT FOR                                                       | CONSTRUC                                                                           | TION                          |
|                                |              |             |                                     |                                                               |                                                                                    |                               |
|                                |              |             |                                     |                                                               |                                                                                    |                               |
| As (μg/g)<br><b>500</b>        |              |             |                                     |                                                               |                                                                                    |                               |
| <u>100</u><br><u>140</u><br>74 |              |             |                                     |                                                               |                                                                                    |                               |
| <u>19</u><br><u>250</u><br>250 |              |             |                                     |                                                               |                                                                                    |                               |
| 250<br>180                     |              |             |                                     |                                                               |                                                                                    |                               |
| <u>120</u><br>270<br>250       |              |             |                                     |                                                               |                                                                                    |                               |
| 110<br>5.2                     |              |             |                                     |                                                               |                                                                                    |                               |
| <u> </u>                       |              |             |                                     |                                                               |                                                                                    |                               |
| 170<br>45<br>21                |              |             |                                     |                                                               |                                                                                    |                               |
| 240<br>63                      |              |             |                                     |                                                               |                                                                                    |                               |
| 52<br>26<br>16                 |              |             |                                     |                                                               |                                                                                    |                               |
| 83<br>90                       |              |             |                                     |                                                               |                                                                                    |                               |
| 57<br>76<br><b>1500</b>        |              |             |                                     |                                                               |                                                                                    |                               |
| <b>840</b><br>280<br>250       |              |             |                                     |                                                               |                                                                                    |                               |
| 40<br><b>1200</b>              |              |             |                                     |                                                               |                                                                                    |                               |
| 230<br>2000<br>1700            |              |             |                                     |                                                               |                                                                                    |                               |
| 710<br>490                     |              |             |                                     |                                                               |                                                                                    |                               |
| 16000<br>7200<br>11000         |              |             |                                     |                                                               |                                                                                    |                               |
| 7800<br>1500                   |              |             |                                     |                                                               |                                                                                    |                               |
| 1400<br>1400<br>1400           |              |             |                                     |                                                               |                                                                                    |                               |
| 2400<br>460<br>410             |              |             |                                     |                                                               |                                                                                    |                               |
| 17000<br>1300                  |              |             |                                     |                                                               |                                                                                    |                               |
| 9200<br>3600                   |              |             |                                     |                                                               |                                                                                    |                               |
| 3400<br>500<br>72              |              |             |                                     |                                                               |                                                                                    |                               |
| <b>480</b><br>320              |              |             | Revision/<br>Revision<br>Client/cli | Descrip<br>ent                                                | otion/Description                                                                  | Date/Dat                      |
| 1400<br>2400<br>2400           |              |             |                                     | PUBL                                                          |                                                                                    |                               |
| 3100<br>1400<br>2200           |              |             | G                                   |                                                               | IENT SERV<br>ANADA                                                                 | ICES                          |
| <u>3200</u><br>1300<br>1400    |              |             |                                     |                                                               |                                                                                    |                               |
| 1500<br>3200<br>4100           |              |             |                                     |                                                               |                                                                                    |                               |
| 270<br>1500                    |              |             | Project t                           | itle/Titre du proje<br>GI                                     |                                                                                    | Ŧ                             |
| 91<br>6 <b>30</b>              |              |             |                                     | YELLO                                                         | WKNIFE, N.W.T                                                                      |                               |
| 260<br>5500                    |              |             |                                     |                                                               |                                                                                    |                               |
| 480<br>4800                    |              |             |                                     |                                                               |                                                                                    |                               |
| <b>4900</b><br>130<br>93       |              |             | Approved<br>AC                      | by/Approuve po                                                | ır                                                                                 |                               |
| 25<br>14                       |              |             | Designed<br>SF                      | by/Concept par                                                |                                                                                    |                               |
| 15<br>780<br>500               |              |             | Drawn b                             | y/Dessine par                                                 |                                                                                    |                               |
| 80<br>24                       |              |             | PWGSC P<br>CHRIS D                  | roject Manager/A<br>OUPE                                      | Administrateur de Pro                                                              | ijets TPSGC                   |
| <u>13</u><br>900<br>240        |              |             | PWGSC,<br>Ressourc                  | Architectural and<br>es Architectural e                       | Engineering Resourc<br>et de Directeur d'Ing                                       | es Manager/<br>énierie, TPSGC |
| 110<br>39                      |              |             | Client/cli<br>PWGSC                 | ent                                                           |                                                                                    |                               |
| 2⊥<br>1000<br>920              |              |             | Drawing                             | title/Titre du des                                            |                                                                                    |                               |
| 2700<br>65<br>62               |              |             | WITH<br>(1 OF                       | ARSENIC<br>3)                                                 | LAB RESULT                                                                         | S<br>S                        |
|                                | 400          | 600         | Project                             | lo./No. du   <                                                | Sheet/Feuille                                                                      | Revision no                   |
|                                |              | METRES      | projet                              |                                                               | , <b>-</b>                                                                         | La Révision<br>no.            |

1313770044-16000-16005-F01



# LEGEND

 $\oplus$  REGIONAL SOIL SAMPLE LOCATION ----- LEASE BOUNDARY

# NOTES

1. ALL UNITS ARE IN METRES UNLESS OTHERWISE NOTED. COORDINATE SYSTEM IS THE GMRP COORDINATE SYSTEM.

# REFERENCES

1. AERIAL PHOTO DATED 2009, PROVIDED BY PUB CANADA

| GOLDER SITE          | FROM (cm)      | TO (cm)  | As (ug/g)  |
|----------------------|----------------|----------|------------|
|                      | 0              | 5        | 540        |
|                      | 5              | 15       | 140        |
| IV-F-1               | 15             | 30       | 51         |
|                      | 30             | 60       | 25         |
|                      | 60             | 100      | /.3        |
| -                    | <u> </u>       | 5        | 1700       |
| 11/52                | <u> </u>       | 20       | 1300       |
| IV-F-Z               | 20             | <u> </u> | 17         |
| -                    | <u> </u>       | 100      | 1/         |
|                      | 0              | 5        | 770        |
| IV-E-30              | 5              | 15       | 2500       |
| 10-1-54              | 15             | 35       | 300        |
|                      | 0              | 5        | 1300       |
| -                    | 5              | 15       | 130        |
| IV-F-3B              | 15             | 30       | 170        |
|                      | 30             | 60       | 36         |
| ľ                    | 60             | 100      | 21         |
|                      | 0              | 5        | 250        |
|                      | 5              | 15       | 66         |
| V-F-1                | 15             | 30       | 23         |
|                      | 30             | 50       | 9.1        |
|                      | 50             | 100      | 7.7        |
|                      | 0              | 5        | 94         |
|                      | 5              | 20       | 43         |
| VII-F-1              | 20             | 30       | 32         |
| [                    | 30             | 60       | 13         |
|                      | 60             | 100      | 8.7        |
|                      | 0              | 5        | 80         |
|                      | 5              | 15       | 100        |
| VIII-F-1             | 15             | 30       | 55         |
| ļ                    | 30             | 60       |            |
|                      | 60             |          | 10         |
| ŀ                    | <u> </u>       | 5<br>15  | <b>540</b> |
| VIII-F-2             | <u> </u>       | 20       |            |
| ŀ                    | 20             | <u> </u> |            |
|                      | <u> </u>       |          | <u> </u>   |
| ł                    | <u></u>        | 15       | 220        |
| VIII-F-3             | 15             | 30       | 10         |
| ŀ                    | <u></u>        | 60       | 1/         |
|                      | <u> </u>       | 5        | 80         |
|                      | <u> </u>       | 15       | 76         |
| VIII-F-4             | 15             | 30       | 71         |
| •••••                | 30             | 60       | 40         |
| ł                    | 60             | 90       | 23         |
|                      | 0              | 5        | 110        |
|                      | 5              | 15       | 64         |
| VIII-F-5             | 15             | 30       | 13         |
|                      | 30             | 60       | 8.3        |
|                      | 60             | 100      | 7.3        |
|                      | 0              | 5        | 2400       |
| ľ                    | 5              | 15       | 300        |
| IX-F-1               | 15             | 30       | 180        |
|                      | 30             | 55       | 290        |
|                      | 55             | 100      | 21         |
|                      | 0              | 5        | 930        |
| IX-F-7               | 5              | 15       | 730        |
| I/T I <sup>−</sup> Z | 15             | 30       | 220        |
|                      | 30             | 45       | 53         |
|                      | 0              | 5        | 510        |
|                      | 5              | 15       | /3         |
| IX-F-3               | 15             | 30       | 59         |
| ļ                    | 30             | 60       | 28         |
|                      | 60             | 100      |            |
| -                    | <u> </u>       | 5<br>15  | 240        |
| ŀ                    | <u>5</u><br>15 | 20       | 5000       |
| IX-F-4               | 20             | <u> </u> | 190        |
| ŀ                    | <u> </u>       |          | 100        |
| ł                    |                | 100      | 40         |
|                      | <u></u>        | 100      | 7000       |
| IV-OC-1              | <u> </u>       | 10       | 5400       |
|                      | 0              | 5        | 840        |
| IV-OC-2              | <u> </u>       | 10       | 810        |
|                      | <u> </u>       | 5        | 1100       |
| IV-OC-3              | <u> </u>       | 15       | 580        |
|                      | <u> </u>       | 5        | 4800       |
| IV-OC-4              | 5              | 12       | 5100       |
|                      | 5              |          | 3100       |



| BLIC WORKS GOVERNMENT SERVICES |  |
|--------------------------------|--|
|                                |  |

| GOLDER SITE | FROM (cm) | TO (cm)         | As (µg/g)   |
|-------------|-----------|-----------------|-------------|
| V-0C-1      | 0         | 5               | 1400        |
|             | 5         | 15              | 570         |
| V-OC-5      | 5         | 10              | 310         |
| VII-OC-5    | 0         | 5               | 230         |
| VII-OC-6    | 0         | 5               | 160         |
|             | 5         | 10              | 150         |
| VII-OC-7    | 5         |                 | 120         |
|             | 0         | 5               | 170         |
| VIII-0C-1   | 5         | 10              | 20          |
|             | 0         | 5               | 190         |
| VIII-OC-2   | 5         | $\frac{10}{20}$ | 51          |
|             |           | <u> </u>        | 940         |
| VIII-OC-3   | 5         | 10              | 190         |
| VIII-OC-4   | 0         | 5               | 840         |
|             | 5         | 20              | 370         |
| VIII-OC-5   | 10        | 10              | 330         |
|             | 0         | 5               | 380         |
| VIII-OC-6   | 5         | 10              | 280         |
| IX-OC-1     | 0         | 5               | 2500        |
|             | 5         |                 | 150         |
|             | 6         | <u> </u>        | 1100        |
|             | 15        | 20              | 1200        |
|             | 0         | 7               | 920         |
| 11-00-5     | 7         | 15              | 1100        |
|             | <u> </u>  | <u> </u>        | <b>1100</b> |
| IV-WI-1     | 15        | 30              | 94          |
|             | 30        | 60              | 120         |
|             | 60        | 100             | 57          |
|             | 0         | 5               | 210         |
|             | 5         | 20              | 1000        |
|             | 30        | <u> </u>        | 3400        |
|             | 60        | 100             | 1800        |
|             | 0         | 5               | 67          |
|             | 5         | 15              | 130         |
| IV-VVL-3    | 30        | <u> </u>        | 70          |
|             | 60        | 100             | 38          |
|             | 0         | 5               | 260         |
|             | 5         | 15              | 210         |
| IV-WL-4     | 15        | 30              | 140         |
|             | <u> </u>  | 100             | 160         |
|             | 0         | 5               | 330         |
|             | 5         | 15              | 210         |
| IV-WL-5     | 15        | 30              | 200         |
|             | <u> </u>  | 6U<br>100       | 30          |
|             | 0         | 5               | 810         |
|             | 5         | 15              | 190         |
| V-WL-1      | 15        | 30              | 120         |
|             | 30        | 60              | 50          |
|             | 00        | 5               | <u> </u>    |
|             | 5         | 15              | 32          |
| VIII-WL-1   | 15        | 30              | 40          |
|             | 30        | 60              | 23          |
|             | 60        | 100             | 6.4<br>11   |
|             | 5         | 15              | 18          |
| VIII-WL-2   | 15        | 30              | 11          |
|             | 30        | 60              | 7.3         |
|             | 60        | 100             | 6.2         |
|             |           | 5               | 1500        |
| IX-WL-1     | 15        | 30              | 220         |
|             | 30        | 60              | 150         |
|             | 60        | 100             | 120         |
|             | 0         | 5               | 700         |
| Y_\\/I_2    | 5<br>15   | 30              | 110         |
|             | 30        | 60              | 19          |
|             | 60        | 100             | 29          |

| Revision                                                                                                                                                                                                                                                                                                                                                                        | Deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | richten (Description                                                                                                                                                                                 |                                                                                           | Data (D                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Revision/<br>Revision<br>Client/cli                                                                                                                                                                                                                                                                                                                                             | Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ription/Description                                                                                                                                                                                  |                                                                                           | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli                                                                                                                                                                                                                                                                                                                                             | Desc<br>ent<br>PUB<br>OVERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ription/Description                                                                                                                                                                                  | KS                                                                                        | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli                                                                                                                                                                                                                                                                                                                                             | Desc<br>ent<br>PUB<br>OVERN<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ription/Description                                                                                                                                                                                  | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ription/Description                                                                                                                                                                                  | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ription/Description                                                                                                                                                                                  | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G                                                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/D                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Approved<br>AC                                                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Approved<br>AC<br>Designed<br>SF                                                                                                                                                                                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA                                                                                                                                                | KS<br>RVICE                                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by                                                                                                                                                                                                                                                                          | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>(/Dessine par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ription/Description LIC WORI MENT SEI CANADA  ojet BIANT MINE DIATION PROJ DWKNIFE, N.V  par ar                                                                                                      |                                                                                           | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D                                                                                                                                                                                                                                      | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Approuve<br>by/Concept p<br>(/Dessine par<br>roject Manager<br>OUPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ription/Description LIC WORI MENT SEI CANADA  ojet BIANT MINE DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de                                                                                   | KS<br>RVICE<br>IECT<br>V.T.                                                               | Date/C                                                                                 |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC, A<br>Ressource                                                                                                                                                                                                             | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>ty/Concept p<br>ty/Concept p<br>ty/Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>es Architectural ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ription/Description<br>LIC WORI<br>MENT SEI<br>CANADA<br>ojet<br>SIANT MINE<br>DIATION PROJ<br>DWKNIFE, N.V<br>par<br>ar<br>/Administrateur de<br>nd Engineering Ress<br>I et de Directeur de        | KS<br>RVICE<br>IECT<br>V.T.<br>Projets TP                                                 | Date/C<br>SGC                                                                          |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC, A<br>Ressource<br>Client/cli<br>PWGSC                                                                                                                                                                                      | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>t/Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>es Architectural ar<br>es Architectural ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ription/Description LIC WORI MENT SEI CANADA  ojet BIANT MINE DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de nd Engineering Result i et de Directeur de                                        | KS<br>RVICE                                                                               | Date/C<br>SGC                                                                          |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project fi<br>Project fi<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC, A<br>Ressource<br>Client/cli<br>PWGSC<br>Drawing T                                                                                                                                                                         | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>(/Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>es Architectural ar<br>es Architectural ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ription/Description LIC WORI MENT SEI CANADA ojet GIANT MINE DIATION PROJ DWKNIFE, N.V par ar /Administrateur de nd Engineering Ress I et de Directeur de lessin L SAMPLE L                          | KS<br>RVICE                                                                               | Date/C<br>SGC<br>SGC<br>ager/<br>TPSGC                                                 |
| Revision/<br>Revision/<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC C<br>PWGSC C<br>Client/cli<br>PWGSC C<br>Client/cli<br>PWGSC C<br>Client/cli<br>PWGSC C<br>Client/cli<br>PWGSC C<br>Client/cli<br>Client/cli<br>Client/cli<br>Client/cli<br>Client/cli<br>Client/cli | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>//Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>ent<br>title/Titre du c<br>DNAL SOI<br>ARESEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ription/Description LIC WORI MENT SEI CANADA  ojet SIANT MINE DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de nd Engineering Ressin L SAMPLE L IC LAB RES                                       | KS<br>RVICE                                                                               | Date/C<br>SGC<br>ager/<br>TPSGC                                                        |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC, A<br>Ressource<br>Client/cli<br>PWGSC D<br>CHRIS D<br>PWGSC, A<br>Ressource<br>Client/cli<br>PWGSC P<br>CHRIS D                                                                                                        | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>y/Concept p<br>y/Concept p<br>r/Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>es Architectural ar<br>es Architectural ar<br>es Architectural ar<br>s Architectural ar<br>es Architectural ar                                                                                                                                                                                                                                                                                                                                                                                                  | ription/Description LIC WORI MENT SEI CANADA  ojet DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de nd Engineering Resci L SAMPLE L IC LAB RES                                                   | KS<br>RVICE                                                                               | Date/C<br>Date/C<br>SGC                                                                |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project fi<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D                                                                                                                | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>//Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>es Architectural ar<br>es Architectural ar<br>es Architectural ar<br>as Architectural ar | ription/Description LIC WORI MENT SEI CANADA  ojet SIANT MINE DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de nd Engineering Ress I et de Directeur de lessin L SAMPLE L IC LAB RES             | KS<br>RVICE                                                                               | Date/C<br>S<br>S<br>S<br>S<br>S<br>S<br>C<br>NS                                        |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project fi<br>Approved<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC, A<br>Ressource<br>Client/cli<br>PWGSC P<br>CHRIS D<br>PWGSC Q<br>Client/cli<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D                                                                                            | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>//Dessine par<br>roject Manager<br>OVPE<br>Architectural ar<br>ent<br>title/Titre du c<br>DNAL SOI<br>ARESEN<br>3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ription/Description LIC WORI MENT SEI CANADA  ojet GIANT MINE DIATION PROJ DWKNIFE, N.V  par ar /Administrateur de de Engineering Ress l et de Directeur de lessin L SAMPLE L IC LAB RES             | KS<br>RVICE                                                                               | Date/D<br>S<br>S<br>S<br>S<br>S<br>C<br>NS                                             |
| Revision/<br>Revision<br>Client/cli<br>G<br>Project ti<br>Project ti<br>Designed<br>AC<br>Designed<br>SF<br>Drawn by<br>PWGSC P<br>CHRIS D<br>PWGSC P<br>CHRIS D<br>PWGSC A<br>Ressource<br>Client/cli<br>PWGSC D<br>PWGSC A<br>Ressource<br>Client/cli<br>PWGSC A<br>Ressource<br>Client/cli<br>PWGSC A<br>Project N<br>REGIO<br>WITH<br>(2 OF                                 | Desc<br>ent<br>PUB<br>OVERN<br>(<br>tle/Titre du pr<br>(<br>REMED<br>YELL(<br>by/Approuve<br>by/Concept p<br>r/Dessine par<br>roject Manager<br>OUPE<br>Architectural ar<br>ent<br>title/Titre du c<br>DNAL SOI<br>ARESEN<br>3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ription/Description LIC WORI MENT SEI CANADA  ojet BIANT MINE DATION PROJ DWKNIFE, N.V  par ar /Administrateur de nd Engineering Res l et de Directeur d  lessin L SAMPLE L IC LAB RES Sheet/Feuille | KS<br>RVICE<br>IECT<br>V.T.<br>Projets TP<br>ources Man<br>'Ingénierie,<br>OCATIC<br>ULTS | Date/C<br>Date/C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>C<br>N<br>S<br>S<br>C<br>N<br>S |

Public Works and Government Services Canada Canada Canada

REAL PROPERTY SERVICES Western Region SERVICES IMMOBILIERS

Région de l'ouest

PRELIMINARY



ADD FILE LOC'N: Y:\Voncouver2\CAD\Client\PWGSC\Giont\_Mine\99\_PROJECTS\13-1377-0044\16000\16005\1313770044-16000-16005-F01.dwg Loyout:7 ARSENIC LAB RESULTS (3 0F 3) Fridoy, Jonuory 29, 2016 11:51:32 AM E

# LEGEND

+REGIONAL SOIL SAMPLE LOCATION-----LEASE BOUNDARY

# NOTES

1. ALL UNITS ARE IN METRES UNLESS OTHERWIS GMRP COORDINATE SYSTEM.

# REFERENCES

1. AERIAL PHOTO DATED 2009, PROVIDED BY PU CANADA AND BASE IMAGE © 2015 OBTAINED F LICENSE. IMAGERY DATE 7-28-2013. GOOGLE E

| GOLDER SITE | FROM (cm)       | TO (cm)         |
|-------------|-----------------|-----------------|
|             | 0<br>10         | <u>10</u><br>20 |
| V-F-2       | 20              | 50              |
| V-F-2       | 50              | 80              |
|             | 80              | 90              |
|             | 0               | 5               |
|             | 5               | 20              |
| VI-F-1      | 20              | <u> </u>        |
|             | 60              | 90              |
|             | 0               | 5               |
|             | <u> </u>        | 30              |
| VI-F-2      | 30              | 50              |
|             | 50              | 60              |
|             | 80              | 80              |
|             | 0               | 5               |
|             | 5               | 15              |
| VI-F-3      | 25              | 45              |
|             | 45              | 55              |
|             | 55              | 80              |
|             | 5               | 10              |
| VI-F-4      | 10              | 30              |
|             | <u> </u>        | <u> </u>        |
|             | 0               | 5               |
|             | 5               | 15              |
| VII-F-2     | 30              | <u> </u>        |
|             | 60              | 70              |
|             | 70              | 100             |
|             | 5               | <u> </u>        |
| V-0C-2      | 15              | 25              |
|             | 25              | 35              |
| V-OC-3      | 5               | 15              |
|             | 15              | 25              |
| V-0C-4      | 0               | <u> </u>        |
| V-0C-4      | 15              | 30              |
| V-OC-6      | 0               | 5               |
|             | <u> </u>        | <u> </u>        |
| VI-OC-1     | 5               | 15              |
| VI-OC-2     | 0               | 5               |
| <u> </u>    | 0               | 5               |
| VI-UC-3     | 5               | 10              |
| VI-OC-4     | <u> </u>        | <u> </u>        |
|             | Ő               | 5               |
| VI-OC-5     | 5               | 10              |
|             | 0               | 5               |
| VII-OC-1    | 5               | 10              |
|             | 10              | 35              |
| VII-OC-2    | 5               | 15              |
| VII-OC-3    | 0               | 5               |
|             | 5<br>0          | <u>15</u><br>5  |
| VII-OC-4    | 5               | 10              |
|             | 0               | 5               |
| VII-UC-8    | 5<br>15         | 25              |
|             | 0               | 5               |
| VII-OC-9    | 5               | 15              |
|             | 0               | 5               |
| V/ V/ / •   | 5               | 20              |
| V-WL-2      | 20<br>40        | 40              |
|             | 70              | 100             |
|             | 0               | 10              |
| V-WL-3      | 10<br>50        | 50<br>80        |
|             | 80              | 100             |
| VI-WL-1A    | 0               | 5               |
|             | <u>5</u>        | 10              |
|             | 5               | <u>1</u> 0      |
| VI-WL-1B    | 10              | 30              |
|             | <u> </u>        | 60<br>80        |
|             | 0               | 10              |
| VII-WL-1    | 10              | 30              |
| —           | <u>30</u><br>55 | <u> </u>        |
|             |                 |                 |



| SE NOTED. COORDINATE SYSTEM IS THE<br>UBLIC WORKS GOVERNMENT SERVICES<br>FROM GOOGLE EARTH PRO, USED UNDER<br>EARTH IMAGE IS NOT TO SCALE. | PRE<br>NOT FOF                                     | LIMINA<br>R CONSTRUC                                | RY<br>TION                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------|
| UBLIC WORKS GOVERNMENT SERVICES<br>FROM GOOGLE EARTH PRO, USED UNDER<br>EARTH IMAGE IS NOT TO SCALE.                                       | NOTFOR                                             | CONSTRUC                                            | NUN                                 |
|                                                                                                                                            |                                                    |                                                     |                                     |
| ) As (μg/g)                                                                                                                                |                                                    |                                                     |                                     |
| 48<br>17<br>22                                                                                                                             |                                                    |                                                     |                                     |
| 21<br>20<br>220                                                                                                                            |                                                    |                                                     |                                     |
| 120<br>38<br>13                                                                                                                            |                                                    |                                                     |                                     |
| 6.8<br>150<br><b>370</b>                                                                                                                   |                                                    |                                                     |                                     |
| 52<br>16<br>12                                                                                                                             |                                                    |                                                     |                                     |
| 6.3<br>11<br>580                                                                                                                           |                                                    |                                                     |                                     |
| $ \begin{array}{c}                                     $                                                                                   |                                                    |                                                     |                                     |
| 25<br>30<br>68                                                                                                                             |                                                    |                                                     |                                     |
| 46<br>50<br>29                                                                                                                             |                                                    |                                                     |                                     |
| 32<br>120<br>28                                                                                                                            |                                                    |                                                     |                                     |
| 28<br>26<br>19                                                                                                                             |                                                    |                                                     |                                     |
| 24<br>22<br>3600                                                                                                                           |                                                    |                                                     |                                     |
| <u> </u>                                                                                                                                   |                                                    |                                                     |                                     |
| 740<br>72<br>260                                                                                                                           |                                                    |                                                     |                                     |
| 230<br>320<br>140                                                                                                                          |                                                    |                                                     |                                     |
| 330<br>130<br><b>700</b>                                                                                                                   |                                                    |                                                     |                                     |
| 640<br>370<br>120                                                                                                                          |                                                    |                                                     |                                     |
| 550<br>450<br>1200                                                                                                                         |                                                    |                                                     |                                     |
| <b>1300</b><br><b>750</b><br>230                                                                                                           |                                                    |                                                     |                                     |
| 100<br>530<br>450                                                                                                                          | Revision/ Desc                                     | ription/Description                                 | Date/Date                           |
| 230<br>530<br>64                                                                                                                           | Client/client<br>PUB                               |                                                     |                                     |
| 170<br>530<br>530                                                                                                                          | GOVERN                                             | MENT SERV                                           | ICES                                |
| 120<br>51<br>99                                                                                                                            |                                                    | JANADA                                              |                                     |
| 14<br>52<br>72                                                                                                                             |                                                    |                                                     |                                     |
| 52<br>240<br>1100                                                                                                                          | Project title/Titre du pr<br>(<br>REMED            | ° <sup>jet</sup><br>BIANT MINE<br>DIATION PROJEC    | т                                   |
| 220<br>190<br>8.2                                                                                                                          | YELLO                                              | OWKNIFE, N.W.T.                                     |                                     |
| 35<br>29<br>4.9                                                                                                                            |                                                    |                                                     |                                     |
| 5.7<br>1500<br>420                                                                                                                         | Approved by/Approuve                               | par                                                 |                                     |
| 870<br>1200<br>790                                                                                                                         | AC<br>Designed by/Concept p                        | ar                                                  |                                     |
| 170<br>88<br>260                                                                                                                           | SF<br>Drawn by/Dessine par                         |                                                     |                                     |
| 170<br>45<br>30                                                                                                                            | PWGSC Project Manager<br>CHRIS DOUPE               | /Administrateur de Pro                              | jets TPSGC                          |
|                                                                                                                                            | PWGSC, Architectural ar<br>Ressources Architectura | nd Engineering Resource<br>l et de Directeur d'Ingé | es Manager/<br>enierie, TPSGC       |
|                                                                                                                                            | PWGSC<br>Drawing title/Titre du c                  | lessin                                              |                                     |
|                                                                                                                                            | REGIONAL SOI<br>WITH ARSENIC<br>(3 OF 3)           | L SAMPLE LOC<br>CLAB RESULT                         | ATIONS<br>S                         |
| ) 400 600                                                                                                                                  |                                                    |                                                     |                                     |
| METRES                                                                                                                                     | Project No./No. du<br>projet                       | Sheet/Feuille                                       | Revision no./<br>La Révision<br>no. |
|                                                                                                                                            | 9000                                               | OF <sup>-</sup>                                     | A                                   |



# **APPENDIX A**

**Queen's University Final Report** 





Queen's University Kingston, Ontario, Canada K7L 3N6 (T) 613-533-2597 (F) 613-533-6592

## FINAL REPORT:

# CHARACTERIZATION OF SOIL SAMPLES AT GIANT MINE, NWT

Submitted to:

Giant Mine Soils Group, Golder Associates 16820 - 107 Avenue Edmonton, Alberta Canada T5P 4C3

# Written and compiled by:

Mackenzie Bromstad

Tyler Nash

Agatha Dobosz

Heather E. Jamieson

February 6, 2015

# Executive Summary

A suite of 359 soil samples was collected on the Giant mine property at a total of 104 outcrop, forest, and wetland soil sample sites by Golder Associates in September and October 2014. The samples were sent to the Jamieson Research Group at Queen's University for 30-element, carbon, and gold analysis, and arsenic (As) speciation using scanning electron microscope with Mineral Liberation Analyser software (SEM-MLA). Total elemental analysis by ICP-OES and ICP-MS following *aqua regia* digestion indicate that the total As concentrations range from 4.9  $\mu$ g/g to 17,000  $\mu$ g/g, 120 samples have As concentrations greater than 340  $\mu$ g/g, and 3 samples have As concentrations greater than 10,000  $\mu$ g/g As (1 % As). All samples with As greater than 3600  $\mu$ g/g come from outcrop soil sites. At most sites where depth stratified samples were taken, As concentrations decrease sharply with depth. Most As concentrations greater than 1000  $\mu$ g/g came from samples located <20 cm from the surface, and all samples with As concentrations greater than 3600  $\mu$ g/g came from samples located <10 cm from the surface.

A subset of 50 samples from 23 sites were selected for As speciation. Selection criteria favored samples with high As concentrations, samples from adjacent depth strata at selected sites, representatives of all soil site types, and samples that covered most of the area of the Giant mine lease. Arsenic trioxide was observed at all sites in this subset. The As-hosting species identified included As<sub>2</sub>O<sub>3</sub>, arsenopyrite, arsenic sulfide (likely realgar), roaster-generated iron oxides, iron-arsenic-bearing rims on pyrite and other sulfides, and Fe oxides with As, organics with As, Fe-As-Mn/Ca oxides, and Al-Mn-Fe-As oxide phases. A further subset of 24 samples, which contained more than 100 grains of either As<sub>2</sub>O<sub>3</sub>, arsenopyrite, or As-sulfide, and/or high total As concentrations (usually above  $3000 \ \mu g/g$ ), were used to calculate the distribution of As between the various As-hosting species. For this calculation, three different values (0.1, 1 and 5%) were assumed for the As concentration in the weathering products (the organics and the Fe oxides with As and  $\pm$ Ca, Mn and Al) since these phases remain incompletely characterized.

A detailed discussion of QA/QC for all analytical methods is included in the report. Sample heterogeneity with respect to total As concentration and distribution of As species is clear at the macro and micro scale. Accordingly, some of the quantitative results in this report, including the distribution of As species, need to be used cautiously.

# Table of Contents

| 1.Introduction                                                                   | 1  |
|----------------------------------------------------------------------------------|----|
| 1.1 Purpose                                                                      | 1  |
| 1.2 Background                                                                   | 1  |
| 1.2.1 The As legacy at Giant Mine                                                | 1  |
| 1.2.2 Physiographic and geologic setting                                         | 2  |
| 1.2.3 History of mining, processing, and waste management at Giant               | 2  |
| 1.2.4 Anthropogenic As in Giant Mine soils                                       | 3  |
| 1.2.4.1 Arsenic trioxide residence time                                          | 4  |
| 1.2.4.2 The effects of geography, topography, and soil depth on As concentration | 4  |
| 1.2.4.3 Arsenic hosts in Giant Mine soils and distinguishing their provenance    | 5  |
| 1.3 Objectives                                                                   | 6  |
| 2. Methodology                                                                   | 7  |
| 2.1 Field methods                                                                | 7  |
| 2.2 Analytical methods                                                           | 7  |
| 2.2.1 Sample preparation                                                         | 7  |
| 2.2.1.1 Drying                                                                   | 7  |
| 2.2.1.2 Grinding                                                                 | 8  |
| 2.2.1.3 Biases and other issues with initial sample preparation                  | 9  |
| 2.2.2 Bulk chemistry analysis (soils)                                            | 9  |
| 2.2.2.1 Bulk 30-element and Au analysis                                          | 9  |
| 2.2.2.1.1 Digestion procedure                                                    | 9  |
| 2.2.2.1.2 Gold analysis                                                          | 10 |

| 2.2.2.1.3 30-element analysis                                                 | 10    |
|-------------------------------------------------------------------------------|-------|
| 2.2.2.2 Carbon analysis                                                       | 11    |
| 2.2.2.3 Quality Assurance / Quality Control (QA/QC)                           | 11    |
| 2.2.3 Grain mount methodology development and construction                    | 11    |
| 2.2.4 Scanning Election Microscope (SEM) and Mineral Liberation Analysis (ML/ | A) 14 |
| 2.2.4.1 General technique                                                     | 14    |
| 2.2.4.2 MLA settings                                                          | 16    |
| 2.2.4.3 Important MLA Caveats                                                 | 17    |
| 2.2.4.4 MLA mineral reference library and script                              | 18    |
| 2.2.4.5 MLA processing script                                                 | 21    |
| 2.2.4.6 Sample sub-set selection                                              | 22    |
| 3. Results and Discussion                                                     | 25    |
| 3.1 Bulk chemistry                                                            | 25    |
| 3.1.1 QA/QC                                                                   | 35    |
| 3.1.1.1 30-element ICP-OES and ICP-MS                                         | 35    |
| 3.1.1.2 ICP-MS gold                                                           | 36    |
| 3.1.1.3 Carbon                                                                | 37    |
| 3.1.2 Arsenic concentration variation with depth                              | 38    |
| 3.2 Mineral Liberation Analysis (MLA) and Scanning Electron Microscopy (SEM)  | 40    |
| 3.2.1 MLA QA/QC                                                               | 40    |
| 3.2.1.1 Duplicate analysis                                                    | 40    |
| 3.2.1.2 Density mounts                                                        | 42    |
| 3.2.1.3 Mineral liberation                                                    | 45    |
| 3.2.2 Arsenic modal mineralogy                                                | 46    |
| 3.2.2.1 Presence of As2O3                                                     | 46    |

| 3.2.2.2 Arsenic hosts and textures identified in Giant Mine soils                            | 48           |
|----------------------------------------------------------------------------------------------|--------------|
| 3.2.3 Elemental distribution of As in Giant Mine soils                                       | 58           |
| 3.3 Geographic extent of arsenic at Giant Mine                                               | 64           |
| 3.3.1 Arsenic bulk concentrations                                                            | 64           |
| 3.3.1 Arsenic trioxide geographic extent                                                     | 64           |
| 4.0 Discussion and Conclusions                                                               | 67           |
| 4.1 Variation of As concentration with depth and soil type                                   | 67           |
| 4.2 Evidence for anthropogenic As                                                            | 67           |
| 4.2.1 Anthropogenic influences other than roaster fallout                                    | 69           |
| 4.3 Conclusions                                                                              | 71           |
| 5. References                                                                                | 73           |
| Appendix I: Sample names, GPS coordinates, and processing info 76                            | rmation      |
| Appendix II: All Chemistry Results (30-Element ICP-OES, Au and S<br>MS, and Carbon Analyses) | b ICP-<br>85 |
| Appendix III: 30-element analysis QA/QC                                                      | 110          |
| Appendix IV: Au ICP-MS QA/QC                                                                 | 117          |
| Appendix V: Carbon QA/QC                                                                     | 120          |
| Appendix VI: MLA Sample Information                                                          | 123          |
| Appendix VII: Sample Descriptions                                                            | 126          |
| Appendix VIII: Sample Photographs                                                            | 148          |
| Appendix IX: SEM Photographs                                                                 | 149          |
| Appendix X: Additional MLA data                                                              | 150          |
| Appendix XI: Additional Maps                                                                 | 155          |

# 1.Introduction

# 1.1 Purpose

Decades of processing gold ore containing arsenic (As) at Giant Mine, located near Yellowknife, NT, has resulted in significant anthropogenic arsenic contamination around the mine site, much of it in the form of arsenic trioxide (As<sub>2</sub>O<sub>3</sub>). The Giant Mine Remediation Plan dictates the removal and disposal of arsenic contaminated soils (INAC 2007); however, the geographic extent of anthropogenic arsenic contamination on the Giant lease must be more fully understood for remediation of soils to take place. The Giant Mine Soils team from the Golder Associates Edmonton office contracted researchers at Queen's University (Kingston) to characterize and quantify anthropogenic arsenic contamination in soil samples from across the Giant Mine property.

To help clarify the extent (both surface area and depth) of As-effected soils and to separate anthropogenic As from naturally occurring As, bulk chemical analysis and detailed quantifiable analysis of As hosts via Scanning Electron Microscope (SEM) and Mineral Liberation Analysis (MLA) software were carried out on a set of depth-stratified soil samples from across the Giant Mine lease.

# 1.2 Background

#### 1.2.1 The As legacy at Giant Mine

Giant Mine operated from 1948 to 2004. The most common As-bearing mineral on earth, arsenopyrite (FeAsS), was also the most common host of refractory gold (Au) at Giant Mine. Most of the gold mined at Giant was incorporated submicroscopically within the structure of arsenopyrite and to a lesser extent pyrite (FeS2), with only a small proportion occurring as free gold. Cyanide leaching is usually used to extract gold from ore, but due to the refractory nature of the gold at Giant an additional step, roasting, was necessary for gold liberation. Roasting oxidizes the gold-bearing arsenopyrite, converting it into a porous iron (Fe) oxide that can then undergo traditional gold extraction processes. Roasting oxidized the As(-I) in arsenopyrite to As(III) as shown in Equation 1.1:

$$2\text{FeAsS} + 5\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 + \text{As}_2\text{O}_3 + 2\text{SO}_2 \quad \textbf{(1.1)}$$

This resulted in As precipitating from roasting vapors as arsenic trioxide (As<sub>2</sub>O<sub>3</sub>), which is both highly soluble and one of the most toxic forms of As to humans. Ore was roasted at Giant from 1949 to 1999 (Walker *et. al.* 2015, Bromstad and Jamieson 2012).

Arsenic vapors from roasting were originally allowed to vent freely into the atmosphere. However, various environmental concerns and the 1950s deaths of between two and four children from ingesting As<sub>2</sub>O<sub>3</sub> contaminated snow (Hutchinson *et al.* 1982, Leffler and Fionda 2014, Sinclair 1951) spurred the implementation and subsequent improvements in roaster dust capture technology. In 1951, the first generation of As-capturing technology was implemented, a Cottrell electrostatic precipitator (ESP). The ESP captured a portion of the As-rich dusts emitted by the roaster; ESP dusts contained approximately 60% As,

of which approximately 80% was As<sub>2</sub>O<sub>3</sub>. Arsenic in roaster dust was also present as a mixed As(III) and As(V) form in roaster-generated porous iron oxides (mostly maghemite) (Bromstad and Jamieson 2012).

Altogether 237,000 tonnes of captured ESP dust were stored underground at Giant in a combination of purpose-built chambers and old stopes. Permafrost was originally meant to keep the ESP dust from interacting with mine and ground waters and possibly dissolving, though clear evidence of its retreat was present by the 1970s. Some ineffectual efforts to pump cold air through the chambers and reinstate the permafrost happened in the 1980s. The bulk of the Giant Mine Remediation Plan deals with the problem of the underground As<sub>2</sub>O<sub>3</sub>-rich dust and the specifics of the current plan to freeze it *in situ* and monitor it in perpetuity (Bromstad and Jamieson 2012).

However, approximately 20,000 tonnes of As-rich roaster dusts were emitted from the roaster at Giant from 1949-1999, despite ESP capture technology (Wrye 2008). While As-rich roaster dusts were emitted throughout the entire lifetime of roasting (1949-1999), due to changes in dust capture technology over time, 84% of total roaster As emissions occurred before 1964. Sulfur dioxide (SO<sub>2</sub>) emissions were never controlled (Bromstad 2008).

#### 1.2.2 Physiographic and geologic setting

Giant Mine is located approximately 5km north of Yellowknife, NT (see Figure 1.1). The gold deposit at Giant Mine occurs in schist and shear zones with quartz-carbonate veining within an Archaean-age greenstone belt. Gold within the deposit occurs primarily as a refractory phase in arsenopyrite, and to a lesser extent in pyrite. Free gold did not make up the bulk of the deposit (Canam 2006).

Giant Mine lies within a zone of discontinuous permafrost and the most prevalent sediment in the area is glacial till. Organic deposits often overlie glacio-lacustrine till, remnants of the approximately 80m of water in glacial Lake McConnell overlying the Yellowknife area 10,000 years ago. Wetlands often occur in low-lying areas and outcropping rock is very common in the Yellowknife area, with up to 75% of some areas consisting of outcrop (Bromstad and Jamieson 2012). It has been estimated that approximately 30% of the Giant Mine lease is covered in outcrop (Wrye 2008).

Prevailing wind direction in the Yellowknife area is from the east and south, secondarily from the north. Historic SO<sub>2</sub> emissions have left much of the outcrop at Giant within the dominant wind directions of the roaster denuded of lichen and some vegetation. Existing vegetation on outcrops is confined to outcrop crevices. Areas with more soil maintain scrub forest, and/or wetlands. Most soils have near-neutral pH. The climate is cool and dry, with an average temperature range of -50°C to 32°C, an average yearly temperature of -4.5°C, and more annual evaporation than precipitation (Bromstad and Jamieson 2012).

#### 1.2.3 History of mining, processing, and waste management at Giant

Floatation-produced sulfide concentrate was roasted from 1949-1999 at a relatively low temperature (500°C), in air-deficient conditions. From 1951 to 1999, a portion of As<sub>2</sub>O<sub>3</sub> in roaster emissions was captured via ESP and baghouse and stored underground. Tailings, consisting of a mixture of floatation waste and calcine, were discharged directly into Yellowknife Bay for the first two years of operations. Thereafter, tailings were deposited in several former lakes; later on tailings dams and impoundments were built, and tailings were also used as backfill in mine workings between the 1950s and 1970s. Before implementation of sedimentation controls, fine tailings in significant amounts, including calcine and ESP dust, often flowed over

tailings dams during freshet. These tailings were deposited at the upper end of Baker Pond. Water treatment to remove As started in 1957. A pond for calcine waste was built on a clay deposit and used for 3 months in the early 1950s before plans to re-process the calcine for gold were abandoned and the calcine pond covered in clay, composted manure, and later soil from a surface pit on the mine site (Bromstad and Jamieson 2012).

Following the original Giant Mine claims staking in 1935, several different owners operated Giant Mine between 1949 and 1999, when it went into receivership. Property control was then transferred from Royal Oak Mines, Inc., to the Canadian government. Miramar Giant Mines Ltd. purchased Giant Mine from the Department of Indian Affairs and Northern Development (DIAND) under an agreement "indemnifying Miramar for existing environmental liabilities at Giant Mine" (p. 28, Bromstad and Jamieson 2012). Miramar operated Giant at a reduced scale, trucking ore to nearby Con Mine for processing, until 2004. When Miramar was declared bankrupt in 2006 DIAND took over management of the site (Bromstad and Jamieson 2012).

# **1.2.4** Anthropogenic As in Giant Mine soils

Regardless of the presence of anthropogenic As contamination, arsenopyrite and its weathering products can host naturally occurring As in soils around Giant Mine. This is due to locally heightened levels of arsenopyrite in some of the underlying bedrocks hosting the gold deposit at Giant Mine (Kerr 2001). Average As content in soils worldwide is approximately 5.5 mg/kg, and 6.6 mg/ kg in Canada (Reimann et al. 2009). A background As level of 10 mg/kg was used to determine the Canadian Council for the Ministers of the Environment (CCME)'s industrial soils guideline of 12 mg/kg As (CCME 2007). In the Yellowknife area, naturally high levels of total arsenic in selected samples, and the observation that exposure would be limited by harsh winters led to a local background level of 150 mg/kg being declared. The sitespecific Government of the Northwest Territories (GNWT) remediation guideline of 340 mg/kg at Giant Mine is based on



Figure 1.1: Giant Mine location. Topographic data from Government of Canada (2009).

this number (Risklogic 2002; GNWT 2003). It is not known whether the samples used to establish a background value were influenced by roaster emissions since the sampling and these guidelines were published before the pervasive and persistent presence of As<sub>2</sub>O<sub>3</sub> in the soils had been recognized.

At the time of the writing of the Giant Mine Remediation Plan, certain soils located near mining operations at Giant Mine were known to be contaminated from a multitude of anthropogenic sources, including waste rock, tailings, calcine residue, ESP dust, and aerial roaster emissions (Bromstad and Jamieson 2012). The effect of aerial roaster emissions on soils more removed from day-to-day mining operations was largely thought to have been negated by time; with most aerial emissions occurring prior to 1964 and knowing how soluble reagent grade As<sub>2</sub>O<sub>3</sub> is, anthropogenic As was not expected to be present in soils more physically removed from mining operations (Bromstad 2011).

However, the work of Wrye (2008) and Bromstad (2011) unequivocally shows that roastergenerated  $As_2O_3$  is still present in significant amounts in Giant Mine soils. Studies from other locations show  $As_2O_3$  used in the 1950s and 1960s as a pesticide and herbicide in soils oxidizes from As(III) to As(V) and adsorbs to organic matter and Fe/Al oxyhydroxides in the long term. Additional soil column studies have shown that initial perseverance of  $As_2O_3$  due to reaction kinetics does not affect the long term dissolution and oxidation of  $As_2O_3$  to As(V) (Yue and Donahoe 2009, Qi and Donahoe 2008). There is evidence from Wrye (2008) and Meunier *et al.* (2011) showing that some As in Giant Mine soils is hosted as a weakly adsorbed phase on organic matter and other phases as As(V); this suggests that the dissolution and oxidation of  $As_2O_3$  at Giant is happening, but at a slower than anticipated rate (Bromstad 2011).

#### 1.2.4.1 Arsenic trioxide residence time

Possible dissolution textures on As<sub>2</sub>O<sub>3</sub> grains observed by Wrye (2008) and Bromstad (2011), as well as elevated As concentrations in co-existing soil waters, indicate that As<sub>2</sub>O<sub>3</sub> in Giant soils has changed somewhat over time. Experimental data showing As<sub>2</sub>O<sub>3</sub> at Giant to be slightly less soluble than reagent grade As<sub>2</sub>O<sub>3</sub>, possibly due to antimony (Sb) content, in concert with the extended cold climate of Yellowknife likely play a role in explaining this phenomenon. The sub-arctic climate of Yellowknife leaves only a limited window of time each year when surface temperatures are above freezing (Bromstad 2011).

Due to the soluble nature of As<sub>2</sub>O<sub>3</sub>, and the decades of time elapsed since the bulk of roaster emissions, it was not initially clear from what era the bulk of the As<sub>2</sub>O<sub>3</sub> found in soils by Wrye (2008) hailed from. ESP dust before and after 1964 shows clear differences in relative concentrations of As, Sb, and Au in roaster emissions. Qualitatively speaking, emissions pre-1964 contained less As, slightly less Sb, and more Au than later emissions. These changes were due to updates in efficiency technology and a change in ore chemistry. Bromstad (2011) showed that correlations amongst these elements in outcrop soils indicate that a clear signature of pre-1964 ESP dust still exists in soils at Giant Mine, regardless of the total proportion still present as As<sub>2</sub>O<sub>3</sub>.

#### 1.2.4.2 The effects of geography, topography, and soil depth on As concentration

Roaster-generated As remaining in soils at Giant Mine appears to correlate with dominant wind directions relative to the roaster. In addition, high anthropogenic As concentrations have been documented in soil pockets occurring in small rock outcrop hollows. Arsenic likely accumulates in outcrop soils due to a combination of the "wash-down effect" sweeping As deposited aerially on rock outcrop surfaces into outcrop

hollows filled with soil, and the often restrictive topography of the outcrop soil hollows permitting very little material from leaving the hollow during rainfall or freshet (Bromstad 2011, Wrye 2008). The increased likelihood of outcrop soils within dominant wind directions of the roaster to have high As concentrations does not mean that soil samples from lower-lying areas are less likely to have high As concentrations. It merely means that non-outcrop soils do not necessarily have the extra input from wash-down and the concentrative effect of restrictive topography. Outcrop soils are often very shallow in depth, meaning there is less potential for As concentration dilution by spreading throughout the soil than there is for very deep soils. Additionally, outcrop soils effected by roaster emissions are often denuded due to SO2 emissions, and have less tree cover in general than lower-lying areas, which could affect the amount and uniformity of roaster-derived As that reaches soils (Bromstad 2011).

Information from soil cores at Giant taken by Wrye (2008) and Bromstad (2011) targeting roasteremitted As indicate that the top, usually organic-rich soil horizons are most likely to have As concentrations elevated above those in deeper samples. This could indicate that most trowel, non-depth stratified outcrop soil samples collected by Wrye (2008) and Bromstad (2011) are potentially diluting As concentrations by incorporating deeper, low-As soil with the very near-surface material.

#### 1.2.4.3 Arsenic hosts in Giant Mine soils and distinguishing their provenance

The following As hosts have been identified in soils at Giant Mine (Wrye 2008, Bromstad 2011, Meunier *et al.* 2011):

- Arsenic trioxide
- Roaster-derived iron oxides (ROs) (in Giant tailings, As in ROs was measured as <1wt% to 8 wt% As (Walker *et al.* 2005))
- Arsenian Fe oxide/oxyhydroxide rims on pyrite grains
- Arsenopyrite
- Arsenic-bearing iron oxides or oxyhydroxides of unclear provenance
- Organics and potentially iron or aluminum oxides/oxyhydroxides with As adsorbed to them

Both arsenopyrite and  $As_2O_3$  are referred to as primary As hosts in this report, while other As hosts likely related to weathering of  $As_2O_3$  and arsenopyrite are referred to as secondary As hosts.

Distinguishing anthropogenic and natural As is possible to a certain degree, based on mineral form, texture, and knowledge of overall As concentrations. Arsenic occurring as As<sub>2</sub>O<sub>3</sub> or in roaster iron oxides is anthropogenic. The main criteria separating roaster-generated iron oxides from other weathering generated iron oxides is their characteristic spongy or concentrically zoned textures. Weathering products containing As could potentially contain both natural and anthropogenic As, but it is worth noting that the large number of soil sites with As concentrations well above accepted background level, even accounting for potential arsenopyrite mineralized bedrock, make it likely that some of the weathered As is originally anthropogenic. Clearly unroasted arsenopyrite grains are likely naturally occurring in samples that have only been exposed to anthropogenic contaminants could potentially contain arsenopyrite introduced anthropogenically (Bromstad 2011).

# **1.3 Objectives**

The following objectives are meant to help clarify the extent (both in surface area and depth) of As-effected soils, and help quantify the degree of anthropogenic As as opposed to naturally occurring As:

1. Prepare 359 depth-stratified soil samples, collected by Golder Associates, for analytical work.

2. Perform bulk chemical analysis on all soil samples and examine the relationships among depth horizon, As content, and ratios of selected elements of interest.

3. Select a subset of 50 samples and perform detailed quantifiable analysis of As hosts via Scanning Electron Microscope (SEM) and Mineral Liberation Analysis (MLA) software. Attempt to quantify to degree of anthropogenic As contamination in soils sampled.

# 2. Methodology

# 2.1 Field methods

Field sampling of soils and sediments at Giant Mine took place during September and October of 2014. All field sampling was administered and carried out by Golder Associates. The following information about the field sampling was obtained during discussions with Diana Young and Arthur Cole.

Most soil samples came from either outcrop soil pockets, wetland environments, or low-lying forest environments. Five samples were taken from the stockpile of blasted material near the new bypass road. See Figure 2.1 for sample locations.

All samples, except for the stockpile, were collected in a depth-stratified manner. The general intention was to separate samples at 5cm, 15cm, 30cm, 60cm, and 100cm depth intervals; however, this often varied somewhat in practice due to visual differences between soil horizons and other concerns arising in the field.

For forest and wetland samples, soil cores were collected. A slide-hammer core apparatus was used to collect soil cores. Core samples, once separated by depth, were placed in individual zipper-seal plastic bags with no orientation markings or other means to maintain the integrity of the core shape.

Outcrop soils are usually, by nature, shallower than forest or wetland samples and as such smalldiameter core sampling was not used. For outcrop soils a trowel was used to collect a wider diameter sample, up to 30cm diameter, at specific depths. Samples were placed in zipper-seal plastic bags.

# 2.2 Analytical methods

### 2.2.1 Sample preparation

All sample preparation for chemical analysis was conducted at the Analytical Services Unit (ASU) at Queen's University, and all methods are standard for soil samples handled by ASU. Upon receipt from Golder Associates, sample coolers were inventoried and stored in a cold room.

### 2.2.1.1 Drying

Sub-samples of each sample were air-dried at ambient temperature. A modest amount of each sample (approximately fist-sized or less) was spread on tables covered in multiple layers of brown butcher's paper. Samples were spread to uniform thickness for ease of drying and periodically broken up for the same purpose. Each sample had a clear margin of approximately 20 cm blank paper on all sides. To help produce a representative sample from large, heterogeneous soil volumes, samples were massaged through the bag to help mix them up before extracting a thin, uniform cross-sectional wedge from the top to the bottom of the bag. Samples of sufficient wetness as to threaten to contaminate those around them, or that were completely liquid, were contained in large weigh boats. Samples were left to dry for one to six days, periodically being broken up and redistributed to promote drying.

Photographs of laid-out samples were taken to preserve information about the physical characteristics of the samples within 12 hours of laying them out to dry (Appendix VIII). Detailed soil descriptions were recorded throughout the drying process, documenting color, grain size, root content, estimated organic matter, soil type, and other attributes (Appendix VII).

#### 2.2.1.2 Grinding

After samples were completely dried a subsection of the dried sample (usually from one-quarter to one-half) was ground by hand with ceramic mortars and pestles (Figure 2.2). Fine material from the bottom of the dried soil sample was often selected preferentially. Rock and vegetation fragments that could not be ground to smaller than a large sand size were discarded. The unground portion of the dried sample was then bagged and saved in case of later need.

Between samples, the mortar and pestle were wiped out with clean, dry paper towels. Water was not used to clean the mortar and pestle between soil samples because the many fine pits and grooves in the ceramic interior would inhibit timely drying.





Instead, when starting to grind a new sample a soil rinse was performed. Soil rinses were conducted by first grinding a small amount of sample (~1gram), then by dipping the mortar at a slight angle and moving it in a circular motion. The small amount of ground sample would coat the interior of the mortar and the initial ground sample was then discarded. The bulk of the actual sample was then ground.
# 2.2.1.3 Biases and other issues with initial sample preparation

The lack of orientation and shape information of core samples has very likely resulted in patchy representativeness of core samples. The most problematic example of this is the latter half of most sites' core samples: samples below 50cm depth tend to be quite long, and due to the soil properties of the area, often consist of very hard clay. This can make obtaining a representative sub-sample problematic. In addition, long core samples often contained more than one distinct soil color or type.



Figure 2.2: A sample ready to be ground with mortar and pestle

The variety of zipper-seal bags used were not robust enough to prevent sample spillage within coolers. One of the coolers was especially messy, with multiple inches of muddy watery sludge in the bottom and coating sample bags. It was not uncommon for the exterior of sample bags have partial coatings of other leaked samples on them. In the cases of extremely liquid samples this co-mingling in the bottom of the coolers should be kept in mind when interpreting chemistry results. The worst-affected samples were ASU numbers 32 through 60 (sites IXWL1, IXWL2, IWL2, IXF2, IIF2, and IIF3). An attempt was made to neaten up coolers with muddy and wet insides with clean, dry paper towels.

There is an inherent bias towards the finer fraction of soils in the grinding methodology at ASU. This most becomes an issue when addressing the extremely immature soils, especially outcrop soils (often extremely heterogenous and rocky) and partially decomposed organic layers (the top horizon of many samples across location types). This bias is not quantifiable the way selecting for a fine fraction through sieving would be.

The grinding process was performed in close proximity to the laid-out, drying/dried samples. The dust generated from this process could have possibly contaminated other samples nearby. In addition the grinding process used mortars and pestles with many fine chips in their interior surfaces. The soil rinse was meant to negate this factor.

# 2.2.2 Bulk chemistry analysis (soils)

All analytical chemistry procedures were performed by ASU. Bulk 30-element analysis and Au analysis were performed in the ASU labs; the carbon analysis was performed by ASU technicians on a machine in a nearby university laboratory.

# 2.2.2.1 Bulk 30-element and Au analysis

## 2.2.2.1.1 Digestion procedure

All samples analyzed at ASU were digested by the same procedure. Only one digestion was used for both the 30-element and Au analysis. Approximately 0.5g of sample was digested with 6ml concentrated trace grade HCl and 2mL trace grade nitric acid at 90°C. To ensure the samples would stay hydrated and to

prevent loss of potentially volatile elements (i.e., Sb), 7mL of water was added to the mixture. The digestion time was 300 minutes (5 hours), for which the samples were placed on a pre-heated Digiprep MS hotblock with a vented/covered extraction system. Samples were filtered before analysis, and analysis was coordinated so samples would typically be analyzed within an hour of preparation.

#### 2.2.2.1.2 Gold analysis

Gold was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS) immediately after sample digestion, by a different method than other major elements, due to concerns about its stability postdigestion, and having sufficiently low detection limits. Much of the ASU methodology specific to these analyses was adapted from Wang and Brindle (2014).

Calibration verification solutions and standards for gold, obtained from Fluka and SCP Science, were prepared in a 1% cysteine/1% HCl matrix to aid in keeping gold in solution. The DS-1 gold ore reference material was chosen to be digested with the samples.

Approximately 80 mg of digested sample was typically used for analysis; weights were sometimes adjusted to make Au values fall on the linear range of the instrument calibration curve. To mimic conditions of possible low Au samples, low-weight digests of DS-1 (10 mg) were also ran to check stability for low ppb levels of Au.

The analyses were run at maximum high matrix introduction - gas dilution (HMI) mode. HMI mode is typically used to reduce the amount of total dissolved solids to acceptable levels; for these analyses it was used to avoid further sample dilution before analysis. This enabled a reporting limit of 10ppb (solid sample), which could possibly be expanded lower with some tweaking.

One Au sample well above the calibration curve linear range, with very high (comparatively) Au, was analyzed by flame atomic absorption spectroscopy (FAAS).

Between sample and standard runs, the probe was rinsed at a main wash station. The station contained three rinse containers, each with 1% HCl/1% cysteine to ensure optimal rinse in and rinse out times. Each sample uptake used 130 seconds, with 95 seconds of rinsing (5 second probe rinse and 30 seconds in each of the three subsequent rinse containers). This amount of time allowed for the removal of memory effects and for the gold signal to reach a steady state.

#### 2.2.2.1.3 30-element analysis

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used for the 30-element analysis, on the same digestion of samples from the Au analysis. Since many samples returned Sb values below the  $10 \mu g/g$  detection limit, all samples were then later run on ICP-MS for Sb only.

To conform to the standard ICP-OES reporting limits, no further dilution of the digested sample was necessary for most of the ICP-OES analyses. However, for As the standard limit of 250  $\mu$ g/g was too low so extended wavelength standards were used to expand the typical calibration range to a working range of 10,000  $\mu$ g/g for As. For samples above the 10,000  $\mu$ g/g range, 10x dilutions were used on samples as required. Other over-range elements were covered in a similar manner.

For the Sb ICP-MS, sample extracts were diluted at 10x and run on the ICP-MS low HMI mode. While high HMI mode is typical on ICP-MS, low HMI is sufficient for Sb sensitivity and a 1  $\mu$ g/g Sb reporting limit.

# 2.2.2.2 Carbon analysis

Total carbon was analyzed by combustion to form CO<sub>2</sub>, then by infrared detection of the CO<sub>2</sub> in a LECO® Truspec CN analyzer. Total carbon was used as a proxy for organic carbon where appropriate, due to a presumably low carbonate mineral content in some Giant Mine soils.

# 2.2.2.3 Quality Assurance / Quality Control (QA/QC)

ASU ran both 30-element ICP-OES and Au/Sb ICP-MS in groups of 28 samples. For each grouping of samples for 30-element analysis, two blanks, three standard reference MESS-3 standards, and two duplicates were run for QA/QC purposes. For Au analysis, a calibration blank and 1ppb, 10 ppb, 50 ppb and 100 ppb Au standards were prepared for each run of 28 samples. Low-weight digests of DS-1 (10 mg) were also run for Au to check stability for low ppb levels of Au. These returned good numbers for stability and recovery. Carbon analysis QA/QC includes duplicates, blanks, orchard leaves standards, and mineral soil standards.

# 2.2.3 Grain mount methodology development and construction

Soils were prepared for Scanning Electron Microscope (SEM) analysis by mixing the samples with graphite, impregnating the mixture in epoxy, and polishing the epoxy mount down to a 1 micron finish. The details of the methodology were finalized through a series of optimization tests carried out on 34 test mounts. The optimization process led to the following conclusions:

- Graphite particle sizes below -325 mesh had no noticeable effect on sample agglomeration in the final polished mount.
- 1:3 ratio of graphite to sample provided efficient particle separation and did not compromise mount hardness.
- Sonication of the sample with an ultrasonic bath or ultrasonic probe did not noticeably reduce sample agglomeration.
- Vaseline could be used without negatively effecting mount hardness.
- Polishing the mounts with ethanol instead of water did not prohibitively decrease mount hardness or ESEM beam resilience and addressed concerns of dissolving/smearing water soluble arsenic trioxide grains.
- Density separation along the vertical axis was not significantly impacting modal results.
- Room temperature was sufficient for curing of the epoxy.
- Applying a >95% vacuum to the epoxy in three cycles resulted in significantly better wetting and agglomeration of sample particles than one cycle, or no vacuum at all.

After optimization tests were completed, the following finalized methodology was applied to all mounts analyzed by MLA:

<u>Step 1:</u> 0.75 g of dry, ground sample and 0.25 g of graphite (Alfa Aesar® Graphite Powder, crystalline, -325 mesh, 99%) were manually mixed together with a scupula in a dish. The sample/graphite mixture was then placed in a two-part 1" diameter mounting cup (Allied High Tech Products®) thinly coated with petroleum lubricant (Vaseline®) (Figure 2.3).

Figure 2.3: (left) Coating of mounting cups with vaseline, done without gloves as a final check for debris and dirt. (right) The 1:3 ratio graphite and sample mixture after mixing.



• <u>Step 2</u>: The EpoxiCure 2® hardener and resin were mixed at 23:100 weight ratio for at least 3 minutes, or until visible eddies, currents, and diffraction were gone. Epoxy was stirred in random directions while scraping the sides of the container, and then poured into the mounting cups from Step 1. After pouring epoxy into mounting cups, the epoxy and sample underwent further stirring to help eliminate clumping of fine grains (see section 2.2.2.1). Mount thickness was approximately 1-2 cm. Epoxy mounts were cast in batches of 4 to 8 (Figure 2.4).



- <u>Step 3</u>: The mounting cups were quickly placed in a vacuum chamber and a >95% vacuum applied (Figure 2.5). After waiting for bubbling to subside (approximately 2 minutes) the vacuum was removed. The vacuum cycle was then applied two additional times to ensure proper grain wetting occurred. The mounts were then removed and set aside. Two days were allowed for epoxy to fully set at ambient temperature and pressure.
- <u>Step 4:</u> Hardened grain mounts were removed from mounting cups and the petroleum lubricant was washed off with soap and ethanol.
- <u>Step 5</u>: Grain mounts were ground and polished is three steps (Figure 2.6). (1) The mounts were ground with 400 mesh silicon carbide on a glass plate. Polishing motion was random with firm pressure. (2) The

Figure 2.5: (left) Samples in the vacuum chamber (right) The vacuum chamber apparatus



second polish was done with 1000 mesh silicon carbide on glass plate lubricated with ethanol for five minutes. Polishing motion was random with firm pressure. (3) The final polish was done on a polishing wheel with 1 micron diamond compound (Beta Diamond Products®) for twenty minutes. Polishing was repeated until inspection under microscope revealed no evidence of striations or scratches on grains.



Figure 2.6: (left) Grain mount on the first polish plate with 400 mesh silicon carbide and ethanol. (center) Grain mount on the first polish plate with 1000 mesh silicon carbide and ethanol. (right) Grain mount on a polishing wheel with 1 micron diamond compound and oil.

• <u>Step 6 (density mounts only)</u>: Several duplicate mounts were constructed to be further processed into a density check mount. These mounts were cut into quarters on a lapidary saw and re-cast in epoxy with two sections rotated to reveal the vertical distribution of sample grains and one quarter left in its original position (Figure 2.7). The fourth quarter was discarded. The mounts were then polished as per steps 4-5.



Figure 2.7: (left) Small lapidary saw used to cut a grain mount into quarters.

(right) TA density mount after re-casting in epoxy and polishing. The lower two rectangular sections are rotated quarters which reveal the vertical profile of grains within the mount. The upper quarter piece is unmoved from the original casting. • <u>Step 7:</u> As a final step all mounts were carbon-coated with a high-voltage sputtering carbon source under vacuum (<1.0x10-4 torr) to increase conductivity of the sample surface to allow for a higher intensity beam and resolution during analysis. Carbon coating was conducted in a Denton Vacuum Desk V© (Figure 2.8).



Figure 2.8: The Denton Vacuum Desk V© carbon coater.

# 2.2.4 Scanning Election Microscope (SEM) and Mineral Liberation Analysis (MLA)

## 2.2.4.1 General technique

Grain mounts are first carbon-coated before examination under high vacuum mode with the backscatter electron (BSE) detector on the FEI Quanta 650 FEG ESEM at Queen's University.

An image generated using the BSE detector displays the polished surface of the grain mount in a greyscale color scheme with color (from 0-255) determined by the atomic number of the substance in view. This means that generally, higher density materials appear brighter. This mode of imaging makes textures and compositional differences easy to image, highlights phases of interest (particularly As-rich phases in Giant Mine soils), is very fast, and can be used at any magnification of the SEM. The essential mechanics of the BSE detector are as follows:

• The SEM field emission electron gun generates an accelerated electron beam that scans the sample. The beam hitting the sample surface produces both inelastic and elastic collisions of electrons interacting with the atoms of the sample surface; electrons in elastic collisions change trajectory but do not significantly change in kinetic energy. In the case of backscattered electrons, high energy electrons from the beam travel through the sample and change in trajectory relative to the atomic number. Atoms with a higher atomic number have a larger cross-sectional area for the electron beam to interact with, generally meaning a higher chance of creating elastic collisions. Thus phases whose component elements average a higher atomic number record more elastic collisions, backscattering more strongly. The reverse is true for phases with lower atomic numbers. Greater numbers of collisions correspond to brighter color in the BSE image (Goodge 2012).

- Practically speaking, arsenic is the heaviest element of any significant abundance present in the As<sub>2</sub>O<sub>3</sub>-bearing soils at Giant. Thus, As<sub>2</sub>O<sub>3</sub> (with approximately 76 wt.% As) is often visually distinct as a very bright phase. However, other As hosts such as roaster iron oxides, other weathering iron oxides (including those forming sulfide rims), As sorbed to organics, and sulfides have smaller weight percentages of As. These have similar average atomic number to many non-As bearing phases present in the sample, and as such are not visually distinct (Bromstad 2011, Wrye 2008).
- Furthermore, the system uses energy-dispersive spectrometry (EDS) extensively for mineral identification. As the electron beam interacts with the sample surface, energy is added to the atoms composing the sample. This causes electrons in the inner shells to get ejected. Outer shell electrons cannot stay at a high-energy state and drop to a lower level, causing a characteristic x-ray photon to be released, with an energy equivalent to the difference between the two energy levels. The two x-ray detectors detect the entire expected range of energies, and count the amount of x-rays incoming at each energy thus separating the spectrum based on energy, giving the system its name. Each element has a series of characteristic spectral lines and this can be used to identify minerals.

The Mineral Liberation Analysis (MLA) software works in concert with the SEM to isolate and identify individual particles and inclusions on the polished surface of the grain mount. The MLA operator selects the area to be scanned across the surface of a given grain mount. After optimizing various parameters within the MLA software to account for the type and composition of the sample being analyzed, the MLA software can be left to complete the scan without human assistance. There are several different modes that the MLA can be run under (Buckwalter-Davis 2013, FEI 2012). Different MLA modes were used during different stages of the project; the following list details those employed:

• XBSE: The MLA software captures a BSE image of each frame and uses a series of image processing algorithms to subtract low-weight (carbon-rich phases such as epoxy and graphite) background, and record the number and shape of individual particles and the phases within. The image processing determines the shape of each discrete area of similar color in the image (assuming this is a single phase), and selects a spot in the center of each to collect an x-ray EDS spectrum. Optimization of contrast, brightness, and resolution settings on the SEM are very important to make it more likely that phases of interest, including very small particles, will be detected by the MLA software. Two high-speed energy dispersive X-ray spectrometers (EDS) in the SEM collect one EDS spectra from each phase it identifies. This mode was primarily used early in the MLA optimization process to begin building the MLA library for Giant Mine soils. Complex textural associations, agglomeration, and low-BSE regions of interest are not handled well by the image processing algorithm built into the mode, making it insufficient for much of the work on the Giant soils.

- <u>Grain X-Ray Mapping (GXMAP)</u>: GXMAP is useful for identifying and quantifying mineral phases that have similar greyscale colors under BSE, including inter-grown minerals. The process operates very similarly to XBSE mode, except that upon encountering a user-selected trigger in the EDS spectra, a grid of EDS spectra will be collected over the entire phase of interest, allowing for subtle chemical differences to be seen (FEI 2012, Buckwalter-Davis 2013). This is a very useful tool for differentiating As-bearing and non-As-bearing iron oxides in soils at Giant; upon encountering phases with an iron-oxygen EDS signature, grains can be EDS mapped in detail. Even in As-bearing roaster oxides, As content across the grain is often variable. The GXMAP mode turned out to be very useful for Giant Mine soils for iron oxide signatures. This mode, in conjunction with others, was used for almost all samples.
- <u>Sparse Phase (SPL)</u>: SPL mode essentially searches the BSE image for grains that fall within a userdefined range of brightness, and then performs an XBSE scan on those grains. Due to this selectiveness it does not provide very accurate modal mineralogy information (FEI 2012), however, it proved to be useful in documenting many As hosts in Giant Mine soil samples. For As hosts that are bright in BSE images, comparing SPL and GXMAP scans can provide valuable quality control to ensure similar quantities of bright As phases were analyzed. SPL scans were performed for almost all samples.
  - <u>SPL\_XBSE:</u> This mode measures grains of interest with a single x-ray for each grain.
  - <u>SPL\_GXMAP</u>: This mode behaves like SPL\_XBSE, with the exception of grains encountered matching a user-set trigger in the EDS spectra, whereupon it behaves like GXMAP mode.
  - <u>SPL\_Lt</u>: This mode measures mineral associations around grains selected in an SPL scan. A box is drawn around each grain selected for SPL analysis, and all surrounding grains falling within the box are also analyzed (FEI 2012).

Either SPL\_GXMAP or SPL\_Lt scans were performed on all Giant Mine soil samples.

• <u>XMOD</u>: This mode produces modal mineralogy information via a point counting method. One EDS spectra is collected for each counting point of an evenly spaced grid across each particle (FEI 2012). This mode was often run for Giant Mine soils to check the gross modal mineralogy; however, it was not useful for As phases, as they are often small and sparsely distributed in comparison to the bulk of the silicate and carbonate gangue mineralogy. After determining that GXMAP and SPL scans worked well for general modal mineralogy interpretation, the frequency of the time-consuming XMOD scans was decreased.

# 2.2.4.2 MLA settings

#### Table 2.1: SEM Settings

| High Voltage     | 25kV                              |
|------------------|-----------------------------------|
| Beam Current     | 10-13nA                           |
| Spot Size        | 5.0-5.7 (to achieve beam current) |
| Working Distance | 13mm                              |

## Table 2.2: General MLA Settings

| Number of Frames               | 500              |
|--------------------------------|------------------|
| Resolution of Frame            | 600 x 600 pixels |
| Scan Speed                     | 16 us            |
| Image Acquisition Minimum Size | 2 pixels         |
| Retain Boundary Particles      | True             |

## Table 2.2: General MLA Settings

| Background Removal     | 0-20     |
|------------------------|----------|
| Separation             | No       |
| X-ray Acquisition Time | 12ms     |
| X-ray Minimum Size     | 2 pixels |

#### Table 2.3: GXMAP Settings

| Trigger Name     | Fe oxides                             |
|------------------|---------------------------------------|
| Spectrum 1       | Fe oxide displaying As peak at 10.5kV |
| Spectrum 2       | Fe oxide without an As peak           |
| Acquisition Time | 45ms                                  |
| Step Size        | 4 pixels                              |
| Threshold        | 60                                    |

#### Table 2.4: SPL\_GXMAP/SPL\_Lt\_MAP Settings

| Store all BSE Frames        | True      |
|-----------------------------|-----------|
| Frame Guide Size            | 10 pixels |
| BSE Grayscale Search Region | 150-255   |
| Search Grain Size           | 2 pixels  |

# 2.2.4.3 Important MLA Caveats

The MLA processing script is optimized for accurate analysis of As-bearing phases. While the MLA analysis software can identify other minerals, such as silicates or sulfides, the script is not written to differentiate subtle elemental variation. Minerals commonly display natural variation, and require additional script entries to differentiate. This was not within the scope of the initial project and would represent a significant amount of work for the mineralogist. Basic quality control measures were used to ensure minimal instrumental error when calculating total modal mineralogy, such as comparing the GXMAP mode - which uses an image algorithm to determine phases - to the XMOD mode, which ignores all textural information. These agreed within reason.

The mechanics of the MLA image processing algorithms mean that grain mounts without significant clumping perform better under analysis. Often, the algorithm will fail to determine accurate grain boundaries when many grains are beside each other with minimal separation. It will consider this whole area as a single particle, then x-ray only the centre of this "particle". It is impossible to know how representative that phase is of the whole area. For the As-bearing phases of interest, bright phases are still well differentiated from the matrix, but this will cause inaccuracies in the silicate modal mineralogy.

In addition, the presence of organic matter in Giant Mine soils complicates MLA analysis because it can be relatively close in color to the carbon and epoxy background of the BSE image. Carbon-rich material is difficult to image under BSE conditions due to instrumental limitations of the system - low energy elements are challenging to image manually, let alone using an automated system. Organic material is challenging to polish, so will inherently have more texture than minerals - this, and the low-energy nature of the carbon-rich

organics - causes less x-rays to go into the x-ray detectors. Low counts make it very difficult to differentiate peaks from the background noise.

## 2.2.4.4 MLA mineral reference library and script

For all MLA measurements, the data set is processed and each EDS spectrum collected is compared to a user-generated library of minerals. Every particle is classified using a best-fit scheme and, if it is above a 70% match, assigned a mineral phase. Every particle is given a unique ID and can be manipulated and sorted within the software. The dataset is composed of a backscatter image, the raw x-ray spectral data, and the identified particles. These datasets can each be searched for phases of interest. Extensive quality control is required in the first series of samples to "train" the MLA software to accurately determine subtle differences in phases.

A robust mineral reference library is essential to MLA work. The development of the mineral reference library for Giant Mine soils started with an XBSE\_STD mode MLA run. The XBSE\_STD mode works very similarly to the XBSE mode described in section 2.2.3.1, except that spectra collected for all unknown phases present are binned into generic categories. These generic categories require an experienced mineralogist to classify. After this step the library is further refined by collecting EDS spectra from specific unknown phases, and manipulating EDS spectra and mineral bins to make a more thorough and accurate library (Buckwalter-Davis 2013). Table 2.5 includes a detailed listing of the mineral bins included in the Giant Mine library. Seven As-bearing species were defined.

#### Important caveats to note about mineral reference library

As discussed in section 2.2.4.3, many minerals exhibit natural variations in elemental concentrations. While the Giant mineral reference library includes chemical formulae and density values for all mineral bins, they are not included here. Due to the way MLA behaves, one must be cautious in using data such as these.

Density and chemical formulae are used by the MLA software to calculate statistics such as weight percent values. While it is possible to do calculations such as weight percent on the Giant Mine data, it inherently has an excessive level of uncertainty due to the optimization of the library for As phases, the high agglomeration in grain mounts, the potential for large amounts of organic matter to be present, and the difficulties these factors force on the SEM apparatus and MLA software. These issues make MLA statistics such as area percent of higher relative valuable to the project.

Mineral names listed in the mineral reference library are not always the most accurate descriptors for phases binned therein. This is a three-fold issue: (1) for phases that were not the focus of quality control, there is a level of uncertainty as to what the MLA has decided to bin within them; (2) due to the nature of SEM technology it is not possible to differentiate between polymorphs, discern crystallinity, or otherwise account for distinct phases with very similar EDS spectral chemistry; and (3) consistent but inconclusive or ambiguous EDS spectra, mineral intergrowths, uneven mount surface, small particle size, agglomeration, and other factors, may result in mixed spectra or otherwise inconclusive categories.

| NOTE                                                                                                                                                                                                                                                                | Name                 | Color                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|
|                                                                                                                                                                                                                                                                     | Chlorite             | Color [A=255, R=126, G=150, B=101] |
|                                                                                                                                                                                                                                                                     | Albite               | Color [A=255, R=141, G=222, B=155] |
|                                                                                                                                                                                                                                                                     | Orthoclase           | Color [A=255, R=73, G=197, B=159]  |
|                                                                                                                                                                                                                                                                     | Quartz               | Color [A=255, R=141, G=222, B=155] |
|                                                                                                                                                                                                                                                                     | Hornblende/Augite?   | Color [A=255, R=30, G=98, B=58]    |
|                                                                                                                                                                                                                                                                     | Epidote              | Color [A=255, R=71, G=112, B=16]   |
|                                                                                                                                                                                                                                                                     | Plagioclase          | Color [A=255, R=73, G=197, B=159]  |
|                                                                                                                                                                                                                                                                     | Muscovite            | Color [A=255, R=165, G=226, B=202] |
| Refers to organic material, NOT<br>the graphite mixed in with sample<br>during mounting process                                                                                                                                                                     | Carbon               | Color [A=255, R=70, G=74, B=64]    |
|                                                                                                                                                                                                                                                                     | Pyrrhotite           | Color [A=255, R=255, G=128, B=0]   |
|                                                                                                                                                                                                                                                                     | Pyrite               | Color [A=255, R=255, G=62, B=34]   |
|                                                                                                                                                                                                                                                                     | Ilmenorutile         | Color [A=255, R=112, G=227, B=91]  |
|                                                                                                                                                                                                                                                                     | Silica               | Color [A=255, R=187, G=253, B=138] |
| Al-silicate                                                                                                                                                                                                                                                         | Al2SiO5 (Andalusite) | Color [A=255, R=27, G=190, B=157]  |
| Sb sulfide                                                                                                                                                                                                                                                          | Stibnite             | Color [A=255, R=34, G=0, B=223]    |
|                                                                                                                                                                                                                                                                     | Ti-Muscovite         | Color [A=255, R=130, G=187, B=119] |
|                                                                                                                                                                                                                                                                     | Enstatite            | Color [A=255, R=126, G=216, B=124] |
|                                                                                                                                                                                                                                                                     | Titanite             | Color [A=255, R=177, G=145, B=223] |
|                                                                                                                                                                                                                                                                     | Rutile               | Color [A=255, R=142, G=107, B=214] |
| Fe oxides, oxyhydroxides, or hy-<br>droxides. Due to the variation in<br>As concentrations, parts (or less<br>often, all) of roaster oxides are<br>included in this category. Some<br>weathering rims on sulfides (non-<br>As bearing) occur in this cate-<br>gory. | Fe Oxides - No As    | Color [A=255, R=177, G=52, B=71]   |
|                                                                                                                                                                                                                                                                     | Apatite              | Color [A=255, R=204, G=129, B=254] |
|                                                                                                                                                                                                                                                                     | Calcite              | Color [A=255, R=128, G=70, B=13]   |

# Table 2.5: Mineral reference library (the 7 As-bearing phases are highlighted)

# Table 2.5: Mineral reference library (the 7 As-bearing phases are highlighted)

| NOTE                                                                                                                                                                                                                                                                                                                                                                                 | Name                  | Color                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                      | Ankerite              | Color [A=255, R=140, G=104, B=51]  |
| As <sub>2</sub> O <sub>3</sub> . Other researchers have<br>identified As <sub>2</sub> O <sub>3</sub> at Giant as arseno-<br>lite through micro X-Ray Diffraction<br>( $\mu$ XRD). QA/QC for this phase was<br>excellent.                                                                                                                                                             | Arsenolite            | Color (A=255, R=0, G=181, B=249)   |
|                                                                                                                                                                                                                                                                                                                                                                                      | Zircon                | Color [A=255, R=105, G=0, B=151]   |
|                                                                                                                                                                                                                                                                                                                                                                                      | Fe Ti Silicate        | Color [A=255, R=52, G=49, B=79]    |
|                                                                                                                                                                                                                                                                                                                                                                                      | Monazite              | Color [A=255, R=132, G=108, B=200] |
|                                                                                                                                                                                                                                                                                                                                                                                      | Mn - Chlorite?        | Color [A=255, R=122, G=167, B=95]  |
| QA/QC for this phase was excel-<br>lent.                                                                                                                                                                                                                                                                                                                                             | Arsenopyrite          | Color [A=255, R=255, G=0, B=0]     |
|                                                                                                                                                                                                                                                                                                                                                                                      | Chromite              | Color [A=255, R=94, G=166, B=83]   |
| Fe oxides, oxyhydroxides, or hy-<br>droxides containing As. Roaster<br>oxides fall within this category, as<br>do unrelated Fe weathering prod-<br>ucts (including rims on sulfides)                                                                                                                                                                                                 | Fe Oxides - with As   | Color [A=255, R=249, G=98, B=169]  |
| More accurately termed As-sulfide                                                                                                                                                                                                                                                                                                                                                    | Realgar               | Color [A=255, R=255, G=0, B=255]   |
|                                                                                                                                                                                                                                                                                                                                                                                      | Ilmenite              | Color [A=255, R=0, G=128, B=0]     |
|                                                                                                                                                                                                                                                                                                                                                                                      | Unknown               | Color [A=255, R=211, G=211, B=211] |
|                                                                                                                                                                                                                                                                                                                                                                                      | Low_Counts            | Color [A=255, R=128, G=128, B=128] |
|                                                                                                                                                                                                                                                                                                                                                                                      | No_XRay               | Color [A=255, R=169, G=169, B=169] |
| Built for As-bearing coatings on or-<br>ganic matter, dominated by Fe (also<br>sometimes includes Ca and Mn).<br>Could be oxide, oxyhydroxide, or<br>hydroxides. In organic-rich samples<br>this phase performs very well; oth-<br>erwise in low organic samples the<br>MLA sometimes uses this phase for<br>small outlying parts of As-bearing<br>phases next to epoxy or graphite. | Organics w/As,Fe,CaOx | Color [A=255, R=189, G=102, B=148] |

|  | Table 2.5: Mineral re | eference library | (the 7 As-b | earing phases a | are highlighted) |
|--|-----------------------|------------------|-------------|-----------------|------------------|
|--|-----------------------|------------------|-------------|-----------------|------------------|

| NOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name                   | Color                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------|
| Coatings on organic matter,<br>dominantly Fe oxides/<br>oxyhydroxides/hydroxides, with<br>other elements sometimes pre-<br>sent (Mn, Ca, Al)                                                                                                                                                                                                                                                                                                        | Organics w/FeOx, no As | Color [A=255, R=119, G=64, B=68]   |
| Sphalerite                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sphalerite with IoFe   | Color [A=255, R=255, G=114, B=53]  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dolomite               | Color [A=255, R=188, G=115, B=41]  |
| Could be oxides, oxyhydroxides,<br>or hydroxides. Arsenic-bearing,<br>Fe is always present, but either<br>(1) at least one other element is<br>also present (Mn, Ca, Al), OR (2)<br>the EDS spectra for an As-<br>bearing Fe -oxygen phase is poor<br>quality. As-bearing rims on sul-<br>fides often fit in this bin. Can also<br>be coatings on organic matter.                                                                                   | Fe-As-Ca/Mn oxide      | Color [A=255, R=255, G=155, B=200] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chalcopyrite           | Color [A=255, R=255, G=223, B=40]  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cu Sulfide             | Color [A=255, R=192, G=0, B=0]     |
| Cu Oxide                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cuprite                | Color [A=255, R=223, G=56, B=0]    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pentlandite            | Color [A=255, R=255, G=157, B=60]  |
| Could be oxides, oxyhydroxides,<br>or hydroxides. Arsenic-bearing.<br>Aluminum is the dominant chemi-<br>cal species, often (but not al-<br>ways) followed by a significant<br>amount of Mn. Sometimes Mn is<br>less dominant and Fe is the next-<br>most. Calcium can be present in<br>small quantities. Often associated<br>with organic matter coatings and<br>weathering products. Specifically<br>common only in some selected<br>MLA samples. | Al-Mn-Fe-As oxide      | Color [A=255, R=255, G=187, B=221] |
| Non-arsenian version of above.                                                                                                                                                                                                                                                                                                                                                                                                                      | Al-Mn-Ca(Fe)Ox         | Color [A=255, R=122, G=37, B=46]   |

# 2.2.4.5 MLA processing script

Extensive tailoring of the MLA processing process was necessary to optimize MLA for the unique problems presented by Giant Mine soils. This took the form of a detailed script that was gradually added on to as problems were found during extensive QA/QC. The main functions of the script were as follows:

- <u>To force grains classified as As-bearing phases to actually contain As</u>: This would not always be an issue with As hosts such as As<sub>2</sub>O<sub>3</sub>, arsenopyrite, and realgar, where As makes up a significant weight percent of the phase. However, in phases that contain As in smaller quantities, it was necessary to force the MLA software to only classify grains as As-bearing minerals if they actually had As present for a small, defined window of energies in their EDS spectra. Phases that require this sort of action also usually had a counterpart phase that would be very similar, but lacking in As. For example, the Giant Mine library has an As-bearing Fe-oxide/oxyhydroxide phase, as well as a non-As-bearing Fe-oxide/oxyhydroxide phase. To be classified as the As-bearing phase, the script forced As to be present. To be classified as the non-As phase, As could not be present in the spectra.
- <u>To force grains classified as As-bearing phases to have appropriate BSE brightness levels:</u> Often around very bright As phases, such as As<sub>2</sub>O<sub>3</sub> and arsenopyrite, false positives for As phases can occur around the edges of bright grains (including on epoxy). This is due to the way the electron beam hits the surface of the grain mount at the edges of grains; this is exacerbated by unevenness of surface, which is not uncommon in samples with agglomeration issues. Unevenness artificially causes some peak intensities to be skewed incorrectly and must be accounted for. In this case, EDS spectra may match a certain As-bearing mineral, but a manual QA/QC check of the grain's BSE image will be far too dark to be correct. To correct this problem, an appropriate BSE brightness window was defined for many As hosts in the script.
- <u>To force grains classified in organic phases to have carbon present</u>: This is an almost identical issue to the As issue mentioned above. It is harder to correct, since in the course of normal classification the area of the EDS spectra indicating carbon is excluded from classification for all grains; however, forcing certain minerals to have carbon spectra present despite the fact that a contradictory part of the script prohibits including this area of the spectra actually appears to have a positive effect.
- <u>To remove low-quality spectra</u>: This is mostly an issue in samples with larger amounts of organic matter present, and sometimes results in spectra of very dubious quality. In this case, the "low counts" threshold (beneath which spectra are binned as "low counts" rather than a specific mineral) EDS spectra threshold was raised to 1000, rather than the default 800.
- <u>Any other QA/QC issues:</u> Throughout the course of QA/QC analysis across many sample types, various miscellaneous issues arose as the working library and script were applied to a wider variety of samples. Due to the nature of this project, issues corrected for in QA/QC are targeted mostly to As hosts, Fe,AI,Mn, and Ca oxides (or oxyhydroxides), and organic matter.

## 2.2.4.6 Sample sub-set selection

A subset of 50 samples (of 359) to be characterized in detail via MLA was selected in consideration of the following criteria:

• High As concentrations: Characterization by MLA was observed during the mount development process to work best on samples with total As concentrations above 500 mg/kg. Selecting high As samples to characterize increases the likelihood of capturing a larger variety of As hosts and

textures. These high As samples are also extremely important to understand from a human health and remediation standpoint.

- Sample site depth continuity: Depth stratified sampling has the potential to greatly inform the current level of knowledge about As-contaminated soils at Giant Mine. Not analyzing all samples from a given sample site results in incomplete information for analysis. For each sample targeted for MLA analysis, all samples from the site were analyzed if they had sufficient As.
- Representation of forest, wetland, and outcrop sample site: The samples selected based on As content were adjusted to ensure that samples from forest, wetland, and outcrop locations are all characterized.
- Balance amongst geographical areas: The very highest As concentration sample sites are not necessarily distributed evenly across the Giant property; an attempt was made to even out geographic coverage of MLA characterization sample locations, with consideration for the previously listed factors.

Table 2.2 briefly summarizes the samples selected for MLA. A full summary table with contextual information can be found in Appendix VI.

| Site     | ASU sample | Golder<br>horizon | Queen'<br>s | from<br>(cm) | to<br>(cm) | Au µg∕g | As µg/g | S µg/g | Sb µg/g |
|----------|------------|-------------------|-------------|--------------|------------|---------|---------|--------|---------|
| III-F-2  | Sample 27  | IIIF2-a           | F-64a       | 0            | 5          | 0.53    | 1500    | 510    | 93      |
|          | Sample 28  | IIIF2-b           | F-64b       | 5            | 15         | 0.065   | 840     | 370    | 17      |
| IV-F-2   | Sample 344 | IVF2-a            | F-66a       | 0            | 5          | 0.96    | 1700    | 1200   | 270     |
|          | Sample 345 | IVF2-b            | F-66b       | 5            | 20         | 0.25    | 1300    | 1700   | 93      |
| IX-F-4   | Sample 2   | IXF4-b            | F-72b       | 5            | 15         | 48      | 3600    | 3900   | 570     |
|          | Sample 3   | IXF4-c            | F-72c       | 15           | 30         | 0.86    | 600     | 1100   | 86      |
| II-OC-9  | Sample 80  | llOC9-a           | O-14a       | 0            | 3          | 0.35    | 1400    | 1100   | 120     |
|          | Sample 81  | llOC9-b           | O-14b       | 3            | 10         | 0.019   | 2400    | 420    | 35      |
|          | Sample 82  | IIOC9-c           | O-14c       | 10           | 15         | 0.016   | 2400    | 600    | 33      |
| II-OC-5  | Sample 70  | llOC5-a           | O-10a       | 0            | 3          | 3.1     | 17000   | 1200   | 900     |
|          | Sample 71  | llOC5-b           | O-10b       | 3            | 10         | 0.15    | 1300    | 210    | 47      |
|          | Sample 72  | IIOC5-c           | O-10c       | 10           | 20         | 0.036   | 2000    | 220    | 25      |
| II-OC-10 | Sample 83  | llOC10-a          | O-5a        | 0            | 5          | 1.0     | 16000   | 2000   | 260     |
|          | Sample 84  | llOC10-b          | O-5b        | 5            | 8          | 0.081   | 7200    | 820    | 52      |
| II-OC-11 | Sample 85  | llOC11-a          | O-6a        | 0            | 5          | 0.90    | 11000   | 920    | 220     |
|          | Sample 86  | IIOC11-b          | O-6b        | 5            | 10         | 0.37    | 7800    | 920    | 120     |
| III-OC-5 | Sample 124 | IIIOC5-a          | O-18a       | 0            | 5          | 0.11    | 3200    | 350    | 45      |
|          | Sample 125 | IIIOC5-b          | O-18b       | 5            | 10         | 0.059   | 4100    | 610    | 74      |
| III-OC-2 | Sample 122 | IIIOC2-a          | O-16a       | 0            | 8          | 0.73    | 3200    | 570    | 170     |
|          | Sample 123 | IIIOC2-b          | O-16b       | 8            | 15         | 0.049   | 1300    | 210    | 23      |
| III-OC-8 | Sample 354 | IIIOC8-a          | O-21a       | 0            | 5          | 0.12    | 630     | 500    | 19      |

Table 2.6: MLA sample selection

| Site      | ASU sample | Golder<br>horizon | Queen'<br>s | from<br>(cm) | to<br>(cm) | Au µg/g | As µg/g | S µg/g | Sb µg/g |
|-----------|------------|-------------------|-------------|--------------|------------|---------|---------|--------|---------|
| IV-OC-1   | Sample 17  | IVOC1-a           | O-22a       | 0            | 5          | 0.76    | 7000    | 400    | 160     |
|           | Sample 18  | IVOC1-b           | O-22b       | 5            | 10         | 0.14    | 5400    | 620    | 73      |
| IV-OC-4   | Sample 147 | IVOC4-a           | O-25a       | 0            | 5          | 0.56    | 4800    | 1300   | 130     |
|           | Sample 148 | IVOC4-b           | O-25b       | 5            | 12         | 0.046   | 5100    | 580    | 24      |
| V-OC-1    | Sample 179 | VOC1-a            | O-31a       | 0            | 5          | 0.036   | 1400    | <200   | 25      |
|           | Sample 180 | VOC1-b            | O-31b       | 5            | 15         | 0.024   | 570     | <200   | <10     |
| V-OC-2    | Sample 181 | VOC2-a            | O-32a       | 0            | 5          | 0.15    | 3600    | 450    | 110     |
| VI-OC-4   | Sample 202 | VIOC4-a           | O-40a       | 0            | 5          | 0.15    | 1200    | 1300   | 36      |
|           | Sample 203 | VIOC4-b           | O-40b       | 5            | 10         | 0.034   | 1300    | 840    | 20      |
| VIII-OC-4 | Sample 295 | VIIIOC4-a         | O-54a       | 0            | 5          | 0.20    | 840     | 1000   | 59      |
|           | Sample 296 | VIIIOC4-b         | O-54b       | 5            | 20         | 0.016   | 370     | 280    | 12      |
| IX-OC-2   | Sample 319 | IXOC2-a           | 0-27a       | 0            | 3          | 1.8     | 5500    | 2100   | 0 330   |
|           | Sample 320 | IXOC2-b           | O-27b       | 3            | 10         | 0.061   | 910     | 140    | 18      |
| IX-OC-4   | Sample 324 | IXOC4-a           | O-29a       | 0            | 6          | 0.61    | 5200    | 1500   | 190     |
|           | Sample 325 | IXOC4-b           | O-29b       | 6            | 15         | 0.051   | 1100    | 460    | 15      |
|           | Sample 326 | IXOC4-c           | O-29c       | 15           | 20         | 0.029   | 1200    | 200    | 14      |
| III-WL-1  | Sample 118 | IIIWL1-a          | W-89a       | 0            | 5          | 2.4     | 1000    | 1500   | 160     |
|           | Sample 119 | IIIWL1-b          | W-89b       | 5            | 15         | 4.4     | 920     | 1300   | 200     |
|           | Sample 93  | IIIWL1-c          | W-89c       | 15           | 30         | 4.0     | 2700    | 3900   | 470     |
| IV-WL-2   | Sample 8   | IVWL2-b           | W-91b       | 5            | 15         | 0.98    | 1000    | 560    | 270     |
|           | Sample 9   | IVWL2-c           | W-91c       | 15           | 30         | 1.6     | 2800    | 2100   | 800     |
|           | Sample 10  | IVWL2-d           | W-91d       | 30           | 60         | 2.0     | 3400    | 4000   | 1100    |
|           | Sample 11  | IVWL2-e           | W-91e       | 60           | 100        | 0.22    | 1800    | <200   | 1100    |
| V-WL-2    | Sample 169 | VWL2-b            | W-98b       | 5            | 20         | 0.28    | 1100    | 1300   | 33      |
| VI-WL-1A  | Sample 195 | VIWL1A-a          | W-100a      | 0            | 5          | 0.31    | 1500    | 4300   | 23      |
|           | Sample 196 | VIWL1A-b          | W-<br>100b  | 5            | 10         | 0.16    | 420     | 2600   | 26      |
| VI-WL-1B  | Sample 197 | VIWL1B-a          | W-101a      | 0            | 5          | 0.21    | 870     | 6000   | 25      |
|           | Sample 198 | VIWL1B-b          | W-<br>101b  | 5            | 10         | 0.23    | 1200    | 6200   | 27      |
|           | Sample 199 | VIWL1B-c          | W-101c      | 10           | 30         | 0.33    | 790     | 4500   | 24      |

# 3. Results and Discussion

# 3.1 Bulk chemistry

Bulk ICP-OES results, ICP-MS Au and Sb results, and carbon results were received for all 359 soil samples. Table 3.1 contains all As, Au, C, S, and Sb results; Appendix II includes a complete table of all chemistry results.

Arsenic results ranged from 4.9  $\mu$ g/g to 17,000  $\mu$ g/g, had a median value of 160  $\mu$ g/g, and averaged 740  $\mu$ g/g with a standard deviation of 1790  $\mu$ g/g. Of the 359 samples analyzed, 120 contain  $\geq$  340  $\mu$ g/g As. Of the 120 samples, 65 have As concentrations greater than 1000  $\mu$ g/g. Three samples have As concentrations greater than 10,000  $\mu$ g/g As (1 % As). All samples with As greater than 3600  $\mu$ g/g come from outcrop soil sites.



Figure 3.1: Histogram showing relative frequency of As concentrations for all 359 samples. The first bin includes As concentrations up to 340  $\mu$ g/g, the site-specific cleanup guideline for Giant Mine (INAC 2007). The lower horizons of wetland and forest soil sites dominate the <340 $\mu$ g/g bin.

| TYPE | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (μg/<br>g) | S (µg/g) | Sb (μg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| F    | I-F-1          | 0           | 5          | IF1-a              | 126             | F-58a               | 35.7          | 0.26          | 500           | 2000     | 55            |
| F    |                | 5           | 15         | IF1-b              | 127             | F-58b               | 35.0          | 0.037         | 100           | 1800     | 20            |
| F    |                | 15          | 30         | IF1-c              | 128             | F-58c               | 10.8          | <0.01         | 140           | 450      | 3.3           |
| F    |                | 30          | 60         | IF1-d              | 129             | F-58d               | <1.0          | <0.01         | 74            | <200     | 1.8           |
| F    |                | 60          | 100        | IF1-e              | 130             | F-58e               | <1.0          | <0.01         | 19            | <200     | 2.0           |
| F    | I-F-2          | 0           | 5          | IF2-a              | 102             | F-59a               | 37.2          | 0.32          | 250           | 3500     | 74            |
| F    |                | 5           | 15         | IF2-b              | 103             | F-59b               | 41.2          | 0.23          | 250           | 2600     | 78            |
| F    |                | 15          | 30         | IF2-c              | 104             | F-59c               | 24.0          | 0.022         | 250           | 1400     | 12            |
| F    |                | 30          | 60         | IF2-d              | 105             | F-59d               | 2.0           | <0.01         | 180           | <200     | 2.2           |
| F    |                | 60          | 100        | IF2-e              | 106             | F-59e               | <1.0          | <0.01         | 120           | <200     | 2.1           |
| F    | II-F-1         | 0           | 5          | llF1-a             | 334             | F-60a               | 6.3           | 0.076         | 270           | 860      | 11            |
| F    |                | 5           | 15         | llF1-b             | 335             | F-60b               | 3.4           | 0.013         | 250           | 480      | 5.3           |
| F    |                | 15          | 30         | llF1-c             | 336             | F-60c               | 1.4           | <0.01         | 110           | 280      | 1.5           |
| F    |                | 30          | 60         | llF1-d             | 337             | F-60d               | <1.0          | 0.015         | <b>5.2</b>    | <200     | <1.0          |
| F    |                | 60          | 100        | llF1-e             | 338             | F-60e               | <1.0          | <0.01         | 5.0           | <200     | <1.0          |
| F    | II-F-2         | 0           | 5          | llF2-a             | 56              | F-61a               | 6.5           | 0.099         | 120           | 600      | 25            |
| F    |                | 5           | 15         | llF2-b             | 57              | F-61b               | 1.3           | 0.10          | 180           | 440      | 20            |
| F    |                | 15          | 30         | IIF2-c             | 58              | F-61c               | <1.0          | 0.23          | 170           | 300      | 12            |
| F    |                | 30          | 60         | llF2-d             | 59              | F-61d               | <1.0          | 0.033         | 45            | <200     | 5.5           |
| F    |                | 60          | 100        | llF2-e             | 60              | F-61e               | <1.0          | 0.012         | 21            | 260      | 2.8           |
| F    | II-F-3         | 0           | 5          | IIF3-a             | 51              | F-62a               | 1.2           | 0.061         | 240           | <200     | 11.0          |
| F    |                | 5           | 15         | llF3-b             | 52              | F-62b               | <1.0          | <0.01         | 63            | <200     | 1.3           |
| F    |                | 15          | 30         | IIF3-c             | 53              | F-62c               | <1.0          | <0.01         | 52            | <200     | 1.2           |
| F    |                | 30          | 60         | llF3-d             | 54              | F-62d               | <1.0          | <0.01         | 26            | <200     | <1.0          |
| F    |                | 60          | 90         | IIF3-e             | 55              | F-62e               | <1.0          | <0.01         | 16            | <200     | <1.0          |
| F    | III-F-1        | 0           | 5          | IIIF1-a            | 356             | F-63a               | 8.2           | 0.018         | 83            | 810      | 2.2           |
| F    |                | 5           | 15         | IIIF1-b            | 357             | F-63b               | <1.0          | 0.037         | 90            | <200     | 1.8           |
| F    |                | 15          | 30         | IIIF1-c            | 358             | F-63c               | <1.0          | 0.014         | 57            | <200     | 1.2           |
| F    |                | 30          | 70         | IIIF1-d            | 359             | F-63d               | <1.0          | 0.030         | 76            | <200     | 1.1           |
| F    | III-F-2        | 0           | 5          | IIIF2-a            | 27              | F-64a               | 6.7           | 0.53          | 1500          | 510      | 93            |
| F    |                | 5           | 15         | IIIF2-b            | 28              | F-64b               | 4.85          | 0.065         | 840           | 370      | 17            |
| F    |                | 15          | 30         | IIIF2-c            | 29              | F-64c               | 2.55          | 0.013         | 280           | 260      | 4.4           |
| F    |                | 30          | 55         | IIIF2-d            | 30              | F-64d               | 1.3           | <0.01         | 250           | <200     | 3.0           |
| F    |                | 55          | 100        | IIIF2-e            | 31              | F-64e               | <1.0          | <0.01         | 40            | <200     | 1.2           |
| F    | IV-F-1         | 0           | 5          | IVF1-a             | 101             | F-65a               | 40.5          | 0.24          | 540           | 1800     | 100           |
| F    |                | 5           | 15         | IVF1-b             | 87              | F-65b               | 2.7           | 0.018         | 140           | <200     | 6.8           |
| F    |                | 15          | 30         | IVF1-c             | 88              | F-65c               | <1.0          | <0.01         | 51            | <200     | 1.3           |
| F    |                | 30          | 60         | IVF1-d             | 89              | F-65d               | <1.0          | 0.039         | 25            | <200     | <1.0          |
| F    |                | 60          | 100        | IVF1-e             | 90              | F-65e               | <1.0          | 0.012         | 7.3           | <200     | <1.0          |

Table 3.1: Arsenic, C, Au, S, and Sb results for all samples

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (µg/<br>g) | S (µg/g) | Sb (µg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| F    | IV-F-2         | 0           | 5          | IVF2-a             | 344             | F-66a               | 32.9          | 0.96          | 1700          | 1200     | 270           |
| F    |                | 5           | 20         | IVF2-b             | 345             | F-66b               | 41.6          | 0.25          | 1300          | 1700     | 93            |
| F    |                | 20          | 30         | IVF2-c             | 346             | F-66c               | 4.6           | 0.010         | 80            | 1000     | 2.4           |
| F    |                | 30          | 60         | IVF2-d             | 347             | F-66d               | 1.1           | <0.01         | 17            | 560      | 1.2           |
| F    |                | 60          | 100        | IVF2-e             | 348             | F-66e               | <1.0          | 0.012         | 14            | 480      | 1.5           |
| F    | IV-F-3A        | 0           | 5          | IVF3A-a            | 19              | F-67a               | 31.5          | 1.0           | 770           | 3100     | 210           |
| F    |                | 5           | 15         | IVF3A-b            | 20              | F-67b               | 32.0          | 0.92          | 2500          | 2200     | 230           |
| F    |                | 15          | 35         | IVF3A-c            | 21              | F-67c               | 16.7          | 0.070         | 300           | 960      | 26            |
| F    | IV-F-3B        | 0           | 5          | IVF3B-a            | 22              | F-68a               | 20.5          | 0.58          | 1300          | 1300     | 93            |
| F    |                | 5           | 15         | IVF3B-b            | 23              | F-68b               | 26.45         | 0.044         | 130           | 1600     | 22            |
| F    |                | 15          | 30         | IVF3B-c            | 24              | F-68c               | 21.9          | 0.070         | 170           | 1600     | 14            |
| F    |                | 30          | 60         | IVF3B-d            | 25              | F-68d               | 1.75          | 0.025         | 36            | 200      | 2.1           |
| F    |                | 60          | 100        | IVF3B-e            | 26              | F-68e               | <1.0          | 0.014         | 21            | <200     | 1.3           |
| F    | V-F-1          | 0           | 5          | VF1-a              | 170             | F-73a               | 32.3          | 0.17          | 250           | 2700     | 39            |
| F    |                | 5           | 15         | VF1-b              | 171             | F-73b               | 7.1           | <0.01         | 66            | 550      | 4.8           |
| F    |                | 15          | 30         | VF1-c              | 172             | F-73c               | 5.9           | 0.12          | 23            | 460      | 1.2           |
| F    |                | 30          | 50         | VF1-d              | 173             | F-73d               | 1.8           | 0.055         | 9.1           | <200     | <1.0          |
| F    |                | 50          | 100        | VF1-e              | 174             | F-73e               | <1.0          | 0.039         | 7.7           | <200     | <1.0          |
| F    | V-F-2          | 0           | 10         | VF2-a              | 175             | F-74a               | 26.1          | 0.090         | 78            | 1500     | 14            |
| F    |                | 10          | 20         | VF2-b              | 176             | F-74b               | 1.0           | 0.016         | 48            | <200     | 1.4           |
| F    |                | 20          | 50         | VF2-c              | 177             | F-74c               | <1.0          | 0.013         | 17            | <200     | <1.0          |
| F    |                | 50          | 80         | VF2-d              | 178             | F-74d               | <1.0          | 0.014         | 22            | <200     | <1.0          |
| F    |                | 80          | 90         | VF2-e              | 161             | F-74e               | <1.0          | <0.01         | 21            | <200     | <1.0          |
| F    |                | 100         | 110        | VF2-f              | 162             | F-74f               | <1.0          | 0.011         | 20            | <200     | <1.0          |
| F    | VI-F-1         | 0           | 5          | VIF1-a             | 222             | F-75a               | 41.3          | 0.11          | 220           | 2400     | 15            |
| F    |                | 5           | 20         | VIF1-b             | 223             | F-75b               | 16.3          | <0.01         | 120           | 840      | 4.9           |
| F    |                | 20          | 30         | VIF1-c             | 224             | F-75c               | 1.1           | <0.01         | 38            | <200     | <1.0          |
| F    |                | 30          | 60         | VIF1-d             | 225             | F-75d               | <1.0          | 0.015         | 13            | <200     | <1.0          |
| F    |                | 60          | 90         | VIF1-e             | 226             | F-75e               | <1.0          | <0.01         | 6.8           | <200     | <1.0          |
| F    | VI-F-2         | 0           | 5          | VIF2-a             | 227             | F-76a               | 40.2          | 0.20          | 150           | 1500     | 78            |
| F    |                | 5           | 10         | VIF2-b             | 228             | F-76b               | 32.5          | 0.014         | 370           | 1100     | 7.4           |
| F    |                | 10          | 30         | VIF2-c             | 229             | F-76c               | <1.0          | <0.01         | <b>52</b>     | <200     | <1.0          |
| F    |                | 30          | 50         | VIF2-d             | 230             | F-76d               | 1.9           | <0.01         | 16            | <200     | <1.0          |
| F    |                | 50          | 60         | VIF2-e             | 213             | F-76e               | 9.3           | <0.01         | 12            | 1000     | <1.0          |
| F    |                | 60          | 80         | VIF2-f             | 214             | F-76f               | <1.0          | <0.01         | 6.3           | <200     | <1.0          |
| F    |                | 80          | 85         | VIF2-g             | 215             | F-76g               | <1.0          | <0.01         | 11            | <200     | <1.0          |
| F    | VI-F-3         | 0           | 5          | VIF3-a             | 216             | F-77a               | 12.0          | 0.061         | 580           | 400      | 14            |
| F    |                | 5           | 15         | VIF3-b             | 217             | F-77b               | 1.5           | <0.01         | 110           | <200     | 2.4           |
| F    |                | 15          | 25         | VIF3-c             | 218             | F-77c               | <1.0          | 0.33          | 41            | <200     | <1.0          |
| F    |                | 25          | 45         | VIF3-d             | 219             | F-77d               | <1.0          | <0.01         | 33            | <200     | 1.1           |

| TYPE | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (µg/<br>g)    | S (µg/g) | Sb (µg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|------------------|----------|---------------|
| F    |                | 45          | 55         | VIF3-e             | 220             | F-77e               | <1.0          | <0.01         | 25               | <200     | <1.0          |
| F    |                | 55          | 80         | VIF3-f             | 221             | F-77f               | <1.0          | <0.01         | 30               | <200     | <1.0          |
| F    | VI-F-4         | 0           | 5          | VIF4-a             | 204             | F-78a               | 41.3          | 0.27          | 68               | 2300     | 85            |
| F    |                | 5           | 10         | VIF4-b             | 205             | F-78b               | 34.4          | 0.016         | 46               | 1700     | 35            |
| F    |                | 10          | 30         | VIF4-c             | 206             | F-78c               | <1.0          | <0.01         | 50               | <200     | <1.0          |
| F    |                | 30          | 60         | VIF4-d             | 207             | F-78d               | <1.0          | <0.01         | 39               | <200     | <1.0          |
| F    |                | 60          | 100        | VIF4-e             | 208             | F-78e               | <1.0          | 0.022         | 32               | <200     | <1.0          |
| F    | VII-F-1        | 0           | 5          | VIIF1-a            | 245             | F-79a               | 18.6          | 0.063         | 94               | 2300     | 11            |
| F    |                | 5           | 20         | VIIF1-b            | 246             | F-79b               | 18.0          | <0.01         | 43               | 1500     | 2.9           |
| F    |                | 20          | 30         | VIIF1-c            | 247             | F-79c               | 3.6           | <0.01         | 32               | 440      | 1.3           |
| F    |                | 30          | 60         | VIIF1-d            | 248             | F-79d               | 1.3           | <0.01         | 13               | <200     | <1.0          |
| F    |                | 60          | 100        | VIIF1-e            | 249             | F-79e               | <1.0          | <0.01         | 8.7              | 400      | <1.0          |
| F    | VII-F-2        | 0           | 5          | VIIF2-a            | 250             | F-80a               | 10.3          | 0.018         | 120              | 1000     | 5.8           |
| F    |                | 5           | 15         | VIIF2-b            | 251             | F-80b               | 1.4           | <0.01         | 28               | 280      | 1.3           |
| F    |                | 15          | 30         | VIIF2-c            | 252             | F-80c               | <1.0          | <0.01         | 26               | 220      | 1.5           |
| F    |                | 30          | 60         | VIIF2-d            | 253             | F-80d               | <1.0          | <0.01         | 19               | <200     | <1.0          |
| F    |                | 60          | 70         | VIIF2-e            | 236             | F-80e               | <1.0          | <0.01         | 24               | <200     | <1.0          |
| F    |                | 70          | 100        | VIIF2-f            | 237             | F-80f               | <1.0          | <0.01         | 22               | <200     | <1.0          |
| F    | VIII-F-1       | 0           | 5          | VIIIF1-a           | 283             | F-81a               | 30.4          | 0.075         | 80               | 2000     | 17            |
| F    |                | 5           | 15         | VIIIF1-b           | 284             | F-81b               | 28.8          | 0.043         | 100              | 4200     | 10            |
| F    |                | 15          | 30         | VIIIF1-c           | 285             | F-81c               | 19.9          | 0.019         | 55               | 2500     | 6.2           |
| F    |                | 30          | 60         | VIIIF1-d           | 286             | F-81d               | 13.2          | <0.01         | 11               | 1900     | 3.2           |
| F    |                | 60          | 70         | VIIIF1-e           | 287             | F-81e               | 14.2          | <0.01         | 10               | 2600     | 4.0           |
| F    | VIII-F-2       | 0           | 5          | VIIIF2-a           | 271             | F-82a               | 31.3          | 0.25          | 340              | 1300     | 76            |
| F    |                | 5           | 15         | VIIIF2-b           | 272             | F-82b               | 37.1          | 0.017         | 81               | 1400     | 12            |
| F    |                | 15          | 30         | VIIIF2-c           | 273             | F-82c               | 19.9          | <0.01         | 51               | 1100     | 5.1           |
| F    |                | 30          | 60         | VIIIF2-d           | 274             | F-82d               | 3.15          | <0.01         | 8.8              | 300      | <1.0          |
| F    | VIII-F-3       | 0           | 5          | VIIIF3-a           | 275             | F-83a               | 3.4           | 0.14          | 160              | 560      | 31            |
| F    |                | 5           | 15         | VIIIF3-b           | 276             | F-83b               | 1.4           | 0.059         | 220              | 240      | 16            |
| F    |                | 15          | 30         | VIIIF3-c           | 277             | F-83c               | <1.0          | <0.01         | 19               | <200     | <1.0          |
| F    |                | 30          | 60         | VIIIF3-d           | 278             | F-83d               | <1.0          | <0.01         | 14               | <200     | <1.0          |
| F    | VIII-F-4       | 0           | 5          | VIIIF4-a           | 297             | F-84a               | 30.2          | 0.11          | 80               | 2100     | 20            |
| F    |                | 5           | 15         | VIIIF4-b           | 298             | F-84b               | 24.5          | 0.019         | 76               | 2800     | 16            |
| F    |                | 15          | 30         | VIIIF4-c           | 299             | F-84c               | 10.2          | 0.010         | 71               | 1200     | 7.4           |
| F    |                | 30          | 60         | VIIIF4-d           | 300             | F-84d               | 3.7           | <0.01         | 40               | 360      | 2.0           |
| F    |                | 60          | 90         | VIIIF4-e           | 301             | F-84e               | 3.1           | <0.01         | 23               | 760      | 1.5           |
| F    | VIII-F-5       | 0           | 5          | VIIIF5-a           | 302             | F-85a               | 2.0           | 0.020         | 110              | 280      | 5.2           |
| F    |                | 5           | 15         | VIIIF5-b           | 303             | F-85b               | <1.0          | 0.013         | 64               | <200     | 2.3           |
| F    |                | 15          | 30         | VIIIF5-c           | 304             | F-85c               | <1.0          | <0.01         | 13               | <200     | <1.0          |
| F    |                | 30          | 60         | VIIIF5-d           | 305             | F-85d               | <1.0          | <0.01         | <mark>8.3</mark> | <200     | <1.0          |

| TYPE | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (μg/<br>g) | S (µg/g) | Sb (µg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| F    |                | 60          | 100        | VIIIF5-e           | 308             | F-85e               | <1.0          | <0.01         | 7.3           | <200     | <1.0          |
| F    | IX-F-1         | 0           | 5          | IXF1-a             | 113             | F-69a               | 32.7          | 0.56          | 2400          | 2000     | 190           |
| F    |                | 5           | 15         | IXF1-b             | 114             | F-69b               | 34.6          | 0.066         | 300           | 1600     | 32            |
| F    |                | 15          | 30         | IXF1-c             | 115             | F-69c               | 32.65         | 0.021         | 180           | 1800     | 9.4           |
| F    |                | 30          | 55         | IXF1-d             | 116             | F-69d               | 34.3          | 0.010         | 290           | 2400     | 4.4           |
| F    |                | 55          | 100        | IXF1-e             | 117             | F-69e               | 7.6           | <0.01         | 21            | 670      | 1.6           |
| F    | IX-F-2         | 0           | 5          | IXF2-a             | 37              | F-70a               | 15.8          | 3.1           | 930           | 2200     | 120           |
| F    |                | 5           | 15         | IXF2-b             | 38              | F-70b               | 30.6          | 0.66          | 730           | 1500     | 140           |
| F    |                | 15          | 30         | IXF2-c             | 39              | F-70c               | 32.1          | 0.10          | 220           | 1600     | 25            |
| F    |                | 30          | 45         | IXF2-d             | 40              | F-70d               | 8.0           | 0.019         | 53            | 410      | 5.0           |
| F    | IX-F-3         | 0           | 5          | IXF3-a             | 329             | F-71a               | 19.5          | 0.26          | 510           | 2200     | 60            |
| F    |                | 5           | 15         | IXF3-b             | 330             | F-71b               | <1.0          | 0.025         | 73            | <200     | 3.1           |
| F    |                | 15          | 30         | IXF3-c             | 331             | F-71c               | <1.0          | <0.01         | 59            | <200     | 3.2           |
| F    |                | 30          | 60         | IXF3-d             | 332             | F-71d               | <1.0          | <0.01         | 28            | 400      | 1.3           |
| F    |                | 60          | 100        | IXF3-e             | 333             | F-71e               | <1.0          | <0.01         | 14            | 220      | <1.0          |
| F    | IX-F-4         | 0           | 5          | IXF4-a             | 1               | F-72a               | 39.8          | 0.22          | 240           | 1900     | 49            |
| F    |                | 5           | 15         | IXF4-b             | 2               | F-72b               | 4.4           | 48            | 3600          | 3900     | 570           |
| F    |                | 15          | 30         | IXF4-c             | 3               | F-72c               | 5.1           | 0.86          | 600           | 1100     | 86            |
| F    |                | 30          | 60         | IXF4-d             | 4               | F-72d               | 1.4           | 0.20          | 180           | 700      | 26            |
| F    |                | 60          | 85         | IXF4-e             | 5               | F-72e               | <1.0          | 0.17          | <b>48</b>     | <200     | 9.3           |
| F    |                | 85          | 100        | IXF4-f             | 6               | F-72f               | <1.0          | 0.027         | 22            | <200     | 2.6           |
| 0    | I-OC-1         | 0           | 5          | IOC1-a             | 141             | O-1a                | 11.9          | 0.19          | 1200          | 760      | 48            |
| 0    |                | 5           | 15         | IOC1-b             | 142             | O-1b                | 7.6           | 0.019         | 230           | 560      | 14            |
| 0    | I-OC-2         | 2           | 7          | IOC2-a             | 91              | O-2a                | 15.8          | 0.20          | 2000          | 1100     | 70            |
| 0    | I-OC-3         | 2           | 5          | IOC3-a             | 92              | O-3a                | 18.9          | 0.18          | 1700          | 1100     | 57            |
| 0    | II-OC-1        | 0           | 5          | llOC1-a            | 61              | O-4a                | 29.7          | 0.56          | 710           | 1300     | 120           |
| 0    |                | 5           | 10         | IIOC1-b            | 62              | O-4b                | 7.2           | 0.021         | 490           | 510      | 12            |
| 0    | II-OC-10       | 0           | 5          | llOC10-a           | 83              | O-5a                | 19.6          | 1.0           | 16000         | 2000     | 260           |
| 0    |                | 5           | 8          | llOC10-b           | 84              | O-5b                | 5.0           | 0.081         | 7200          | 820      | 52            |
| 0    | II-OC-11       | 0           | 5          | llOC11-a           | 85              | O-6a                | 15.4          | 0.90          | 11000         | 920      | 220           |
| 0    |                | 5           | 10         | IIOC11-b           | 86              | O-6b                | 11.3          | 0.37          | 7800          | 920      | 120           |
| 0    | II-OC-2        | 0           | 3          | IIOC2-a            | 63              | O-7a                | 20.4          | 0.46          | 1500          | 1300     | 60            |
| 0    |                | 3           | 10         | IIOC2-b            | 64              | O-7b                | 6.8           | 0.028         | 1400          | 440      | 18            |
| 0    | II-OC-3        | 0           | 5          | IIOC3-a            | 65              | O-8a                | 22.3          | 0.37          | 1400          | 810      | 76            |
| 0    | 4<br>1<br>1    | 5           | 10         | IIOC3-b            | 66              | O-8b                | 5.8           | 0.030         | 1400          | 250      | 17            |
| 0    | II-OC-4        | 0           | 5          | llOC4-a            | 67              | O-9a                | 14.4          | 0.32          | 2400          | 510      | 73            |
| 0    |                | 5           | 15         | IIOC4-b            | 68              | O-9b                | 2.2           | 0.027         | 460           | <200     | 11            |
| 0    |                | 15          | 20         | IIOC4-c            | 69              | O-9c                | 2.8           | 0.015         | 410           | <200     | 9.0           |
| 0    | II-OC-5        | 0           | 3          | IIOC5-a            | 70              | O-10a               | 24.3          | 3.1           | 17000         | 1200     | 900           |
| 0    |                | 3           | 10         | IIOC5-b            | 71              | O-10b               | 2.9           | 0.15          | 1300          | 210      | 47            |

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (µg/<br>g) | S (µg/g) | Sb (μg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| 0    |                | 10          | 20         | IIOC5-c            | 72              | O-10c               | 2.2           | 0.036         | 2000          | 220      | 25            |
| 0    | II-OC-6        | 0           | 5          | IIOC6-a            | 73              | O-11a               | 13.3          | 1.7           | 9200          | 920      | 320           |
| 0    |                | 5           | 15         | IIOC6-b            | 74              | O-11b               | 4.4           | 0.060         | 3600          | 180      | 35            |
| 0    |                | 15          | 20         | IIOC6-c            | 75              | O-11c               | 4.2           | 0.073         | 3400          | 180      | 45            |
| 0    | II-OC-7        | 0           | 10         | IIOC7-a            | 76              | O-12a               | 27.9          | 0.17          | 500           | 2900     | 33            |
| 0    |                | 10          | 16         | IIOC7-b            | 77              | O-12b               | 4.4           | 0.017         | 72            | 720      | 6.0           |
| 0    | II-OC-8        | 0           | 12         | llOC8-a            | 78              | O-13a               | 20.6          | 0.033         | 480           | 1300     | 16            |
| 0    |                | 12          | 15         | IIOC8-b            | 79              | O-13b               | 14.0          | 0.023         | 320           | 820      | 8.4           |
| 0    | II-OC-9        | 0           | 3          | llOC9-a            | 80              | O-14a               | 29.7          | 0.35          | 1400          | 1100     | 120           |
| 0    |                | 3           | 10         | IIOC9-b            | 81              | O-14b               | 7.6           | 0.019         | 2400          | 420      | 35            |
| 0    |                | 10          | 15         | IIOC9-c            | 82              | O-14c               | 8.3           | 0.016         | 2400          | 600      | 33            |
| 0    | III-OC-1       | 0           | 5          | IIIOC1-a           | 120             | O-15a               | 15.9          | 0.62          | 3100          | 810      | 90            |
| 0    |                | 5           | 15         | IIIOC1-b           | 121             | O-15b               | 14.1          | 0.056         | 1400          | 1000     | 31            |
| 0    | III-OC-2       | 0           | 8          | IIIOC2-a           | 122             | O-16a               | 15.2          | 0.73          | 3200          | 570      | 170           |
| 0    |                | 8           | 15         | IIIOC2-b           | 123             | O-16b               | 2.0           | 0.049         | 1300          | 210      | 23            |
| 0    | III-OC-3       | 0           | 5          | IIIOC3-a           | 107             | O-17a               | 14.7          | 0.20          | 1400          | 760      | 34            |
| 0    |                | 5           | 9          | IIIOC3-b           | 108             | O-17b               | 10.2          | 0.046         | 1500          | 560      | 23            |
| 0    | III-OC-5       | 0           | 5          | IIIOC5-a           | 124             | O-18a               | 10.0          | 0.11          | 3200          | 350      | 45            |
| 0    |                | 5           | 10         | IIIOC5-b           | 125             | O-18b               | 8.4           | 0.059         | 4100          | 610      | 74            |
| 0    | III-OC-6       | 0           | 5          | IIIOC6-a           | 109             | O-19a               | 36.4          | 0.034         | 270           | 14000    | 19            |
| 0    |                | 5           | 9          | IIIOC6-b           | 110             | O-19b               | 4.1           | 0.14          | 1500          | 220      | 41            |
| 0    | III-OC-7       | 0           | 5          | IIIOC7-a           | 111             | O-20a               | 10.4          | 0.049         | 690           | 560      | 21            |
| 0    |                | 5           | 10         | IIIOC7-b           | 112             | O-20b               | 8.4           | 0.032         | 91            | 1600     | 5.1           |
| 0    | III-OC-8       | 0           | 5          | IIIOC8-a           | 354             | O-21a               | 10.5          | 0.12          | 630           | 500      | 19            |
| 0    |                | 5           | 15         | IIIOC8-b           | 355             | O-21b               | 11.6          | 0.030         | 260           | 600      | 12            |
| 0    | IV-OC-1        | 0           | 5          | IVOC1-a            | 17              | O-22a               | 8.6           | 0.76          | 7000          | 400      | 160           |
| 0    |                | 5           | 10         | IVOC1-b            | 18              | O-22b               | 9.8           | 0.14          | 5400          | 620      | 73            |
| 0    | IV-OC-2        | 0           | 5          | IVOC2-a            | 143             | O-23a               | 15.5          | 0.23          | 840           | 1400     | 42            |
| 0    |                | 5           | 10         | IVOC2-b            | 144             | O-23b               | 10.6          | 0.030         | 810           | 870      | 13            |
| 0    | IV-OC-3        | 0           | 5          | IVOC3-a            | 145             | O-24a               | 24.4          | 0.39          | 1100          | 970      | 150           |
| 0    |                | 5           | 15         | IVOC3-b            | 146             | O-24b               | 3.5           | 0.036         | 580           | 210      | 21            |
| 0    | IV-OC-4        | 0           | 5          | IVOC4-a            | 147             | O-25a               | 28.0          | 0.56          | 4800          | 1300     | 130           |
| 0    |                | 5           | 12         | IVOC4-b            | 148             | O-25b               | 9.4           | 0.046         | 5100          | 580      | 24            |
| 0    | V-OC-1         | 0           | 5          | VOC1-a             | 179             | O-31a               | 3.0           | 0.036         | 1400          | <200     | 25            |
| 0    |                | 5           | 15         | VOC1-b             | 180             | O-31b               | 1.1           | 0.024         | 570           | <200     | 13            |
| 0    | V-0C-2         | 0           | 5          | VOC2-a             | 181             | O-32a               | 7.8           | 0.15          | 3600          | 450      | 110           |
| 0    |                | 5           | 15         | VOC2-b             | 182             | O-32b               | <1.0          | <0.01         | 27            | 220      | <1.0          |
| 0    |                | 15          | 25         | VOC2-c             | 183             | O-32c               | 1.4           | 0.011         | 400           | <200     | 8.4           |
| 0    |                | 25          | 35         | VOC2-d             | 184             | O-32d               | <1.0          | <0.01         | 44            | <200     | 2.2           |
| 0    | V-OC-3         | 0           | 5          | VOC3-a             | 185             | O-33a               | 13.5          | 0.030         | 740           | 800      | 16            |

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (µg/<br>g) | S (µg/g)     | Sb (µg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|--------------|---------------|
| 0    |                | 5           | 15         | VOC3-b             | 186             | O-33b               | 9.5           | 0.016         | 72            | 530          | 11            |
| 0    |                | 15          | 25         | VOC3-c             | 187             | O-33c               | 9.8           | 0.021         | 260           | 570          | 10            |
| 0    | V-OC-4         | 0           | 5          | VOC4-a             | 188             | O-34a               | 9.4           | 0.067         | 230           | 520          | 17            |
| 0    |                | 5           | 15         | VOC4-b             | 189             | O-34b               | 8.2           | 0.015         | 320           | 600          | 11            |
| 0    |                | 15          | 30         | VOC4-c             | 190             | O-34c               | 8.3           | 0.013         | 140           | 1200         | 7.5           |
| 0    | V-OC-5         | 0           | 5          | VOC5-a             | 191             | O-35a               | 5.9           | 0.10          | 560           | 240          | 20            |
| 0    |                | 5           | 10         | VOC5-b             | 192             | O-35b               | 2.4           | 0.021         | 310           | <200         | 11            |
| 0    | V-OC-6         | 0           | 5          | VOC6-a             | 193             | O-36a               | 15.4          | 0.078         | 330           | 1000         | 8.2           |
| 0    |                | 5           | 15         | VOC6-b             | 194             | O-36b               | 12.1          | 0.23          | 130           | 800          | 3.9           |
| 0    | VI-OC-1        | 0           | 5          | VIOC1-a            | 209             | O-37a               | 32.4          | 0.39          | 700           | 1700         | 120           |
| 0    |                | 5           | 15         | VIOC1-b            | 210             | O-37b               | 10.1          | 0.023         | 640           | 540          | 16            |
| 0    | VI-OC-2        | 0           | 5          | VIOC2-a            | 211             | O-38a               | 12.7          | 0.028         | 370           | 740          | 14            |
| 0    |                | 5           | 10         | VIOC2-b            | 212             | O-38b               | 9.6           | <0.01         | 120           | 840          | 7.4           |
| 0    | VI-OC-3        | 0           | 5          | VIOC3-a            | 231             | O-39a               | 29.0          | 0.20          | 550           | 1300         | 54            |
| 0    |                | 5           | 10         | VIOC3-b            | 232             | O-39b               | 9.3           | <0.01         | 450           | 380          | 8.8           |
| 0    | VI-OC-4        | 0           | 5          | VIOC4-a            | 202             | O-40a               | 20.9          | 0.15          | 1200          | 1300         | 36            |
| 0    |                | 5           | 10         | VIOC4-b            | 203             | O-40b               | 13.2          | 0.034         | 1300          | 840          | 20            |
| 0    | VI-OC-5        | 0           | 5          | VIOC5-a            | 233             | O-41a               | 12.6          | 0.055         | 750           | 660          | 30            |
| 0    |                | 5           | 10         | VIOC5-b            | 234             | O-41b               | 12.2          | <0.01         | 230           | 540          | 13            |
| 0    |                | 10          | 20         | VIOC5-c            | 235             | O-41c               | 9.6           | <0.01         | 100           | 620          | 6.4           |
| 0    | VII-OC-1       | 0           | 5          | VIIOC1-a           | 242             | O-42a               | 26.3          | 0.11          | 530           | 860          | 34            |
| 0    |                | 5           | 10         | VIIOC1-b           | 243             | O-42b               | 7.3           | 0.012         | 450           | 280          | 11            |
| 0    |                | 10          | 35         | VIIOC1-c           | 244             | O-42c               | 5.7           | 0.011         | 230           | 220          | 7.7           |
| 0    | VII-OC-2       | 0           | 5          | VIIOC2-a           | 254             | O-43a               | 27.65         | 0.014         | 530           | 1600         | 10            |
| 0    |                | 5           | 15         | VIIOC2-b           | 255             | O-43b               | 10.9          | <0.01         | 64            | 1000         | 3.4           |
| 0    | VII-OC-3       | 0           | 5          | VIIOC3-a           | 256             | O-44a               | 37.9          | 0.11          | 170           | 2400         | 18            |
| 0    |                | 5           | 15         | VIIOC3-b           | 257             | O-44b               | 12.7          | 0.019         | 530           | 1500         | 15            |
| 0    | VII-OC-4       | 0           | 5          | VIIOC4-a           | 258             | O-45a               | 15.9          | 0.044         | 530           | 600          | 19            |
| 0    |                | 5           | 10         | VIIOC4-b           | 259             | O-45b               | 9.2           | <0.01         | 120           | 500          | 10            |
| 0    | VII-OC-5       | 0           | 5          | VIIOC5-a           | 260             | O-46a               | 26.1          | 0.029         | 230           | 1300         | 13            |
| 0    | VII-OC-6       | 0           | 5          | VIIOC6-a           | 261             | O-47a               | 26.4          | 0.020         | 160           | 1500         | 9.9           |
| 0    |                | 5           | 10         | VIIOC6-b           | 262             | O-47b               | 17.2          | 0.013         | 150           | 1000         | 7.1           |
| 0    | VII-OC-7       | 0           | 5          | VIIOC7-a           | 263             | O-48a               | 15.6          | 0.029         | 290           | 1400         | 10            |
| 0    |                | 5           | 10         | VIIOC7-b           | 264             | O-48b               | 7.3           | <0.01         | 120           | 700          | 2.9           |
| 0    | VII-OC-8       | 0           | 5          | VIIOC8-a           | 265             | O-49a               | 38.6          | 0.044         | 51            | 2100         | 17            |
| 0    |                | 5           | 15         | VIIOC8-b           | 266             | O-49b               | 11.8          | <0.01         | 99            | 1000         | 3.3           |
| o    |                | 15          | 25         | VIIOC8-c           | 267             | O-49c               | 10.2          | <0.01         | 14            | <u>1</u> 100 | 5.1           |
| 0    | VII-OC-9       | 0           | 5          | VIIOC9-a           | 268             | O-50a               | 22.6          | <0.01         | 52            | 2600         | 5.6           |
| 0    |                | 5           | 15         | VIIOC9-b           | 269             | O-50b               | 14.6          | <0.01         | 72            | 1900         | 3.1           |
| 0    |                | 15          | 30         | VIIOC9-c           | 270             | O-50c               | 9.3           | 0.010         | 52            | 1600         | 3.2           |

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (µg/<br>g) | S (µg/g) | Sb (µg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| 0    | VIII-OC-1      | 0           | 5          | VIIIOC1-a          | 288             | O-51a               | 8.9           | 0.018         | 170           | 400      | 5.3           |
| 0    |                | 5           | 10         | VIIIOC1-b          | 289             | O-51b               | 4.5           | <0.01         | 20            | 300      | 1.9           |
| 0    | VIII-OC-2      | 0           | 5          | VIIIOC2-a          | 290             | O-52a               | 10.0          | 0.029         | 190           | 600      | 7.6           |
| 0    |                | 5           | 10         | VIIIOC2-b          | 291             | O-52b               | 11.8          | <0.01         | 51            | 940      | 3.5           |
| 0    |                | 10          | 20         | VIIIOC2-c          | 292             | O-52c               | 11.1          | <0.01         | 76            | 1200     | 3.9           |
| 0    | VIII-OC-3      | 0           | 5          | VIIIOC3-a          | 293             | O-53a               | 24.5          | 0.18          | 940           | 1500     | 33            |
| 0    |                | 5           | 10         | VIIIOC3-b          | 294             | O-53b               | 9.9           | 0.011         | 190           | 640      | 7.3           |
| 0    | VIII-OC-4      | 0           | 5          | VIIIOC4-a          | 295             | O-54a               | 27.9          | 0.20          | 840           | 1000     | 59            |
| 0    |                | 5           | 20         | VIIIOC4-b          | 296             | O-54b               | 8.0           | 0.016         | 370           | 280      | 12            |
| 0    | VIII-OC-5      | 0           | 10         | VIIIOC5-a          | 279             | O-55a               | 15.9          | 0.22          | 400           | 1000     | 49            |
| 0    |                | 10          | 15         | VIIIOC5-b          | 280             | O-55b               | 15.1          | 0.034         | 330           | 1000     | 14            |
| 0    | VIII-OC-6      | 0           | 5          | VIIIOC6-a          | 281             | O-56a               | 21.1          | 0.051         | 380           | 740      | 16            |
| 0    |                | 5           | 10         | VIIIOC6-b          | 282             | O-56b               | 13.2          | 0.014         | 280           | 500      | 6.5           |
| 0    | IX-OC-1        | 0           | 5          | IXOC1-a            | 317             | O-26a               | 5.0           | 0.64          | 2500          | 1000     | 73            |
| 0    |                | 5           | 15         | IXOC1-b            | 318             | O-26b               | <1.0          | 0.015         | 150           | 85       | 6.0           |
| 0    | IX-OC-2        | 0           | 3          | IXOC2-a            | 319             | O-27a               | 18.1          | 1.8           | 5500          | 2100     | 330           |
| 0    |                | 3           | 10         | IXOC2-b            | 320             | O-27b               | 1.9           | 0.061         | 910           | 140      | 18            |
| 0    |                | 10          | 25         | IXOC2-c            | 321             | O-27c               | 1.7           | 0.037         | 480           | 160      | 12            |
| 0    | IX-OC-3        | 0           | 5          | IXOC3-a            | 322             | O-28a               | 20.2          | 1.3           | 4800          | 1700     | 280           |
| 0    |                | 5           | 10         | IXOC3-b            | 323             | O-28b               | 15.9          | 0.84          | 4900          | 1000     | 180           |
| 0    | IX-OC-4        | 0           | 6          | IXOC4-a            | 324             | O-29a               | 30.6          | 0.61          | 5200          | 1500     | 190           |
| 0    |                | 6           | 15         | IXOC4-b            | 325             | O-29b               | 4.5           | 0.051         | 1100          | 460      | 15            |
| 0    |                | 15          | 20         | IXOC4-c            | 326             | O-29c               | 3.0           | 0.029         | 1200          | 200      | 14            |
| 0    | IX-OC-5        | 0           | 7          | IXOC5-a            | 327             | O-30a               | 26.7          | 0.69          | 920           | 1600     | 140           |
| 0    |                | 7           | 15         | IXOC5-b            | 328             | O-30b               | 8.8           | 0.037         | 1100          | 560      | 16            |
| S    | Stockpile 1    |             |            | Stockpile          | 349             | S-57a               | <1.0          | <0.01         | 33            | 6900     | 1.4           |
| S    | Stockpile 2    |             |            | Stockpile          | 350             | S-57b               | <1.0          | 0.011         | 63            | 9900     | 4.2           |
| S    | Stockpile 3    |             |            | Stockpile          | 351             | S-57c               | <1.0          | 0.17          | 27            | 9800     | 1.0           |
| S    | Stockpile 4    |             |            | Stockpile          | 352             | S-57d               | <1.0          | 0.011         | 26            | 9000     | 1.3           |
| S    | Stockpile 5    |             |            | Stockpile          | 353             | S-57e               | <1.0          | 0.015         | 66            | 2400     | 2.9           |
| w    | I-WL-1         | 0           | 5          | IWL1-a             | 136             | W-86a               | 3.5           | 0.25          | 130           | 1400     | 16.0          |
| w    |                | 5           | 15         | IWL1-b             | 137             | W-86b               | <1.0          | 0.48          | 93            | 470      | 8.9           |
| w    |                | 15          | 30         | IWL1-c             | 138             | W-86c               | <1.0          | 0.018         | 25            | 330      | 1.6           |
| w    |                | 30          | 60         | IWL1-d             | 139             | W-86d               | <1.0          | 0.014         | 14            | <200     | 1.0           |
| w    |                | 60          | 100        | IWL1-e             | 140             | W-86e               | <1.0          | 0.016         | 15            | 200      | 1.2           |
| w    | I-WL-2         | 0           | 5          | IWL2-a             | 46              | W-87a               | 14.6          | 1.5           | 780           | 1700     | 16            |
| w    |                | 5           | 15         | IWL2-b             | 47              | W-87b               | 2.3           | 0.97          | 500           | 1100     | 39            |
| w    |                | 15          | 30         | IWL2-c             | 48              | W-87c               | <1.0          | 0.16          | 80            | 260      | 5.0           |
| w    |                | 30          | 60         | IWL2-d             | 49              | W-87d               | <1.0          | 0.028         | 24            | <200     | 1.3           |
| w    |                | 60          | 100        | IWL2-e             | 50              | W-87e               | <1.0          | 0.018         | 13            | <200     | <1.0          |

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au (µg/<br>g) | As (μg/<br>g) | S (µg/g) | Sb (μg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|---------------|---------------|----------|---------------|
| w    | II-WL-2        | 0           | 5          | IIWL2-a            | 131             | W-88a               | 37.6          | 0.68          | 900           | 6200     | 210           |
| w    |                | 5           | 15         | IIWL2-b            | 132             | W-88b               | 37.8          | 0.12          | 240           | 3500     | 56            |
| w    |                | 15          | 30         | IIWL2-c            | 133             | W-88c               | 3.2           | <0.01         | 110           | 260      | 1.6           |
| W    |                | 30          | 60         | IIWL2-d            | 134             | W-88d               | 1.5           | <0.01         | 39            | <200     | 1.0           |
| W    |                | 60          | 100        | IIWL2-e            | 135             | W-88e               | <1.0          | <0.01         | 21            | <200     | <1.0          |
| w    | III-WL-1       | 0           | 5          | lllWL1-a           | 118             | W-89a               | 5.4           | 2.4           | 1000          | 1500     | 160           |
| w    |                | 5           | 15         | IIIWL1-b           | 119             | W-89b               | 3.55          | 4.4           | 920           | 1300     | 200           |
| w    |                | 15          | 30         | IIIWL1-c           | 93              | W-89c               | 4.2           | 4.0           | 2700          | 3900     | 470           |
| w    |                | 30          | 60         | IIIWL1-d           | 94              | W-89d               | <1.0          | 0.086         | 65            | 260      | 11.0          |
| W    |                | 60          | 100        | IIIWL1-e           | 95              | W-89e               | <1.0          | 0.058         | 62            | 200      | 9.0           |
| w    | IV-WL-1        | 0           | 5          | IVWL1-a            | 12              | W-90a               | 5.0           | 2.1           | 1100          | 420      | 150           |
| w    |                | 5           | 15         | IVWL1-b            | 13              | W-90b               | 1.3           | 0.54          | 250           | <200     | 38            |
| W    |                | 15          | 30         | IVWL1-c            | 14              | W-90c               | 1.1           | 0.13          | 94            | <200     | 8.3           |
| W    |                | 30          | 60         | IVWL1-d            | 15              | W-90d               | <1.0          | 0.17          | 120           | <200     | 10.0          |
| W    |                | 60          | 100        | IVWL1-e            | 16              | W-90e               | <1.0          | 0.11          | 57            | <200     | 4.4           |
| W    | IV-WL-2        | 0           | 5          | IVWL2-a            | 7               | W-91a               | <1.0          | 0.15          | 210           | <200     | 84            |
| W    |                | 5           | 15         | IVWL2-b            | 8               | W-91b               | <1.0          | 0.98          | 1000          | 560      | 270           |
| W    |                | 15          | 30         | IVWL2-c            | 9               | W-91c               | 1.3           | 1.6           | 2800          | 2100     | 800           |
| w    |                | 30          | 60         | IVWL2-d            | 10              | W-91d               | 1.8           | 2.0           | 3400          | 4000     | 1100          |
| W    |                | 60          | 100        | IVWL2-e            | 11              | W-91e               | 2.3           | 0.22          | 1800          | <200     | 1100          |
| w    | IV-WL-3        | 0           | 5          | IVWL3-a            | 96              | W-92a               | 7.8           | 0.019         | 67            | 1300     | 4.8           |
| w    |                | 5           | 15         | IVWL3-b            | 97              | W-92b               | 5.3           | 0.056         | 130           | 760      | <1.0          |
| w    |                | 15          | 30         | IVWL3-c            | 98              | W-92c               | 3.5           | 0.028         | 110           | 660      | 8.3           |
| w    |                | 30          | 60         | IVWL3-d            | 99              | W-92d               | <1.0          | <0.01         | 79            | <200     | 2.0           |
| w    |                | 60          | 100        | IVWL3-e            | 100             | W-92e               | <1.0          | <0.01         | 38            | <200     | 1.0           |
| w    | IV-WL-4        | 0           | 5          | IVWL4-a            | 149             | W-93a               | 5.45          | 0.034         | 260           | 1400     | 14.0          |
| w    |                | 5           | 15         | IVWL4-b            | 150             | W-93b               | 5.0           | 0.040         | 210           | 870      | 10            |
| w    |                | 15          | 30         | IVWL4-c            | 151             | W-93c               | 4.0           | 0.031         | 140           | 490      | 10.0          |
| w    |                | 30          | 60         | IVWL4-d            | 152             | W-93d               | 6.6           | 0.074         | 180           | 670      | 13            |
| w    |                | 60          | 100        | IVWL4-e            | 153             | W-93e               | 3.2           | 0.031         | 160           | 340      | 5.7           |
| w    | IV-WL-5        | 0           | 5          | IVWL5-a            | 339             | W-94a               | 4.0           | 0.023         | 330           | 420      | 4.3           |
| w    |                | 5           | 15         | IVWL5-b            | 340             | W-94b               | 4.3           | 0.030         | 210           | 470      | 4.6           |
| w    |                | 15          | 30         | IVWL5-c            | 341             | W-94c               | 3.2           | 0.029         | 200           | 380      | 4.8           |
| w    |                | 30          | 60         | IVWL5-d            | 342             | W-94d               | 1.2           | <0.01         | 30            | 300      | <1.0          |
| w    |                | 60          | 100        | IVWL5-e            | 343             | W-94e               | 1.4           | <0.01         | 22            | 380      | <1.0          |
| w    | V-WL-1         | 0           | 5          | VWL1-a             | 163             | W-97a               | 41.7          | 0.54          | 810           | 2600     | 160           |
| w    |                | 5           | 15         | VWL1-b             | 164             | W-97b               | 43.3          | 0.099         | 190           | 4200     | 26            |
| w    |                | 15          | 30         | VWL1-c             | 165             | W-97c               | 35.4          | 0.040         | 120           | 5200     | 7.7           |
| w    |                | 30          | 60         | VWL1-d             | 166             | W-97d               | 39.4          | <0.01         | 50            | 5400     | 2.9           |
| W    |                | 60          | 80         | VWL1-e             | 167             | W-97e               | 29.0          | 0.012         | 34            | 4400     | 2.7           |

| ТҮРЕ | Golder<br>site | rom<br>(cm) | to<br>(cm) | Sample<br>(Golder) | Sample<br>(ASU) | Sample<br>(Queen's) | Carbon<br>(%) | Au ( <i>µ</i> g/<br>g) | As (μg/<br>g) | S (µg/g) | Sb (μg/<br>g) |
|------|----------------|-------------|------------|--------------------|-----------------|---------------------|---------------|------------------------|---------------|----------|---------------|
| w    | V-WL-2         | 0           | 5          | VWL2-a             | 168             | W-98a               | 34.8          | 0.045                  | 240           | 12000    | 15            |
| w    |                | 5           | 20         | VWL2-b             | 169             | W-98b               | 7.1           | 0.28                   | 1100          | 1300     | 33            |
| w    |                | 20          | 40         | VWL2-c             | 154             | W-98c               | 35.3          | 0.052                  | 220           | 11000    | 14            |
| [ w  |                | 40          | 70         | VWL2-d             | 155             | W-98d               | 35.2          | 0.029                  | 190           | 9000     | 10.0          |
| W    |                | 70          | 100        | VWL2-e             | 156             | W-98e               | <1.0          | 0.036                  | 8.2           | 220      | <1.0          |
| w    | V-WL-3         | 0           | 10         | VWL3-a             | 157             | W-99a               | 4.9           | 0.11                   | 35            | 1100     | 9.1           |
| w    |                | 10          | 50         | VWL3-b             | 158             | W-99b               | 4.7           | 0.056                  | 29            | 1100     | 3.8           |
| w    |                | 50          | 80         | VWL3-c             | 159             | W-99c               | <1.0          | <0.01                  | 4.9           | <200     | <1.0          |
| W    |                | 80          | 100        | VWL3-d             | 160             | W-99d               | <1.0          | <0.01                  | 5.7           | <200     | <1.0          |
| w    | VI-WL-1A       | 0           | 5          | VIWL1A-a           | 195             | W-100a              | 9.3           | 0.31                   | 1500          | 4300     | 23            |
| W    |                | 5           | 10         | VIWL1A-b           | 196             | W-100b              | 2.5           | 0.16                   | 420           | 2600     | 26            |
| w    | VI-WL-1B       | 0           | 5          | VIWL1B-a           | 197             | W-101a              | 12.0          | 0.21                   | 870           | 6000     | 25            |
| w    |                | 5           | 10         | VIWL1B-b           | 198             | W-101b              | 10.9          | 0.23                   | 1200          | 6200     | 27            |
| W    |                | 10          | 30         | VIWL1B-c           | 199             | W-101c              | 14.0          | 0.33                   | 790           | 4500     | 24            |
| [ w  |                | 30          | 60         | VIWL1B-d           | 200             | W-101d              | 9.7           | 0.039                  | 170           | 2000     | 8.4           |
| W    |                | 60          | 80         | VIWL1B-e           | 201             | W-101e              | 4.9           | 0.014                  | 88            | 1400     | 3.2           |
| w    | VII-WL-1       | 0           | 10         | VIIWL1-a           | 238             | W-102a              | 34.1          | 0.056                  | 260           | 9700     | 11            |
| W    |                | 10          | 30         | VIIWL1-b           | 239             | W-102b              | 40.1          | 0.013                  | 170           | 11000    | 6.4           |
| [ w  |                | 30          | 55         | VIIWL1-c           | 240             | W-102c              | 35.7          | <0.01                  | 45            | 9700     | 2.9           |
| w    |                | 55          | 100        | VIIWL1-d           | 241             | W-102d              | 26.8          | <0.01                  | 30            | 16000    | 2.0           |
| w    | VIII-WL-1      | 0           | 5          | VIIIWL1-a          | 309             | W-103a              | 29.4          | 0.11                   | 94            | 2000     | 11            |
| w    |                | 5           | 15         | VIIIWL1-b          | 310             | W-103b              | 35.2          | <0.01                  | 32            | 3200     | 3.2           |
| W    |                | 15          | 30         | VIIIWL1-c          | 311             | W-103c              | 32.4          | <0.01                  | 40            | 3600     | 1.2           |
| w    |                | 30          | 60         | VIIIWL1-d          | 312             | W-103d              | 34.1          | <0.01                  | 23            | 5600     | 1.0           |
| W    |                | 60          | 100        | VIIIWL1-e          | 313             | W-103e              | <1.0          | <0.01                  | 6.4           | 200      | <1.0          |
| w    | VIII-WL-2      | 0           | 5          | VIIIWL2-a          | 314             | W-104a              | 19.9          | 0.024                  | 41            | 2500     | 10            |
| w    |                | 5           | 15         | VIIIWL2-b          | 315             | W-104b              | 9.4           | <0.01                  | 18            | 760      | 2.0           |
| w    |                | 15          | 30         | VIIIWL2-c          | 316             | W-104c              | 4.5           | <0.01                  | 11            | 400      | <1.0          |
| w    |                | 30          | 60         | VIIIWL2-d          | 306             | W-104d              | 1.2           | <0.01                  | 7.3           | <200     | <1.0          |
| w    |                | 60          | 100        | VIIIWL2-e          | 307             | W-104e              | <1.0          | <0.01                  | 6.2           | <200     | <1.0          |
| w    | IX-WL-1        | 0           | 5          | IXWL1-a            | 32              | W-95a               | 2.0           | 0.74                   | 1500          | 4100     | 120           |
| w    |                | 5           | 15         | IXWL1-b            | 33              | W-95b               | <1.0          | 0.31                   | 690           | 1700     | 64            |
| w    |                | 15          | 30         | IXWL1-c            | 34              | W-95c               | <1.0          | 0.16                   | 220           | 480      | 33            |
| w    |                | 30          | 60         | IXWL1-d            | 35              | W-95d               | <1.0          | 0.040                  | 150           | <200     | 14            |
| w    |                | 60          | 100        | IXWL1-e            | 36              | W-95e               | <1.0          | 0.055                  | 120           | <200     | 12            |
| w    | IX-WL-2        | 0           | 5          | IXWL2-a            | 41              | W-96a               | 5.1           | 0.13                   | 700           | 1300     | 27            |
| w    |                | 5           | 15         | IXWL2-b            | 42              | W-96b               | <1.0          | 0.017                  | 160           | 250      | 6.5           |
| w    |                | 15          | 30         | IXWL2-c            | 43              | W-96c               | <1.0          | <0.01                  | 110           | <200     | 3.0           |
| w    |                | 30          | 60         | IXWL2-d            | 44              | W-96d               | <1.0          | <0.01                  | 19            | <200     | <1.0          |
| W    |                | 60          | 100        | IXWL2-e            | 45              | W-96e               | <1.0          | 0.028                  | 29            | <200     | 1.1           |

# 3.1.1 QA/QC

Complete chemical QA/QC results, including all duplicate analyses, standards, and blanks, can be found in Appendices III, IV, and V (for 30-element, Au, and C, respectively).

# 3.1.1.1 30-element ICP-OES and ICP-MS

ICP-OES and ICP-MS (Sb only) QA/QC results were generally favorable. Twenty-eight blanks were taken alongside the soil analyses. Two blanks had results above detection limit. One had 19  $\mu$ g/g As and another had 2.5  $\mu$ g/g Mg and 58  $\mu$ g/g Fe. The detection limits for ICP-OES are listed below:

| Element            | Ag  | Al | As  | В  | Ba  | Be  | Ca  | Cd  | Со  | Cr  | Cu  | Fe  | K  | Mg | Mn  |
|--------------------|-----|----|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|-----|
| Detection<br>Limit | 2.0 | 50 | 1.0 | 20 | 5.0 | 4.0 | 100 | 1.0 | 5.0 | 20  | 5.0 | 50  | 20 | 20 | 1.0 |
| (µg/g)             |     |    |     |    |     |     |     |     |     |     |     |     |    |    |     |
|                    |     |    |     |    |     |     |     |     |     |     |     |     |    |    |     |
| Element            | Мо  | Na | Ni  | Р  | Pb  | S   | Sb  | Se  | Sn  | Sr  | Ti  | ΤI  | U  | V  | Zn  |
| Detection          |     |    |     |    |     |     |     |     |     |     |     |     |    |    |     |
| Limit              | 2.0 | 75 | 5.0 | 20 | 10  | 200 | 1.0 | 10  | 2.0 | 5.0 | 10  | 1.0 | 10 | 10 | 15  |
| (µg/g)             |     |    |     |    |     |     |     |     |     |     |     |     |    |    |     |

Table 3.2: Detection limits for ICP-OES and ICP-MS analyses

MESS-3 was the standard reference material for this QA/QC. MESS-3 is a marine sediment from the Beaufort Sea produced and certified by the National Research Council of Canada and is appropriate for use when analyzing trace elements. Several elements in MESS-3 have concentrations below the detection limit of the ICP-OES method used. Ag, Cd, Sb, Se, Sn, Tl and U were not observed in MESS-3.

Twenty-eight ICP-OES analyses of MESS-3 were spread out among the test samples for quality control purposes. A close look at arsenic measurements revealed that the measured values deviated from the expected value (18  $\mu$ g/g) by an average of 7.4% with a standard deviation of 7.4%.

Thirty-one sample duplicate analyses were run to check for reproducibility. For As the replicates had an average percent variance of 4.5%. Detailed statistics on variance for each set of sample As duplicates are contained in Table 3.3. Two samples produced percent variance values >10%; one of these samples had extremely low As (<20 µg/g). Given the low sample volume used in analyses (<0.5g) and known heterogeneity of Giant Mine soils, duplicates generally performed well.

| ASU<br>Sample | Golder<br>e Name | Queen's<br>Name | As μg/g (1) | As μg/g (2) | Standard<br>Deviation | Duplicate<br>Mean | % Variance |
|---------------|------------------|-----------------|-------------|-------------|-----------------------|-------------------|------------|
| 4             | IXF4-d           | F-72d           | 190         | 180         | 7.07                  | 185               | 3.82       |
| 20            | IVF3A-b          | F-67b           | 2500        | 2400        | 70.71                 | 2450              | 2.89       |
| 30            | IIIF2-d          | F-64d           | 260         | 240         | 14.14                 | 250               | 5.66       |
| 32            | IXWL1-a          | W-95a           | 1500        | 1600        | 70.71                 | 1550              | 4.56       |

Table 3.3: Sample duplicate variance for As

| ASU<br>Sample | Golder<br>Name | Queen's<br>Name | As μg/g (1) | As μg/g (2) | Standard<br>Deviation | Duplicate<br>Mean | % Variance |
|---------------|----------------|-----------------|-------------|-------------|-----------------------|-------------------|------------|
| 55            | IIF3-e         | F-62e           | 16          | 15          | 0.71                  | 15.5              | 4.56       |
| 64            | IIOC2-b        | O-7b            | 1400        | 1400        | 0                     | 1400              | 0          |
| 71            | IIOC5-b        | O-10b           | 1400        | 1300        | 70.71                 | 1350              | 5.24       |
| 92            | IOC3-a         | O-3a            | 1600        | 1700        | 70.71                 | 1650              | 4.29       |
| 105           | IF2-d          | F-59d           | 180         | 180         | 0                     | 180               | 0          |
| 118           | IIIWL1-a       | W-89a           | 1000        | 990         | 7.07                  | 995               | 0.71       |
| 135           | IIWL2-e        | W-88e           | 23          | 20          | 2.12                  | 21.5              | 9.87       |
| 148           | IVOC4-b        | O-25b           | 4600        | 5600        | 707.11                | 5100              | 13.86      |
| 152           | IVWL4-d        | W-93d           | 180         | 180         | 0                     | 180               | 0          |
| 165           | VWL1-c         | W-97c           | 120         | 120         | 0                     | 120               | 0          |
| 178           | VF2-d          | F-74d           | 22          | 21          | 0.71                  | 21.5              | 3.29       |
| 191           | VOC5-a         | O-35a           | 530         | 600         | 49.5                  | 565               | 8.76       |
| 204           | VIF4-a         | F-78a           | 67          | 68          | 0.71                  | 67.5              | 1.05       |
| 209           | VIOC1-a        | O-37a           | 730         | 680         | 35.36                 | 705               | 5.01       |
| 216           | VIF3-a         | F-77a           | 610         | 540         | 49.5                  | 575               | 8.61       |
| 222           | VIF1-a         | F-75a           | 220         | 220         | 0                     | 220               | 0          |
| 228           | VIF2-b         | F-76b           | 390         | 350         | 28.28                 | 370               | 7.64       |
| 233           | VIOC5-a        | O-41a           | 730         | 760         | 21.21                 | 745               | 2.85       |
| 240           | VIIWL1-c       | W-102c          | 47          | 43          | 2.83                  | 45                | 6.29       |
| 246           | VIIF1-b        | F-79b           | 41          | 46          | 3.54                  | 43.5              | 8.13       |
| 252           | VIIF2-c        | F-80c           | 26          | 27          | 0.71                  | 26.5              | 2.67       |
| 265           | VIIOC8-a       | O-49a           | 50          | 52          | 1.41                  | 51                | 2.77       |
| 278           | VIIIF3-d       | F-83d           | 14          | 14          | 0                     | 14                | 0          |
| 291           | VIIIOC2-b      | O-52b           | 51          | 52          | 0.71                  | 51.5              | 1.37       |
| 304           | VIIIF5-c       | F-85c           | 11          | 16          | 3.54                  | 13.5              | 26.19      |
| 327           | IXOC5-a        | O-30a           | 940         | 910         | 21.21                 | 925               | 2.29       |
| 340           | IVWL5-b        | W-94b           | 210         | 210         | 0                     | 210               | 0          |
| 359           | IIIF1-d        | F-63d           | 76          | 76          | 0                     | 76                | 0          |

Percent variance was calculated by dividing the standard deviation by the sample mean, and multiplying by 100. It is a measure of how much duplicate samples differ from one another.

While samples with very high As concentrations had to be diluted for analysis (see section 2) and as a result only have two significant figures, QA/QC results suggest that data accuracy quality for As is generally good. See Appendix III for complete results.

# 3.1.1.2 ICP-MS gold

ICP-MS Gold measurement was done by ICP-MS. 28 blanks were alongside the soil analyses. All blanks were below detection limit of 0.01  $\mu$ g/g.

DS-1 was the standard reference material for gold analyses QA/QC. DS-1 is a gold ore from the Deep Star mine in Nevada, USA, certified by the National Research Council of Canada, and is appropriate for

use when analyzing gold. Thirty-four measurements of DS-1 were taken. The average for the measurements was 29  $\mu$ g/g with a standard deviation of 2.9  $\mu$ g/g. The accepted value for the reference material was 28  $\mu$ g/g. Thirty-one duplicates sets of samples were run to check for reproducibility. Nine sets were below detection limit. The remaining 22 duplicate sets above detection had an average percent difference of 18.9%.

The ASU staff communicated that they observed excellent stability for Au over the course of the project, even with sub ppb standards. Sensitivity and stability were also excellent even when running the instrument in maximum HMI (high matrix introduction - gas dilution mode). There was likely one instance of a gold sample going over the linear calibration range (ASU sample 002 at site IXF4). However, checks of low-weight digests of DS-1 for low ppb level stability and recovery indicate that these should not have ben problematic. The high Au sample was analyzed via FAAS instead of being diluted and re-run on ICP-MS, however, the FAAS result was within a few percentage points of the over range estimate of the ICP-MS.

See Appendix IV for complete QA/QC results.

## 3.1.1.3 Carbon

Carbon analysis QA/QC included 12 blanks, 13 soil controls, and 13 orchard leaves controls. All blanks reported C% values below detection (1%), Soil controls (target 12.3% C) returned a mean value of 12.5%, with a standard deviation of 0.4 and a %CV of 3.5%. The orchard leaves control (target 51.4% C) returned a mean value of 53.98%, with a standard deviation of 2.75 and a %CV of 5.09%.

Duplicate analyses were completed for 49 samples; of these samples, one was analyzed in triplicate, and one in quadruplicate. Percent co-variance results ranged widely. While range of %CV values present is very wide (0-111%), most values fell below 12%. This is slightly higher than the control %CV measurements and is likely an artifact of sometimes heterogenous soils. The quadruplicate sample provides a good illustration of sample heterogeneity: it yielded a %CV of 28%, with carbon results from 5%-9%. The two outlier duplicates (%CV of 109% and 111% for samples with carbon % 3-24% and 4-33%, respectively) were both the top horizons their sample sites, and were described during the drying process as being very organic-rich and heterogenous. These descriptions are supported by sample photos. Results for duplicate carbon analysis, including statistical calculations, are reported in Appendix V.

# 3.1.2 Arsenic concentration variation with depth

For most samples, As concentration decreases with depth. Arsenic concentrations below 30cm depth typically decrease dramatically compared to the more surface-proximal soils (see Figure 3.2). Outcrop samples in particular dominate the high As samples (Figure 3.2, 3.3).



#### ARSENIC CONCENTRATION vs. SAMPLE MID-POINT DEPTH, ALL SAMPLES

Figure 3.2: Arsenic concentration variation with sample depth and location type for all samples

When viewing a breakdown of As concentrations in each soil horizon for individual samples, several exceptions to the general trend of decreasing As concentration with depth emerge (Figure 3.3). These sample locations (viewed in Figure 2.1) are all located near known areas of disturbed soil or in suspicious proximity to roads (IIML1, IVWL2, VWL2, IXF4, VIF2).

Figure 3.3 (next page): Soil horizons labeled A through F correspond to the relative depth of samples to one another at each sample site, not necessarily to a defined depth. In general samplers chose to sample at 0-5cm, 5-15cm, 15-30cm, 30-60cm, and 60-100cm, however there is variation amongst sample sites. For example, often the A horizon corresponds to the 0-5cm depth but for some samples it is actually 0-3cm, 2-7cm, or 0-10cm. See Table 3.1 and Appendix I for exact information on sample interval width.

Panel (A) shows all forest sites, panel (B) shows wetland sites, and panel (C)shows outcrop soil sites.



# 3.2 Mineral Liberation Analysis (MLA) and Scanning Electron Microscopy (SEM)

# 3.2.1 MLA QA/QC

The final MLA analysis protocol proved to be excellent at finding As<sub>2</sub>O<sub>3</sub>. Confidence in the accuracy of the As results for each sample was assured by manually checking a portion of all the different As hosts in all runs. Grains that fell across MLA frame boundaries present an issue for the accuracy of the grain count measurement, as it was impractical for this project to join them together (see example in Figure 3.4). A slight beam shift issue with the SEM has also resulted in slight inaccuracies of a few pixels for grains across frame boundaries. This is not expected to affect the accuracy of the data.

All As phases apart from As<sub>2</sub>O<sub>3</sub>, As sulfide, and arsenopyrite, which all have defined chemical compositions, had As levels in EDS spectra that varied qualitatively. Electron microprobe analysis would be necessary to more firmly delineate the range of As concentrations present in the phases without defined chemical compositions. The maximum As concentration in these phases is expected to be less than 10%. Please note that accuracy for the identification of individual silicate minerals and other gangue minerals is not as high as for As minerals, since the MLA was not optimized for this application in this project. Arsenic-bearing phases were the only phases checked in detail for all samples during QA/QC.

# 3.2.1.1 Duplicate analysis

In terms of the representativity of MLA results, duplicate analysis has quantitatively proven the macroscale heterogeneity observed in the sample preparation process, as well as earlier observations on Giant soils (i.e., Bromstad 2011, Wrye 2008), extends to the micron scale. Heterogeneity is not surprising given agglomeration, irregularly shaped organic matter, and the fact that most MLA maps only covered an area of roughly 12,000 x 15,000 pixels (approximately 10,240 x 12,800  $\mu$ m), or roughly ½ to ½ of the surface of the grain mount (barring those from density checks). See Table 3.4 and further tables in Appendix X for covariance statistics on duplicate grain mounts. Values over 50% are highlighted.

| Gold                   |             | As                          | As <sub>2</sub> O <sub>3</sub> |            |              |             | Arsenopyrite  |            |             |            | As sulfide    |            |                 |                |
|------------------------|-------------|-----------------------------|--------------------------------|------------|--------------|-------------|---------------|------------|-------------|------------|---------------|------------|-----------------|----------------|
| Gold<br>er_ho<br>rizon | Sam-<br>ple | μg/g<br>(mea<br>s-<br>ured) | area<br>(µm²)                  | grai<br>ns | As;<br>Varia | ₂O₃<br>nce% | area<br>(µm²) | grain<br>s | As<br>Varia | py<br>nce% | area<br>(µm²) | grain<br>s | As Sı<br>Variai | ulfide<br>nce% |
| IVWL                   | 010<br>dup  | 3400                        | 200.6                          | 7          | area         | 66.1        | 10359         | 883        | area        | 2.6        | 22.5          | 6          | area            | 7.1            |
| 2-0                    | 10          | 3400                        | 72.8                           | 3          | grains       | 56.6        | 9983          | 697        | grains      | 16.6       | 20.3          | 4          | grains          | 28.3           |
| IIIF2-                 | 028<br>dup  | 840                         | 3497.9                         | 23         | area         | 23.8        | 244.6         | 1          | area        | 141.4      | 0.0           | 0          | area            | 0.0            |
| D                      | 28          | 840                         | 4915.5                         | 38         | grains       | 34.8        | 0.0           | 0          | grains      | 141.4      | 0.0           | 0          | grains          | 0.0            |
| IIOC5                  | 070_1       | 17000                       | 110298                         | 2259       | area         | 5.6         | 265.0         | 4          | area        | 32.7       | 0.0           | 0          | area            | 0.0            |
| -а                     | 70          | 17000                       | 119404                         | 1765       | grains       | 17.4        | 424.5         | 8          | grains      | 47.1       | 0.0           | 0          | grains          | 0.0            |
| IIOC5                  | 071<br>redo | 1300                        | 1306.2                         | 32         | area         | 86.8        | 135.4         | 1          | area        | 141.4      | 0.0           | 0          | area            | 0.0            |

Table 3.4: Percent variance statistics for As<sub>2</sub>O<sub>3</sub>, arsenopyrite, and arsenic sulfide in GXMAP runs

| Gold<br>er_ho<br>rizon                                                                                                                                                                                                                                                                                      | Sam-<br>ple                     | As<br>μg/g<br>(mea<br>s-<br>ured) | As <sub>2</sub> O <sub>3</sub> |            |              |             | Arsenopyrite                         |     |            |               | As sulfide |                         |        |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|--------------------------------|------------|--------------|-------------|--------------------------------------|-----|------------|---------------|------------|-------------------------|--------|------|
|                                                                                                                                                                                                                                                                                                             |                                 |                                   | area<br>(µm²)                  | grai<br>ns | As;<br>Varia | ₂O₃<br>nce% | area grain Aspy<br>(μm²) s Variance% |     | py<br>nce% | area<br>(µm²) | grain<br>s | As Sulfide<br>Variance% |        |      |
| -0                                                                                                                                                                                                                                                                                                          | 071_1                           | 1300                              | 5452.9                         | 94         | grains       | 69.6        | 0.0                                  | 0   | grains     | 141.4         | 0.0        | 0                       | grains | 0.0  |
| IIOC1<br>1-b                                                                                                                                                                                                                                                                                                | 086<br>dup                      | 7800                              | 7975.8                         | 121        | area         | 35.9        | 0.0                                  | 0   | area       | 0.0           | 0.0        | 0                       | area   | 0.0  |
|                                                                                                                                                                                                                                                                                                             | 86                              | 7800                              | 13408                          | 235        | grains       | 45.3        | 0.0                                  | 0   | grains     | 0.0           | 0.0        | 0                       | grains | 0.0  |
| IIIOC<br>2-b                                                                                                                                                                                                                                                                                                | 123<br>dup                      | 1300                              | 1876.4                         | 45         | area         | 99.9        | 63.3                                 | 1   | area       | 141.4         | 0.0        | 0                       | area   | 0.0  |
|                                                                                                                                                                                                                                                                                                             | 123                             | 1300                              | 322.6                          | 11         | grains       | 85.9        | 0.0                                  | 0   | grains     | 141.4         | 0.0        | 0                       | grains | 0.0  |
| IVOC<br>4-b                                                                                                                                                                                                                                                                                                 | 148<br>dup                      | 5100                              | 2191.6                         | 16         | area         | 133.2       | 52.4                                 | 3   | area       | 141.4         | 0.0        | 0                       | area   | 0.0  |
|                                                                                                                                                                                                                                                                                                             | 148                             | 5100                              | 65.5                           | 8          | grains       | 47.1        | 0.0                                  | 0   | grains     | 141.4         | 0.0        | 0                       | grains | 0.0  |
| VWL2<br>-b                                                                                                                                                                                                                                                                                                  | 169<br>dup                      | 1100                              | 40.0                           | 7          | area         | 62.5        | 109.2                                | 2   | area       | 137.8         | 0.0        | 0                       | area   | 0.0  |
|                                                                                                                                                                                                                                                                                                             | 169                             | 1100                              | 103.4                          | 6          | grains       | 10.9        | 8534                                 | 90  | grains     | 135.3         | 0.0        | 0                       | grains | 0.0  |
| VIWL<br>1A-b                                                                                                                                                                                                                                                                                                | 196<br>dup                      | 420                               | 0.0                            | 0          | area         | 0.0         | 11337                                | 70  | area       | 43.0          | 166.7      | 31                      | area   | 30.5 |
|                                                                                                                                                                                                                                                                                                             | 196                             | 420                               | 0.0                            | 0          | grains       | 0.0         | 6047                                 | 106 | grains     | 28.9          | 258.5      | 32                      | grains | 2.2  |
| VIOC<br>4-b                                                                                                                                                                                                                                                                                                 | 203                             | 1300                              | 2.9                            | 1          | area         | 134.7       | 2.9                                  | 1   | area       | 130.5         | 0.0        | 0                       | area   | 0.0  |
|                                                                                                                                                                                                                                                                                                             | 203<br>dup<br>**XB<br>SEST<br>D | 1300                              | 120.1                          | 2          | grains       | 47.1        | 72.8                                 | 1   | grains     | 0.0           | 0.0        | 0                       | grains | 0.0  |
| The largest percent variance statistics usually correspond to samples with the smallest surface areas and amounts of grains. Middling to poor variance percents throughout much of the data set (when values are greater than 0-1) is indicative of sample heterogeneity and the nugget effect in As hosts. |                                 |                                   |                                |            |              |             |                                      |     |            |               |            |                         |        |      |

Table 3.4 and Appendix X clearly demonstrate the at times extreme differences in presence of As phases for the same sample. Samples with less than 100 grains of either As<sub>2</sub>O<sub>3</sub> or arsenopyrite had notably worse repeatability and increased nugget effect. Gangue mineral covariance tended to fare better for the most part, likely because gangue minerals usually make up larger proportions of each sample than As hosts, meaning any differences between duplicates are usually smaller relative to the total amount of the gangue mineral. Gangue minerals only produced large covariance statistics for samples with low area percent measurements, with the exception of organics, which tended to have poorer repeatability between duplicates.

Sample 148 (IV-OC-4b) has exhibited extreme variation in As for both its MLA and ASU chemical analysis duplicates. Table 3.3 details the 1000  $\mu$ g/g spread between the chemical analysis duplicates. Upon examination with the SEM, this sample appears to be a good example of the extreme nugget effect for As<sub>2</sub>O<sub>3</sub> (See Figure 3.4).



# 3.2.1.2 Density mounts

Specialized mounts were constructed for samples 10, 72, 86, and 148 to evaluate whether particle settling introduces a bias to the Giant Mine soils MLA analysis. These samples were also part of the duplicate

grain mount set so there is a wealth of data to compare. There were not enough major As hosts present in the cross-sectional density mounts to evaluate whether a trend exists for As settling. The As<sub>2</sub>O<sub>3</sub> grains that were observed were in a variety of locations, suggesting that there may possibly be no significant particle settling for this phase.

Trends observed in GXMAP density data for gangue phases may be discerned from the data in Table 3.5. For carbonates, sample 10 (the only sample with over 1% area combined carbonate minerals) shows a slight over-representation of carbonate minerals in the cross-sectional mounts. The most noticeable trend for silicates is a slight under-representation in cross section for samples 10 and 72. For organics the most noticeable trend is a slight over-representation in cross-section. If these trends have any significance, they may indicate that density separation is occurring, although it appears to be a minor issue.

| Site     | Sample  | As µg/g | Silicate<br>gangue | carbonate<br>gangue | oxide<br>gangue | sulfide<br>gangue | phosphate<br>gangue | organic   |
|----------|---------|---------|--------------------|---------------------|-----------------|-------------------|---------------------|-----------|
| IVWL2-d  | 10      | 3400    | 86.971846          | 7.906223            | 0.764651        | 0.283631          | 0.077829            | 1.438021  |
| IVWL2-d  | 010 D   | 3400    | 86.719438          | 7.478307            | 0.772708        | 0.26519           | 0.071161            | 1.520857  |
| IVWL2-d  | 010 DX  | 3400    | 79.155771          | 11.876419           | 0.849219        | 0.246313          | 0.08781             | 2.086627  |
| IVWL2-d  | 010 DX  | 3400    | 81.483913          | 8.56509             | 0.914424        | 0.293645          | 0.115824            | 2.387084  |
| IVWL2-d  | 010 dup | 3400    | 88.716308          | 6.108979            | 0.631738        | 0.227272          | 0.073098            | 1.432565  |
| IIOC5-c  | 72      | 2000    | 98.270564          | 0.009811            | 0.214636        | 0.000472          | 0.034472            | 0.209726  |
| IIOC5-c  | 072 D   | 2000    | 97.05681           | 0.003459            | 0.205314        | 0.00004           | 0.03762             | 0.570087  |
| IIOC5-c  | 072 DX  | 2000    | 90.942517          | 0.080054            | 0.235023        | 0.000273          | 0.018121            | 1.459504  |
| IIOC5-c  | 072 DX  | 2000    | 93.314024          | 0.054057            | 0.297409        | 0                 | 0.054932            | 0.845685  |
| llOC11-b | 86      | 7800    | 63.874237          | 0.008251            | 1.196031        | 0.001913          | 0.010241            | 20.287931 |
| llOC11-b | 086 D   | 7800    | 73.021399          | 0.006603            | 0.777095        | 0.007588          | 0.005513            | 3.439294  |
| llOC11-b | 086 DX  | 7800    | 82.083348          | 0.082225            | 0.629633        | 0.000146          | 0.000512            | 4.725133  |
| llOC11-b | 086 DX  | 7800    | 77.848638          | 0.112721            | 0.633768        | 0.00218           | 0.007977            | 5.759226  |
| IIOC11-b | 086 dup | 7800    | 90.8051            | 0.002149            | 0.726834        | 0.000883          | 0.002951            | 5.566463  |
| IVOC4-b  | 148     | 5100    | 74.299719          | 0.007713            | 8.424679        | 0.000322          | 0.016841            | 4.044177  |
| IVOC4-b  | 148 D   | 5100    | 72.133062          | 0.002583            | 0.511844        | 0.001049          | 0.003233            | 6.093794  |
| IVOC4-b  | 148 DX  | 5100    | 81.066098          | 0.031479            | 0.355611        | 0.000722          | 0.016049            | 7.540637  |
| IVOC4-b  | 148 DX  | 5100    | 77.026299          | 0.073787            | 0.649819        | 0.012871          | 0.007481            | 9.562115  |
| IVOC4-b  | 148 dup | 5100    | 87.377352          | 0.054312            | 0.796251        | 0.001545          | 0.013051            | 3.243659  |

Table 3.5: Density mount statistics for gangue mineral area % modal mineralogy

Cross-sectional density mounts are highlighted in gray. Plan view density mounts are marked with a "D" and crosssectional ones with "DX." The main different between "D" mounts and the normal sample and duplicate mounts included in this table are that the "D" mounts have a much smaller surface area, and so the GXMAP scan was done over a smaller area.

Images of density cross-section samples visually indicate a slight trend in grains orienting parallel to the sample mount surface. Both this effect and the slight differences in modal mineralogy discussed above suggest that while there is some particle settling in grain mounts, it is likely minor, and it is probably kept at manageable levels by the cycles of stirring during sample preparation. In terms of As hosts and particle settling, it is possible that the association of  $As_2O_3$  with organics could be compared somewhat to the behavior of organics in density cross-section for samples high in organics, but this is impossible to evaluate at this time. Evaluating the effect of density segregation on  $As_2O_3$  may be possible if using the most  $As_2O_3$ -rich samples, in order to compensate for the relative scarcity of  $As_2O_3$  grains observed in density cross-sections so far, and obtain more statistically significant results.



**Figure 3.5: Arsenopyrite liberation.** All photos in this figure are from sample 197. (**A**) shows arsenopyrite grains confined within a quartz-carbonate nodule (BSE left, MLA classified right). (**B**) shows a free-floating arsenopyrite grain stuck to a clump of mixed organics and other particles that the MLA recognizes as being confined (BSE left, MLA classified right). See Table 2.5 for MLA legend.







FINAL REPORT: CHARACTERIZATION OF SOIL SAMPLES AT GIANT MINE, NWT (2014 Regional Sampling)
#### 3.2.1.3 Mineral liberation

Various issues arising from clumping and agglomeration of particles in Giant Mine soils have been discussed elsewhere in this report. One further issue is the use of MLA software for grain liberation analysis for As mineral hosts. In this specific case, use of the mineral liberation feature is not recommended for As hosts. Arsenic trioxide is a roaster-derived product at Giant, so in its original form it is already liberated. Analysis of SEM photographs confirms that while As<sub>2</sub>O<sub>3</sub> sometimes appears to cling to clusters of organics and other particles, it is not sequestered or encapsulated within another phase. MLA analysis would not recognize this because of clumping issues. Arsenopyrite is also affected by clumping in this instance: arsenopyrite in mixed phase clumps and arsenopyrite encapsulated in carbonate/silicate rock appear the same to the MLA in terms of liberation, while in reality only the clumped arsenopyrite is actually liberated (Figure 3.5).

#### 3.2.2 Arsenic modal mineralogy

#### 3.2.2.1 Presence of As<sub>2</sub>O<sub>3</sub>

While As<sub>2</sub>O<sub>3</sub> was not found in all MLA samples, it was found at all MLA sample sites except one. However, the MLA site without As<sub>2</sub>O<sub>3</sub> was directly adjacent (at the same GPS coordinates) to a site that did have As<sub>2</sub>O<sub>3</sub> (VI-WL-1A and VI-WL-1B, respectively). Information on samples with As<sub>2</sub>O<sub>3</sub> can be found in Table 3.6, as well as a scaled-up calculation for how many mm<sup>2</sup> As<sub>2</sub>O<sub>3</sub> would be present on the surface of a 100cm<sup>2</sup> area section of soil for each sample. This calculation is meant to frame As<sub>2</sub>O<sub>3</sub> modal mineralogy area % results in terms more relatable to practical human health and risk assessment issues. Values greater than 4mm<sup>2</sup> As<sub>2</sub>O<sub>3</sub> (in 100cm<sup>2</sup> surface area of soil) are highlighted in red.

| Site    | As <sub>2</sub> O <sub>3</sub><br>pre-<br>sent? | Golder<br>sample<br>name | Sample      | MLA<br>run<br>type | As μg/<br>g<br>(meas<br>ured) | As₂O₃<br>grains | Area<br>(µm2)<br>per<br>grain | As₂O₃<br>area % | Surface area<br>(in mm <sup>2</sup> ) of<br>As <sub>2</sub> O <sub>3</sub> pre-<br>sent in a<br>100cm <sup>2</sup> soil<br>film |
|---------|-------------------------------------------------|--------------------------|-------------|--------------------|-------------------------------|-----------------|-------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
|         | YES                                             | IXF4-b                   | 2           | GXMAP              | 3600                          | 17              | 20.52                         | 0.00071         | 0.07                                                                                                                            |
| 17-1-4  | YES                                             | IXF4-c                   | 3           | GXMAP              | 600                           | 6               | 8.65                          | 0.00012         | 0.01                                                                                                                            |
|         | YES                                             | IVWL2-b                  | 8           | GXMAP              | 1000                          | 1               | 1.46                          | 3E-06           | 0.00                                                                                                                            |
|         | no                                              | IVWL2-c                  | 9           | GXMAP              | 2800                          | 0               | 0                             | 0               | 0.00                                                                                                                            |
| IV-WL-2 | YES                                             | IVWL2-d                  | 10          | GXMAP              | 3400                          | 3               | 24.25                         | 0.00024         | 0.02                                                                                                                            |
|         | YES                                             | IVWL2-d                  | 010 dup     | GXMAP              | 3400                          | 7               | 28.66                         | 0.0005          | 0.05                                                                                                                            |
|         | YES                                             | IVWL2-e                  | 11          | GXMAP              | 1800                          | 48              | 7.01                          | 0.0009          | 0.09                                                                                                                            |
|         | YES                                             | IVOC1-a                  | 17          | GXMAP              | 7000                          | 111             | 140.51                        | 0.04605         | 4.60                                                                                                                            |
| 10-00-1 | YES                                             | IVOC1-b                  | 18          | GXMAP              | 5400                          | 10              | 124.87                        | 0.00307         | 0.31                                                                                                                            |
|         | YES                                             | IIIF2-a                  | 27          | GXMAP              | 1500                          | 94              | 285.03                        | 0.06232         | 6.23                                                                                                                            |
| IV-F-2  | YES                                             | IIIF2-b                  | 28          | GXMAP              | 840                           | 38              | 129.36                        | 0.0114          | 1.14                                                                                                                            |
|         | YES                                             | IIIF2-b                  | 028 dup     | GXMAP              | 840                           | 23              | 152.08                        | 0.00795         | 0.80                                                                                                                            |
|         | YES                                             | llOC5-a                  | 70          | GXMAP              | 17000                         | 1765            | 67.65                         | 0.52469         | 52.47                                                                                                                           |
|         | YES                                             | IIOC5-a                  | 070_1       | GXMAP              | 17000                         | 2259            | 48.83                         | 0.61587         | 61.59                                                                                                                           |
| II-OC-5 | YES                                             | IIOC5-b                  | 071<br>redo | GXMAP              | 1300                          | 32              | 40.82                         | 0.00317         | 0.32                                                                                                                            |
|         | YES                                             | IIOC5-b                  | 071_1       | GXMAP              | 1300                          | 94              | 58.01                         | 0.01723         | 1.72                                                                                                                            |
|         | YES                                             | IIOC5-c                  | 72          | GXMAP              | 2000                          | 2               | 8.01                          | 3.2E-05         | 0.00                                                                                                                            |
|         | YES                                             | IIOC9-a                  | 80          | GXMAP              | 1400                          | 92              | 37.12                         | 0.01558         | 1.56                                                                                                                            |
| II-OC-9 | no                                              | IIOC9-b                  | 81_2        | GXMAP              | 2400                          | 0               | 0                             | 0               | 0                                                                                                                               |
|         | no                                              | IIOC9-c                  | 82          | GXMAP              | 2400                          | 0               | 0                             | 0               | 0.00                                                                                                                            |

Table 3.6: Arsenic trioxide in MLA samples

| Site     | As <sub>2</sub> O <sub>3</sub><br>pre-<br>sent? | Golder<br>sample<br>name | Sample  | MLA<br>run<br>type | As μg/<br>g<br>(meas<br>ured) | As <sub>2</sub> O <sub>3</sub><br>grains | Area<br>(µm2)<br>per<br>grain | As₂O₃<br>area % | Surface area<br>(in mm²) of<br>As <sub>2</sub> O <sub>3</sub> pre-<br>sent in a<br>100cm² soil<br>film |
|----------|-------------------------------------------------|--------------------------|---------|--------------------|-------------------------------|------------------------------------------|-------------------------------|-----------------|--------------------------------------------------------------------------------------------------------|
|          | YES                                             | llOC10-a                 | 83      | GXMAP              | 16000                         | 383                                      | 162.58                        | 0.14695         | 14.70                                                                                                  |
| II-OC-10 | YES                                             | IIOC10-b                 | 84      | GXMAP              | 7200                          | 16                                       | 78.77                         | 0.00268         | 0.27                                                                                                   |
|          | YES                                             | llOC11-a                 | 85      | GXMAP              | 11000                         | 484                                      | 67.43                         | 0.16417         | 16.42                                                                                                  |
| II-OC-11 | YES                                             | IIOC11-b                 | 86      | GXMAP              | 7800                          | 235                                      | 57.06                         | 0.03151         | 3.15                                                                                                   |
|          | YES                                             | IIOC11-b                 | 086 dup | GXMAP              | 7800                          | 121                                      | 65.92                         | 0.0232          | 2.32                                                                                                   |
|          | YES                                             | IIIWL1-a                 | 118     | GXMAP              | 1000                          | 7                                        | 51.38                         | 0.00121         | 0.12                                                                                                   |
| III-WL-1 | YES                                             | IIIWL1-b                 | 119     | GXMAP              | 920                           | 13                                       | 7.84                          | 0.0002          | 0.02                                                                                                   |
|          | YES                                             | IIIWL1-c                 | 93      | GXMAP              | 2700                          | 61                                       | 13.02                         | 0.00249         | 0.25                                                                                                   |
|          | YES                                             | IIIOC2-a                 | 122     | GXMAP              | 3200                          | 1041                                     | 32.59                         | 0.08945         | 8.94                                                                                                   |
| III-OC-2 | YES                                             | IIIOC2-b                 | 123     | GXMAP              | 1300                          | 11                                       | 29.32                         | 0.00054         | 0.05                                                                                                   |
|          | YES                                             | IIIOC2-b                 | 123 dup | GXMAP              | 1300                          | 45                                       | 41.7                          | 0.00319         | 0.32                                                                                                   |
|          | YES                                             | IIIOC5-a                 | 124     | GXMAP              | 3200                          | 15                                       | 35.58                         | 0.00138         | 0.14                                                                                                   |
| III-0C-5 | YES                                             | IIIOC5-b                 | 125     | GXMAP              | 4100                          | 1                                        | 47.33                         | 0.00015         | 0.02                                                                                                   |
|          | YES                                             | IVOC4-a                  | 147     | GXMAP              | 4800                          | 132                                      | 63.17                         | 0.04863         | 4.86                                                                                                   |
| IV-OC-4  | YES                                             | IVOC4-b                  | 148     | GXMAP              | 5100                          | 8                                        | 8.19                          | 0.00017         | 0.02                                                                                                   |
|          | YES                                             | IVOC4-b                  | 148 dup | GXMAP              | 5100                          | 16                                       | 136.98                        | 0.00718         | 0.72                                                                                                   |
|          | YES                                             | VWL2-b                   | 169     | GXMAP              | 1100                          | 6                                        | 17.23                         | 0.00029         | 0.03                                                                                                   |
| V-VVL-2  | YES                                             | VWL2-b                   | 169 dup | GXMAP              | 1100                          | 7                                        | 5.72                          | 0.00012         | 0.01                                                                                                   |
| V 00 1   | YES                                             | VOC1-a                   | 179     | GXMAP              | 1400                          | 12                                       | 24.88                         | 0.0007          | 0.07                                                                                                   |
| V-0C-1   | no                                              | VOC1-b                   | 180     | GXMAP              | 570                           | 0                                        | 0                             | 0               | 0.00                                                                                                   |
| V-OC-2   | YES                                             | VOC2-a                   | 181     | GXMAP              | 3600                          | 70                                       | 16.2                          | 0.00539         | 0.54                                                                                                   |
|          | no                                              | VIWL1A-a                 | 195     | GXMAP              | 1500                          | 0                                        | 0                             | 0               | 0.00                                                                                                   |
| VI-WL-1A | no                                              | VIWL1A-b                 | 196     | GXMAP              | 420                           | 0                                        | 0                             | 0               | 0.00                                                                                                   |
|          | no                                              | VIWL1A-b                 | 196 dup | GXMAP              | 420                           | 0                                        | 0                             | 0               | 0.00                                                                                                   |
|          | YES                                             | VIWL1B-a                 | 197     | GXMAP              | 870                           | 5                                        | 11.5                          | 0.00014         | 0.01                                                                                                   |
| VI-WL-1B | YES                                             | VIWL1B-b                 | 198     | GXMAP              | 1200                          | 6                                        | 13.59                         | 0.00016         | 0.02                                                                                                   |
|          |                                                 | VIWL1B-c                 | 199     | GXMAP              | 790                           | 0                                        | 0                             | 0               | 0.00                                                                                                   |
|          | YES                                             | VIOC4-a                  | 202     | GXMAP              | 1200                          | 33                                       | 13.42                         | 0.00131         | 0.13                                                                                                   |
| VI-0C-4  | YES                                             | VIOC4-b                  | 203     | GXMAP              | 1300                          | 1                                        | 2.91                          | 7E-06           | 0.00                                                                                                   |

| Site      | As <sub>2</sub> O <sub>3</sub><br>pre-<br>sent? | Golder<br>sample<br>name | Sample  | MLA<br>run<br>type | As μg/<br>g<br>(meas<br>ured) | As <sub>2</sub> O <sub>3</sub><br>grains | Area<br>(µm2)<br>per<br>grain | As <sub>2</sub> O <sub>3</sub><br>area % | Surface area<br>(in mm <sup>2</sup> ) of<br>As <sub>2</sub> O <sub>3</sub> pre-<br>sent in a<br>100cm <sup>2</sup> soil<br>film |
|-----------|-------------------------------------------------|--------------------------|---------|--------------------|-------------------------------|------------------------------------------|-------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|           | YES                                             | VIOC4-b                  | 203 dup | XBSE_<br>STD       | 1300                          | 2                                        |                               | 0.00031                                  | 0.03                                                                                                                            |
|           | YES                                             | VIIIOC4-a                | 295     | GXMAP              | 840                           | 89                                       | 26.97                         | 0.01028                                  | 1.03                                                                                                                            |
| VIII-OC-4 | YES                                             | VIIIOC4-b                | 296     | GXMAP              | 370                           | 3                                        | 22.33                         | 0.00022                                  | 0.02                                                                                                                            |
|           | YES                                             | IXOC2-a                  | 319     | GXMAP              | 5500                          | 437                                      | 118.49                        | 0.12977                                  | 12.98                                                                                                                           |
| 1X-00-2   | YES                                             | IXOC2-b                  | 320     | GXMAP              | 910                           | 17                                       | 188.2                         | 0.0051                                   | 0.51                                                                                                                            |
|           | YES                                             | IXOC4-a                  | 324 dup | GXMAP              | 5200                          | 293                                      | 92.35                         | 0.164                                    | 16.40                                                                                                                           |
| 12-00-4   | YES                                             | IXOC4-a                  | 324     | GXMAP              | 5200                          | 322                                      | 97.2                          | 0.25227                                  | 25.23                                                                                                                           |
| 17-00-4   | YES                                             | IXOC4-b                  | 325     | GXMAP              | 1100                          | 17                                       | 30.15                         | 0.00194                                  | 0.19                                                                                                                            |
|           | YES                                             | IXOC4-c                  | 326     | GXMAP              | 1200                          | 5                                        | 3.06                          | 4.2E-05                                  | 0.00                                                                                                                            |
|           | YES                                             | IVF2-a                   | 344     | GXMAP              | 1700                          | 947                                      | 28.14                         | 0.28359                                  | 28.36                                                                                                                           |
| 10-6-5    | YES                                             | IVF2-b                   | 345     | GXMAP              | 1300                          | 260                                      | 30.38                         | 0.05397                                  | 5.40                                                                                                                            |
|           | YES                                             | IIIOC8-a                 | 354 dup | GXMAP              | 630                           | 2                                        | 5.46                          | 3.2E-05                                  | 0.00                                                                                                                            |
| 111-00-8  | no                                              | IIIOC8-a                 | 354     | GXMAP              | 630                           | 0                                        | 0                             | 0                                        | 0.00                                                                                                                            |

#### 3.2.2.2 Arsenic hosts and textures identified in Giant Mine soils

In addition to As<sub>2</sub>O<sub>3</sub>, arsenopyrite, iron oxides with arsenic (including roaster-generated Fe oxides (ROs)) and As sulfide, the MLA software proved adept at identifying more ill-defined and compositionally variable As hosts. These additional hosts are mostly a combination of a variety of Fe (and/or Al) oxides/ oxyhydroxides/hydroxides, +/- Mn and Ca. They often occur around or on organic material. Although it has not been quantified, the semi-quantitative information obtained by SEM-EDS suggest the total As in these hosts is conservatively less than 10 or 15%.

Table 3.7 shows an abridged version of the modal mineralogy determined via MLA for all GXMAP runs, including As and C assay results, and if any roaster oxides were found.

| S<br>A      | M               | C<br>a<br>r        | As          | As                         | 2 <b>O</b> 3          | Arso<br>py            | eno-<br>rite | A<br>sul              | ls-<br>fide           | Fe-<br>Ox+<br>As      | Org<br>+As            | Fe-<br>As-<br>Mn/<br>Ca | Al-<br>Mn-<br>Fe-<br>As | sili-<br>cat<br>es | car<br>bon<br>ate<br>s | low<br>cou<br>nts     | car<br>bon            | RO                 |
|-------------|-----------------|--------------------|-------------|----------------------------|-----------------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|--------------------|------------------------|-----------------------|-----------------------|--------------------|
| P<br>L<br>E | U<br>N<br>T     | b<br>o<br>n<br>wt% | p<br>p<br>m | g<br>r<br>a<br>i<br>n<br>s | a<br>r<br>e<br>a<br>% | g<br>r<br>a<br>i<br>s | area%        | g<br>r<br>a<br>i<br>s | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>%   | a<br>r<br>e<br>a<br>%   | a<br>re<br>a<br>%  | a<br>r<br>e<br>a<br>%  | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | ?                  |
| IXF4-b      | 2               | 4.4                | 3600        | 17                         | 0                     | 1647                  | 0.18         | 0                     | 0                     | 0.32                  | 0.02                  | 0.08                    | 0                       | 77.8               | 17.1                   | 0.03                  | 0.82                  | Yes,<br>260<br>+   |
| IXF4-c      | 3               | 5.1                | 600         | 6                          | 0                     | 392                   | 0.04         | 0                     | 0                     | 0.03                  | 0                     | 0.01                    | 0                       | 94.9               | 1.84                   | 0.09                  | 2.08                  | Yes,<br>50+        |
| IVWL2-b     | 8               | <1.0               | 1000        | 1                          | 0                     | 113                   | 0            | 3                     | 0                     | 0.01                  | 0                     | 0.02                    | 0                       | 97.7               | 1.29                   | 0.06                  | 0.23                  | yes                |
| IVWL2-c     | 9               | 1.3                | 2800        | 0                          | 0                     | 369                   | 0.01         | 0                     | 0                     | 0.04                  | 0.01                  | 0.07                    | 0                       | 94.2               | 2.97                   | 0.63                  | 0.67                  | yes                |
| IVWL2-d     | 010<br>dup      | 1.8                | 3400        | 7                          | 0                     | 883                   | 0.03         | 6                     | 0                     | 0.27                  | 0.02                  | 0.15                    | 0                       | 88.7               | 6.11                   | 0.05                  | 0.99                  | Yes,<br>200<br>+++ |
| IVWL2-d     | 10              | 1.8                | 3400        | 3                          | 0                     | 697                   | 0.03         | 4                     | 0                     | 0.32                  | 0.03                  | 0.2                     | 0                       | 87                 | 7.91                   | 0.04                  | 0.89                  |                    |
| IVWL2-e     | 11              | 2.3                | 1800        | 48                         | 0                     | 1529                  | 0.04         | 4                     | 0                     | 0.14                  | 0.05                  | 0.11                    | 0                       | 88.8               | 6.57                   | 0.31                  | 1.3                   | Yes,<br>100<br>+++ |
| IVOC1-a     | 17              | 8.6                | 7000        | 111                        | 0.05                  | 0                     | 0            | 0                     | 0                     | 0.01                  | 0.33                  | 0.18                    | 0.25                    | 82                 | 0.04                   | 9.75                  | 5.58                  | yes                |
| IVOC1-b     | 18              | 9.8                | 5400        | 10                         | 0                     | 0                     | 0            | 0                     | 0                     | 0.03                  | 0.44                  | 0.34                    | 0.12                    | 79.2               | 0                      | 0.56                  | 16.4                  | NF                 |
| IIIF2-a     | 27              | 6.7                | 1500        | 94                         | 0.06                  | 10                    | 0            | 0                     | 0                     | 0.01                  | 0.01                  | 0.01                    | 0                       | 93.4               | 0.3                    | 2.7                   | 2.61                  | Yes                |
| IIIF2-b     | 028<br>dup      | 4.9                | 840         | 23                         | 0.01                  | 1                     | 0            | 0                     | 0                     | 0                     | 0                     | 0.02                    | 0                       | 90.3               | 0.34                   | 2.61                  | 5.79                  | Yes                |
| IIIF2-b     | 28              | 4.9                | 840         | 38                         | 0.01                  | 0                     | 0            | 0                     | 0                     | 0                     | 0.01                  | 0.01                    | 0                       | 94.5               | 0.55                   | 0.21                  | 4.07                  |                    |
| IIOC5-a     | 070<br>_1       | 24                 | 17000       | 2259                       | 0.62                  | 4                     | 0            | 0                     | 0                     | 0.29                  | 1.42                  | 0.57                    | 0                       | 73.4               | 0.01                   | 0.49                  | 18.9                  | Yes,<br>87+        |
| llOC5-a     | 70              | 24                 | 17000       | 1765                       | 0.52                  | 8                     | 0            | 0                     | 0                     | 0.18                  | 0.53                  | 0.19                    | 0                       | 60                 | 0.01                   | 33                    | 3.58                  |                    |
| IIOC5-b     | 071<br>red<br>0 | 2.9                | 1300        | 32                         | 0                     | 1                     | 0            | 0                     | 0                     | 0                     | 0.02                  | 0.01                    | 0.01                    | 97.4               | 0.01                   | 1.92                  | 0.15                  | yes                |
| IIOC5-b     | 071<br>_1       | 2.9                | 1300        | 94                         | 0.02                  | 0                     | 0            | 0                     | 0                     | 0.01                  | 0.36                  | 0.04                    | 0.07                    | 90.2               | 0.01                   | 2.63                  | 5.48                  |                    |
| IIOC5-c     | 72              | 2.2                | 2000        | 2                          | 0                     | 1                     | 0            | 0                     | 0                     | 0                     | 0.02                  | 0.02                    | 0.03                    | 98.3               | 0.01                   | 1.05                  | 0.19                  | NF                 |
| llOC9-a     | 80              | 30                 | 1400        | 92                         | 0.02                  | 0                     | 0            | 0                     | 0                     | 0.03                  | 0.08                  | 0.2                     | 0                       | 68.5               | 0.01                   | 0.01                  | 26.1                  | NF                 |
| IIOC9-b     | 81_<br>2        | 7.6                | 2400        | 0                          | 0                     | 2                     | 0            | 0                     | 0                     | 0.01                  | 0.06                  | 0.07                    | 0                       | 95.2               | 0.04                   | 0.13                  | 1.27                  | NF                 |
| IIOC9-c     | 82              | 8.3                | 2400        | 0                          | 0                     | 0                     | 0            | 0                     | 0                     | 0                     | 0.06                  | 0.06                    | 0.01                    | 85.2               | 0.01                   | 2.62                  | 8.2                   | NF                 |
| llOC10-a    | 83              | 20                 | 16000       | 383                        | 0.15                  | 0                     | 0            | 1                     | 0                     | 0.31                  | 4.2                   | 2.48                    | 0.37                    | 55.1               | 0.01                   | 6.8                   | 27.8                  | Yes,<br><50        |
| IIOC10-b    | 84              | 5                  | 7200        | 16                         | 0                     | 1                     | 0            | 0                     | 0                     | 0.1                   | 0.74                  | 0.58                    | 0.24                    | 90                 | 0.01                   | 0                     | 5.24                  | Yes                |
| llOC11-a    | 85              | 15                 | 11000       | 484                        | 0.16                  | 0                     | 0            | 0                     | 0                     | 0.04                  | 1.79                  | 0.49                    | 0.37                    | 77.9               | 0.01                   | 1.91                  | 13.8                  | Yes,<br><15        |

Table 3.7: Abridged modal mineralogy, all GXMAP samples

| S<br>A           | M           | C<br>a<br>r        | As          | As                    | 2 <b>O</b> 3          | Ars<br>py                  | eno-<br>rite          | A<br>sul                   | \s-<br>lfide          | Fe-<br>Ox+<br>As      | Org<br>+As            | Fe-<br>As-<br>Mn/<br>Ca | Al-<br>Mn-<br>Fe-<br>As | sili-<br>cat<br>es    | car<br>bon<br>ate<br>s | low<br>cou<br>nts     | car<br>bon            | BO  |
|------------------|-------------|--------------------|-------------|-----------------------|-----------------------|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----|
| M<br>P<br>L<br>E | U<br>N<br>T | b<br>o<br>n<br>wt% | p<br>p<br>m | g<br>r<br>a<br>i<br>s | a<br>r<br>e<br>a<br>% | g<br>r<br>a<br>i<br>n<br>s | a<br>r<br>e<br>a<br>% | g<br>r<br>a<br>i<br>n<br>s | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>%   | a<br>r<br>e<br>a<br>%   | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>%  | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | ?   |
| llOC11-b         | 086<br>dup  | 11                 | 7800        | 121                   | 0.02                  | 0                          | 0                     | 0                          | 0                     | 0.02                  | 0.26                  | 0.16                    | 0.47                    | 90.8                  | 0                      | 0.93                  | 4.8                   | Yes |
| IIOC11-b         | 86          | 11                 | 7800        | 235                   | 0.03                  | 0                          | 0                     | 0                          | 0                     | 0.03                  | 0.32                  | 0.36                    | 0.73                    | 63.9                  | 0.01                   | 12.2                  | 19.5                  |     |
| IIIWL1-c         | 93          | 4.2                | 2700        | 61                    | 0                     | 74                         | 0.02                  | 407                        | 0.01                  | 0.01                  | 0.15                  | 0.81                    | 0                       | 83.5                  | 1.34                   | 2.65                  | 8.45                  | Yes |
| IIIWL1-a         | 118         | 5.4                | 1000        | 7                     | 0                     | 27                         | 0.01                  | 200                        | 0                     | 0.01                  | 0.02                  | 0.05                    | 0                       | 91.3                  | 0.21                   | 1.63                  | 5.39                  | Yes |
| IIIWL1-b         | 119         | 3.6                | 920         | 13                    | 0                     | 44                         | 0                     | 55                         | 0                     | 0                     | 0.01                  | 0.04                    | 0                       | 90                    | 0.9                    | 4.9                   | 2.94                  | Yes |
| IIIOC2-a         | 122         | 15                 | 3200        | 1041                  | 0.09                  | 0                          | 0                     | 0                          | 0                     | 0.01                  | 0.08                  | 0.24                    | 0.09                    | 85.8                  | 0.2                    | 4.13                  | 7.54                  | Yes |
| IIIOC2-b         | 123<br>dup  | 2                  | 1300        | 45                    | 0                     | 1                          | 0                     | 0                          | 0                     | 0                     | 0.02                  | 0.07                    | 0.01                    | 96.9                  | 0                      | 0.72                  | 1.08                  | NF  |
| IIIOC2-b         | 123         | 2                  | 1300        | 11                    | 0                     | 0                          | 0                     | 0                          | 0                     | 0                     | 0.01                  | 0.02                    | 0.01                    | 96.7                  | 0.01                   | 1.01                  | 0.87                  |     |
| IIIOC5-a         | 124         | 10                 | 3200        | 15                    | 0                     | 0                          | 0                     | 0                          | 0                     | 0.01                  | 0.59                  | 0.93                    | 0.02                    | 84.7                  | 0.08                   | 7.29                  | 2.9                   | NF  |
| IIIOC5-b         | 125         | 8.4                | 4100        | 1                     | 0                     | 1                          | 0                     | 0                          | 0                     | 0.01                  | 0.55                  | 0.35                    | 0.22                    | 80.4                  | 0.01                   | 9.73                  | 3.7                   | NF  |
| IVOC4-a          | 147         | 28                 | 4800        | 132                   | 0.05                  | 0                          | 0                     | 0                          | 0                     | 0.03                  | 0.71                  | 0.84                    | 0                       | 47.9                  | 0.01                   | 46.1                  | 2.02                  | Yes |
| IVOC4-b          | 148<br>dup  | 9.4                | 5100        | 16                    | 0.01                  | 3                          | 0                     | 0                          | 0                     | 0.01                  | 0.45                  | 0.27                    | 0.02                    | 87.4                  | 0.05                   | 7.19                  | 1.48                  | NF  |
| IVOC4-b          | 148         | 9.4                | 5100        | 8                     | 0                     | 0                          | 0                     | 0                          | 0                     | 0.02                  | 1.18                  | 0.62                    | 0.03                    | 74.3                  | 0.01                   | 10.7                  | 1.66                  |     |
| VWL2-b           | 169<br>dup  | 7.1                | 1100        | 7                     | 0                     | 2                          | 0                     | 0                          | 0                     | 0.01                  | 0.02                  | 0.06                    | 0.01                    | 92.2                  | 0.04                   | 3.69                  | 1.01                  | NF  |
| VWL2-b           | 169         | 7.1                | 1100        | 6                     | 0                     | 90                         | 0.02                  | 0                          | 0                     | 0.01                  | 0.02                  | 0.04                    | 0                       | 93.4                  | 0.01                   | 3.53                  | 0.5                   |     |
| VOC1-a           | 179         | 3                  | 1400        | 12                    | 0                     | 0                          | 0                     | 0                          | 0                     | 0                     | 0.05                  | 0.04                    | 0.02                    | 92                    | 0                      | 6.28                  | 0.91                  | NF  |
| VOC1-b           | 180         | 1.1                | 570         | 0                     | 0                     | 0                          | 0                     | 0                          | 0                     | 0                     | 0.01                  | 0.01                    | 0                       | 97.8                  | 0.02                   | 1.16                  | 0.18                  | NF  |
| VOC2-a           | 181         | 7.8                | 3600        | 70                    | 0.01                  | 0                          | 0                     | 0                          | 0                     | 0.01                  | 0.11                  | 0.17                    | 0.23                    | 83.8                  | 0.02                   | 13.4                  | 1.09                  | Yes |
| VIWL1A-<br>a     | 195         | 9.3                | 1500        | 0                     | 0                     | 60                         | 0.01                  | 88                         | 0                     | 0                     | 0.05                  | 0.31                    | 0                       | 54.5                  | 32.9                   | 0.97                  | 7.8                   | Yes |
| VIWL1A-<br>b     | 196<br>dup  | 2.5                | 420         | 0                     | 0                     | 70                         | 0.02                  | 31                         | 0                     | 0                     | 0                     | 0.01                    | 0                       | 82.9                  | 13.9                   | 0.84                  | 0.59                  | NF  |
| VIWL1A-<br>b     | 196         | 2.5                | 420         | 0                     | 0                     | 106                        | 0.01                  | 32                         | 0                     | 0                     | 0                     | 0.01                    | 0                       | 83.6                  | 13.8                   | 0.13                  | 0.63                  |     |
| VIWL1B-<br>a     | 197         | 12                 | 870         | 5                     | 0                     | 127                        | 0.03                  | 128                        | 0                     | 0                     | 0                     | 0.02                    | 0                       | 57.2                  | 23.3                   | 2.66                  | 13.1                  | NF  |
| VIWL1B-<br>b     | 198         | 11                 | 1200        | 6                     | 0                     | 343                        | 0.08                  | 111                        | 0                     | 0                     | 0                     | 0                       | 0                       | 78                    | 9.87                   | 3.57                  | 6.02                  | NF  |
| VIWL1B-<br>c     | 199         | 14                 | 790         | 0                     | 0                     | 58                         | 0.02                  | 210                        | 0                     | 0                     | 0                     | 0                       | 0                       | 80.5                  | 7.48                   | 1.23                  | 7.74                  | NF  |
| VIOC4-a          | 202         | 21                 | 1200        | 33                    | 0                     | 0                          | 0                     | 0                          | 0                     | 0                     | 0.02                  | 0.02                    | 0.14                    | 55.1                  | 0.07                   | 7.65                  | 30.9                  | Yes |

| S<br>A           | M           | C<br>a<br>r        | As          | As                         | 2 <b>O</b> 3          | Ars<br>py             | eno-<br>rite          | A<br>sul                   | \s-<br>lfide          | Fe-<br>Ox+<br>As      | Org<br>+As | Fe-<br>As-<br>Mn/<br>Ca | Al-<br>Mn-<br>Fe-<br>As | sili-<br>cat<br>es | car<br>bon<br>ate<br>s | low<br>cou<br>nts     | car<br>bon            | BO                 |
|------------------|-------------|--------------------|-------------|----------------------------|-----------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------|------------|-------------------------|-------------------------|--------------------|------------------------|-----------------------|-----------------------|--------------------|
| M<br>P<br>L<br>E | U<br>N<br>T | b<br>o<br>n<br>wt% | p<br>p<br>m | g<br>r<br>a<br>i<br>n<br>s | a<br>r<br>e<br>a<br>% | g<br>r<br>a<br>i<br>s | a<br>r<br>e<br>a<br>% | g<br>r<br>a<br>i<br>n<br>s | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | area%      | area%                   | area%                   | area%              | area%                  | a<br>r<br>e<br>a<br>% | a<br>r<br>e<br>a<br>% | ?                  |
| VIOC4-b          | 203<br>dup  | 13                 | 1300        | 2                          | 0                     | 1                     | 0                     | 0                          | 0                     | 0                     | 0.02       | 0.03                    | 0.07                    | 82                 | 0.01                   | 10.9                  | 1.69                  | NF                 |
| VIOC4-b          | 203         | 13                 | 1300        | 1                          | 0                     | 1                     | 0                     | 0                          | 0                     | 0                     | 0.02       | 0.02                    | 0.11                    | 77.5               | 0                      | 15.7                  | 2.1                   |                    |
| VIIIOC4-<br>a    | 295         | 28                 | 840         | 89                         | 0.01                  | 0                     | 0                     | 0                          | 0                     | 0.06                  | 0.03       | 0.15                    | 0.06                    | 64.1               | 0.03                   | 30.3                  | 1.52                  | Yes,<br><30        |
| VIIIOC4-<br>b    | 296         | 8                  | 370         | 3                          | 0                     | 0                     | 0                     | 0                          | 0                     | 0                     | 0          | 0.01                    | 0                       | 88.7               | 0.1                    | 8.4                   | 0.68                  | NF                 |
| IXOC2-a          | 319         | 18                 | 5500        | 437                        | 0.13                  | 256                   | 0.03                  | 0                          | 0                     | 0.32                  | 0.05       | 0.1                     | 0.01                    | 76.2               | 1.76                   | 17.2                  | 1.9                   | Yes,<br>200<br>+++ |
| IXOC2-b          | 320         | 1.9                | 910         | 17                         | 0.01                  | 0                     | 0                     | 0                          | 0                     | 0.01                  | 0          | 0.03                    | 0                       | 98.6               | 0.01                   | 0.09                  | 0.32                  | NF                 |
| IXOC4-a          | 324<br>dup  | 31                 | 5200        | 293                        | 0.16                  | 37                    | 0.02                  | 0                          | 0                     | 0.07                  | 0.07       | 0.09                    | 0.04                    | 41.7               | 5.32                   | 12.4                  | 38.6                  | Yes,<br>50+        |
| IXOC4-a          | 324         | 31                 | 5200        | 322                        | 0.25                  | 65                    | 0.02                  | 0                          | 0                     | 0.13                  | 0.07       | 0.16                    | 0.08                    | 82.7               | 2.18                   | 1.22                  | 10.8                  | Yes,<br>50+        |
| IXOC4-b          | 325         | 4.5                | 1100        | 17                         | 0                     | 2                     | 0                     | 0                          | 0                     | 0                     | 0.03       | 0.07                    | 0                       | 92.7               | 2.37                   | 3                     | 0.62                  | Yes                |
| IXOC4-c          | 326         | 3                  | 1200        | 5                          | 0                     | 0                     | 0                     | 0                          | 0                     | 0                     | 0.02       | 0.05                    | 0                       | 96.8               | 0.03                   | 1.89                  | 0.41                  | Yes                |
| IVF2-a           | 344         | 33                 | 1700        | 947                        | 0.28                  | 0                     | 0                     | 0                          | 0                     | 0                     | 0.03       | 0.01                    | 0                       | 42.6               | 0.1                    | 54.3                  | 1.3                   | Yes                |
| IVF2-b           | 345         | 42                 | 1300        | 260                        | 0.05                  | 1                     | 0                     | 0                          | 0                     | 0                     | 0.01       | 0                       | 0                       | 24.5               | 0.08                   | 68.6                  | 6.2                   | Yes                |
| IIIOC8-a         | 354<br>dup  | 11                 | 630         | 2                          | 0                     | 0                     | 0                     | 0                          | 0                     | 0                     | 0.02       | 0.03                    | 0                       | 83.5               | 0.01                   | 10.5                  | 2.31                  | yes,<br>one        |
| IIIOC8-a         | 354         | 11                 | 630         | 0                          | 0                     | 0                     | 0                     | 0                          | 0                     | 0.01                  | 0.02       | 0.03                    | 0.01                    | 83.1               | 0.02                   | 10.9                  | 2.16                  |                    |

Regarding roaster oxides (ROs), NF = "Not found." In NF cases, ROs could still possibly be present (due to map size and the nature of the visual RO checks).

Many of the phases binned into the Low Counts category were actually found to be organic-rich.

This table does not account for any other phosphate, oxide, or sulfide minerals present in samples. See Appendix X for complete modal mineralogies.

Figures 3.6 through 3.12 give an overview of the variety of textures and As hosts encountered in Giant Mine soils. These hosts and textures include:

- •As<sub>2</sub>O<sub>3</sub>, from large grains (>100  $\mu m$ ) to clumps of <5  $\mu m$  grains;
- •ROs, including highly weathered grains from wetland samples;
- •As-bearing Fe-dominated rims on pyrite and other sulfides (including double rim texture);

•Arsenopyrite, both as free grains and as part of quartz-carbonate nodules;

•As-sulfide particles, usually no more than specks, often clustering around organics in wetland samples. Textural relationships suggest these are likely weathering products;

• As-bearing Fe(sometimes Al)-dominated oxides or oxyhydroxides. These can be associated with organic material (very common in organic-rich high As samples) or can be free floating. They also are often associated with variable amounts of Mn, Ca, and Al.

**Figure 3.6**: Large  $As_2O_3$  clumps. (**A**) One clump from sample 122 in BSE (A1), in MLA classified (A2), and in closeup BSE (A3). The red boxes indicate the approximate location of A3. (**B**) A similar large  $As_2O_3$  clump from sample 071. Small grain size could possibly be a result of larger grain breakdown. See Table 2.5 for MLA legend.





Many of these hosts, especially the As sulfide and coatings on organics, would not have been found without MLA.





**Figure 3.9**: Pyrite grains with double weathering rims (mounts 002 and 003). In all three cases the inner weathering rim is Fe-dominated with no As, while the outer rim has As as well as Fe. Top: Mount 002, featuring adjacent RO pieces. Right: Both BSE photos are from mount 003, with the same double Fe-dominated rim with As exterior as the top photo.

Most As-bearing weathering rims found at Giant are not double rims like those in mounts 002 and 003. The double weathering rims depicted in this figure have not been documented before as an As host in Giant soils.



1/14/2015 HV spot det WD 1/24/29 PM 25 00 kV 5 0 BSED 12 8 mm



**Figure 3.10**: Arsenopyrite sequestered within a carbonate - quartz rock nodule in mount 002. Left: Part of the nodule classified by MLA. RIght: BSE image showing a large RO to the left to the nodule. See Table 2.5 for MLA legend.







**Figure 3.11**: Arsenic sulfide specks on organics in mount 093. Textures support the notion of As sulfide as a weathering product in Giant soils. Red boxes indicate a zoomed in area. (**A**) MLA classified GXMAP for mount 093. Note the bright fuchsia specks along the organics. (**B**) BSE photo of the As-sulfide bearing organic broken into three pieces in panel (A). (**C**) Zoomed in look at As-sulfide above organic and Fe-As-bearing material below from panel (B). (**D**) Close-up of As sulfide from panel (**C**).



#### 3.2.3 Elemental distribution of As in Giant Mine soils

There are a number of sources of uncertainty associated with elemental distribution calculations for As in Giant Mine soil mounts based on MLA analysis. The statistical significance of various As hosts must be considered before calculating the elemental distribution of As amongst said As hosts at Giant. Results from duplicate mounts indicate that most samples exhibit a nugget effect to some degree regarding As hosts; those with the best repeatability usually had greater than 100 grains of either As<sub>2</sub>O<sub>3</sub>, arsenopyrite, or Assulfide, as well as total As concentrations above 3000  $\mu$ g/g. These are the general criteria chosen for including samples in calculations presented in Table 3.8. Even so, results from duplicate samples in Table 3.8 indicate that calculated As elemental distribution results as a whole should be viewed with some skepticism, and individual results should probably not be used, or at least used with extreme caution, for application to areas larger than a grain mount surface.

The main difficulty in calculating elemental distribution of As at Giant lies with the secondary As hosts with no quantitative information available about their As wt% content. Density values also need to be determined for the Fe-oxides with As, organics with As, Fe-As-Mn/Ca oxide, and Al-Mn-Fe-As oxide phases, however this is a slightly less open-ended matter given that there are defined values available for the variety of likely constituent minerals of each phase. Table 3.8 includes elemental distribution calculations for As in Giant Mine soils for a subset of MLA samples, assuming three different As concentrations for these secondary phases: 0.1%, 1%, and 5% for the Fe-oxides with As, organics with As, Fe-As-Mn/Ca oxide, and Al-Mn-Fe-As oxide phases. These values were chosen to test possible broad variation outcomes. Samples with a large proportion of As hosted in As weathering products had the most variation in relative proportions of As hosts amongst the 0.1%< 1%, and 5% calculations.

| Site    | Golder_<br>horizon | Sam<br>ple  | Total<br>As<br>(µg/g) | As as<br>As <sub>2</sub> O<br><sup>3</sup> | As<br>μg/g<br>in<br>As₂O₃ | As as<br>Aspy | As<br>μg/g<br>in<br>Aspy | As as<br>As-<br>sulfid<br>e | As<br>μg/g<br>in As<br>sul-<br>fide | As as<br>Fe-<br>oxide<br>s w/<br>As | As<br>μg/g<br>as Fe-<br>oxide<br>s w/<br>As | As as<br>other<br>As<br>hosts | As<br>µg/g<br>in<br>other<br>As<br>hosts |
|---------|--------------------|-------------|-----------------------|--------------------------------------------|---------------------------|---------------|--------------------------|-----------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
| 0.1 wt% | As for all         | but A       | s₂O₃ (76              | 6% As),                                    | Arsenop                   | oyrite (4     | 6% As) a                 | and As-s                    | sulfide (                           | 70% As)                             |                                             |                               |                                          |
|         | IVWL2-c            | 9           | 2800                  | 0%                                         | 0                         | 98%           | 2733                     | 0%                          | 0                                   | 1%                                  | 26                                          | 1%                            | 41                                       |
|         | IVWL2-<br>d        | 010<br>dup  | 3400                  | 2%                                         | 64                        | 95%           | 3243                     | <1%                         | 6                                   | 2%                                  | 56                                          | 1%                            | 31                                       |
| IV-WL-2 | IVWL2-<br>d        | 10          | 3400                  | 1%                                         | 24                        | 97%           | 3285                     | <1%                         | 6                                   | 2%                                  | 54                                          | 1%                            | 32                                       |
|         | IVWL2-<br>e        | 11          | 1800                  | 2%                                         | 43                        | 96%           | 1730                     | <1%                         | 6                                   | 1%                                  | 11                                          | 1%                            | 10                                       |
| IV-OC-1 | IVOC1-<br>a        | 17          | 7000                  | 98%                                        | 6861                      | 0%            | 0                        | 0%                          | 0.0                                 | <1%                                 | 4                                           | 2%                            | 136                                      |
|         | llOC5-a            | 070<br>_1   | 17000                 | 99%                                        | 16885                     | 0%            | 40                       | 0%                          | 0.0                                 | <1%                                 | 13                                          | <1%                           | 62                                       |
|         | llOC5-a            | 70          | 17000                 | 99%                                        | 16905                     | 0%            | 59                       | 0%                          | 0.0                                 | <1%                                 | 9                                           | <1%                           | 26                                       |
| II-OC-5 | IIOC5-b            | 071<br>redo | 1300                  | 89%                                        | 1162                      | 9%            | 119                      | 0%                          | 0.0                                 | <1%                                 | 2                                           | 1%                            | 17                                       |

Table 3.8: Arsenic elemental distribution for selected samples, multiple variables

| Site         | Golder_<br>horizon | Sam<br>ple           | Total<br>As<br>(µg/g)      | As as<br>As <sub>2</sub> O<br>₃ | As<br>µg/g<br>in<br>As₂O₃ | As as<br>Aspy | As<br>μg/g<br>in<br>Aspy | As as<br>As-<br>sulfid<br>e | As<br>μg/g<br>in As<br>sul-<br>fide | As as<br>Fe-<br>oxide<br>s w/<br>As | As<br>μg/g<br>as Fe-<br>oxide<br>s w/<br>As | As as<br>other<br>As<br>hosts | As<br>µg/g<br>in<br>other<br>As<br>hosts |
|--------------|--------------------|----------------------|----------------------------|---------------------------------|---------------------------|---------------|--------------------------|-----------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
|              | IIOC5-b            | 071<br>_1            | 1300                       | 97%                             | 1262                      | 0%            | 0                        | 0%                          | 0.0                                 | <1%                                 | 1                                           | 3%                            | 37                                       |
|              | llOC9-a            | 80                   | 1400                       | 97%                             | 1363                      | 0%            | 0                        | 0%                          | 0.0                                 | <1%                                 | 5                                           | 2%                            | 32                                       |
| II-OC-9      | IIOC9-b            | 081<br>_2            | 2400                       | 0%                              | 0                         | 10%           | 237                      | 0%                          | 0                                   | 9%                                  | 207                                         | 82%                           | 1956                                     |
|              | IIOC9-c            | 82                   | 2400                       | 0%                              | 0                         | 0%            | 0                        | 0%                          | 0                                   | 3%                                  | 71                                          | 97%                           | 2330                                     |
| II-OC-       | llOC10-<br>a       | 83                   | 16000                      | 94%                             | 15098                     | 0%            | 0                        | 0%                          | 1                                   | <1%                                 | 53                                          | 5%                            | 849                                      |
| 10           | llOC10-<br>b       | 84                   | 7200                       | 55%                             | 3956                      | 3%            | 246                      | 0%                          | 0                                   | 3%                                  | 239                                         | 38%                           | 2760                                     |
|              | llOC11-<br>a       | 85                   | 11000                      | 98%                             | 10800                     | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 4                                           | 2%                            | 196                                      |
| II-OC-<br>11 | llOC11-<br>b       | 086<br>dup           | 7800                       | 95%                             | 7447                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 11                                          | 4%                            | 342                                      |
|              | llOC11-<br>b       | 86                   | 7800                       | 95%                             | 7378                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 13                                          | 5%                            | 410                                      |
| III-OC-2     | IIIOC2-a           | 122                  | 3200                       | 99%                             | 3180                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 1                                           | 1%                            | 19                                       |
|              | IVOC4-<br>a        | 147                  | 4800                       | 96%                             | 4614                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 4                                           | 4%                            | 182                                      |
| IV-OC-4      | IVOC4-<br>b        | 148<br>dup           | 5100                       | 87%                             | 4444                      | 2%            | 105                      | 0%                          | 0                                   | <1%                                 | 13                                          | 11%                           | 538                                      |
|              | IVOC4-<br>b        | 148                  | 5100                       | 7%                              | 380                       | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 68                                          | 91%                           | 4653                                     |
| V-OC-2       | VOC2-a             | 181                  | 3600                       | 89%                             | 3211                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 7                                           | 11%                           | 382                                      |
| VI-WL-       | VIWL1A<br>-b       | 196<br>dup           | 420                        | 0%                              | 0                         | 99%           | 414                      | 1%                          | 5                                   | 0%                                  | 0                                           | <1%                           | <1                                       |
| 1A           | VIWL1A<br>-b       | 196                  | 420                        | 0%                              | 0                         | 96%           | 404                      | 4%                          | 15                                  | 0%                                  | 0                                           | <1%                           | 1                                        |
| VI-WL-       | VIWL1B<br>-a       | 197                  | 870                        | <1%                             | 4                         | 91%           | 795                      | 8%                          | 70                                  | 0%                                  | 0                                           | <1%                           | 1                                        |
| 1B           | VIWL1B<br>-b       | 198                  | 1200                       | <1%                             | 2                         | 97%           | 1168                     | 2%                          | 30                                  | 0%                                  | 0                                           | <1%                           | 1                                        |
| IX-OC-2      | IXOC2-<br>a        | 319                  | 5500                       | 79%                             | 4368                      | 20%           | 1108                     | 0%                          | 0                                   | <1%                                 | 18                                          | <1%                           | 7                                        |
| 12-00-4      | IXOC4-<br>a        | 324<br>dup           | 5200                       | 90%                             | 4660                      | 10%           | 531                      | 0%                          | 0                                   | <1%                                 | 3                                           | <1%                           | 7                                        |
| 1/-00-4      | IXOC4-<br>a        | 324                  | 5200                       | 94%                             | 4899                      | 6%            | 290                      | 0%                          | 0                                   | <1%                                 | 4                                           | <1%                           | 8                                        |
| IV-F-2       | IVF2-a             | 344                  | 1700                       | 100%                            | 1700                      | 0%            | 0                        | 0%                          | 0                                   | 0%                                  | 0                                           | <1%                           | <1                                       |
|              | IVF2-b             | 345                  | 1300                       | 99%                             | 1290                      | 1%            | 9                        | 0%                          | 0                                   | 0%                                  | 0                                           | <1%                           | <1                                       |
| 1 wt% A      | s for all b        | ut As <sub>2</sub> 0 | <b>D</b> <sub>3</sub> (76% | As), Ar                         | senopyr                   | rite (46%     | As) an                   | d As-sul                    | fide (70                            | % As)                               |                                             |                               |                                          |

| Site         | Golder_<br>horizon | Sam<br>ple  | Total<br>As<br>(µg/g) | As as<br>As <sub>2</sub> O<br>₃ | As<br>µg/g<br>in<br>As₂O₃ | As as<br>Aspy | As<br>μg/g<br>in<br>Aspy | As as<br>As-<br>sulfid<br>e | As<br>μg/g<br>in As<br>sul-<br>fide | As as<br>Fe-<br>oxide<br>s w/<br>As | As<br>μg/g<br>as Fe-<br>oxide<br>s w/<br>As | As as<br>other<br>As<br>hosts | As<br>µg/g<br>in<br>other<br>As<br>hosts |
|--------------|--------------------|-------------|-----------------------|---------------------------------|---------------------------|---------------|--------------------------|-----------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
|              | IVWL2-c            | 9           | 2800                  | 0%                              | 0                         | 80%           | 2249                     | 0%                          | 0                                   | 8%                                  | 213                                         | 12%                           | 338                                      |
|              | IVWL2-<br>d        | 010<br>dup  | 3400                  | 2%                              | 52                        | 78%           | 2636                     | <1%                         | 5                                   | 13%                                 | 458                                         | 7%                            | 249                                      |
| IV-WL-2      | IVWL2-<br>d        | 10          | 3400                  | 1%                              | 20                        | 79%           | 2681                     | <1%                         | 4.9                                 | 13%                                 | 437                                         | 8%                            | 258                                      |
|              | IVWL2-<br>e        | 11          | 1800                  | 2%                              | 39                        | 87%           | 1562                     | <1%                         | 5.3                                 | 6%                                  | 102                                         | 5%                            | 93                                       |
| IV-OC-1      | IVOC1-<br>a        | 17          | 7000                  | 83%                             | 5820                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 30                                          | 16%                           | 1150                                     |
|              | IIOC5-a            | 070<br>_1   | 17000                 | 96%                             | 16238                     | 0%            | 39                       | 0%                          | 0                                   | 1%                                  | 128                                         | 4%                            | 596                                      |
|              | llOC5-a            | 70          | 17000                 | 98%                             | 16593                     | 0%            | 58                       | 0%                          | 0                                   | 1%                                  | 93                                          | 2%                            | 257                                      |
| II-OC-5      | IIOC5-b            | 071<br>redo | 1300                  | 79%                             | 1027                      | 8%            | 105                      | 0%                          | 0                                   | 2%                                  | 20                                          | 11%                           | 148                                      |
|              | IIOC5-b            | 071<br>_1   | 1300                  | 77%                             | 1002                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 5                                           | 23%                           | 293                                      |
|              | llOC9-a            | 80          | 1400                  | 79%                             | 1100.3                    | 0%            | 0                        | 0%                          | 0                                   | 3%                                  | 38                                          | 19%                           | 262                                      |
| II-OC-9      | IIOC9-b            | 081<br>_2   | 2400                  | 0%                              | 0                         | 1%            | 26                       | 0%                          | 0                                   | 9%                                  | 227                                         | 89%                           | 2147                                     |
|              | IIOC9-c            | 82          | 2400                  | 0%                              | 0                         | 0%            | 0                        | 0%                          | 0                                   | 3%                                  | 70                                          | 97%                           | 2330                                     |
| II-OC-       | llOC10-<br>a       | 83          | 16000                 | 63%                             | 10019                     | 0%            | 0                        | 0%                          | 1                                   | 2%                                  | 350                                         | 35%                           | 5631                                     |
| 10           | llOC10-<br>b       | 84          | 7200                  | 12%                             | 833.2                     | 1%            | 52                       | 0%                          | 0                                   | 7%                                  | 502                                         | 81%                           | 5813                                     |
|              | llOC11-<br>a       | 85          | 11000                 | 84%                             | 9282                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 37                                          | 15%                           | 1681                                     |
| II-OC-<br>11 | llOC11-<br>b       | 086<br>dup  | 7800                  | 68%                             | 5289                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 81                                          | 31%                           | 2430                                     |
|              | llOC11-<br>b       | 86          | 7800                  | 64%                             | 4962                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 85                                          | 35%                           | 2754                                     |
| III-OC-2     | IIIOC2-a           | 122         | 3200                  | 94%                             | 3013                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | 6                                           | 6%                            | 181                                      |
|              | IVOC4-<br>a        | 147         | 4800                  | 71%                             | 3422                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 29                                          | 28%                           | 1349                                     |
| IV-OC-4      | IVOC4-<br>b        | 148<br>dup  | 5100                  | 44%                             | 2254                      | 1%            | 53                       | 0%                          | 0                                   | 1%                                  | 64                                          | 54%                           | 2729                                     |
|              | IVOC4-<br>b        | 148         | 5100                  | 1%                              | 41                        | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 73                                          | 98%                           | 4987                                     |
| V-0C-2       | VOC2-a             | 181         | 3600                  | 45%                             | 1628                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 36                                          | 54%                           | 1936                                     |
| VI-WL-       | VIWL1A<br>-b       | 196<br>dup  | 420                   | 0%                              | 0                         | 98%           | 411                      | 1%                          | 5                                   | 0%                                  | 0                                           | 1%                            | 4                                        |

| Site    | Golder_<br>horizon | Sam<br>ple           | Total<br>As<br>(µg/g) | As as<br>As <sub>2</sub> O<br><sup>3</sup> | As<br>μg/g<br>in<br>As₂O₃ | As as<br>Aspy | As<br>μg/g<br>in<br>Aspy | As as<br>As-<br>sulfid<br>e | As<br>μg/g<br>in As<br>sul-<br>fide | As as<br>Fe-<br>oxide<br>s w/<br>As | As<br>μg/g<br>as Fe-<br>oxide<br>s w/<br>As | As as<br>other<br>As<br>hosts | As<br>μg/g<br>in<br>other<br>As<br>hosts |
|---------|--------------------|----------------------|-----------------------|--------------------------------------------|---------------------------|---------------|--------------------------|-----------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
| 1A      | VIWL1A<br>-b       | 196                  | 420                   | 0%                                         | 0                         | 95%           | 399                      | 4%                          | 15                                  | <1%                                 | 0                                           | 1%                            | 5                                        |
| VI-WL-  | VIWL1B<br>-a       | 197                  | 870                   | <1%                                        | 4                         | 91%           | 788                      | 8%                          | 69                                  | 0%                                  | 0                                           | 1%                            | 9                                        |
| 1B      | VIWL1B<br>-b       | 198                  | 1200                  | <1%                                        | 2                         | 97%           | 1167                     | 2%                          | 29                                  | <1%                                 | <1                                          | <1%                           | 1                                        |
| IX-OC-2 | IXOC2-<br>a        | 319                  | 5500                  | 76%                                        | 4198                      | 19%           | 1064                     | 0%                          | 0                                   | 3%                                  | 168                                         | 1%                            | 70                                       |
| IX-OC-4 | IXOC4-<br>a        | 324<br>dup           | 5200                  | 88%                                        | 4581                      | 10%           | 522                      | 0%                          | 0                                   | 1%                                  | 30                                          | 1%                            | 68                                       |
|         | IXOC4-<br>a        | 324                  | 5200                  | 92%                                        | 4801                      | 5%            | 284                      | 0%                          | 0                                   | 1%                                  | 41                                          | 1%                            | 74                                       |
| IV-F-2  | IVF2-a             | 344                  | 1700                  | 100%                                       | 1697                      | 0%            | 0                        | 0%                          | 0                                   | <1%                                 | <1                                          | <1%                           | 3                                        |
|         | IVF2-b             | 345                  | 1300                  | 99%                                        | 1288                      | 1%            | 9                        | 0%                          | 0                                   | <1%                                 | <1                                          | <1%                           | 2                                        |
| 5 wt% A | s for all bu       | ut As <sub>2</sub> ( | O₃ (76%               | As), Ar                                    | senopyr                   | rite (46%     | S As) an                 | d As-su                     | fide (70                            | % As)                               |                                             | •                             |                                          |
|         | IVWL2-c            | 9                    | 2800                  | 0%                                         | 0                         | 45%           | 1259                     | 0%                          | 0.0                                 | 21%                                 | 597                                         | 34%                           | 945                                      |
|         | IVWL2-<br>d        | 010<br>dup           | 3400                  | 1%                                         | 28                        | 42%           | 1439                     | <1%                         | 3                                   | 37%                                 | 1250                                        | 20%                           | 680                                      |
| IV-WL-2 | IVWL2-<br>d        | 10                   | 3400                  | 0%                                         | 11                        | 43%           | 1476                     | <1%                         | 3                                   | 35%                                 | 1202                                        | 21%                           | 709                                      |
|         | IVWL2-<br>e        | 11                   | 1800                  | 2%                                         | 27                        | 61%           | 1091                     | <1%                         | 4                                   | 20%                                 | 355                                         | 18%                           | 324                                      |
| IV-OC-1 | IVOC1-<br>a        | 17                   | 7000                  | 50%                                        | 3477                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 90                                          | 49%                           | 3434                                     |
|         | llOC5-a            | 070<br>_1            | 17000                 | 82%                                        | 13877                     | <1%           | 33                       | 0%                          | 0                                   | 3%                                  | 545                                         | 15%                           | 2546                                     |
|         | llOC5-a            | 70                   | 17000                 | 90%                                        | 15333                     | <1%           | 54                       | 0%                          | 0                                   | 3%                                  | 427                                         | 7%                            | 1186                                     |
| II-OC-5 | llOC5-b            | 071<br>redo          | 1300                  | 52%                                        | 677                       | 5%            | 69                       | 0%                          | 0                                   | 5%                                  | 66                                          | 38%                           | 488                                      |
|         | IIOC5-b            | 071<br>_1            | 1300                  | 40%                                        | 522                       | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 13                                          | 59%                           | 765                                      |
|         | llOC9-a            | 80                   | 1400                  | 42%                                        | 593                       | 0%            | 0                        | 0%                          | 0                                   | 7%                                  | 103                                         | 50%                           | 704                                      |
| II-OC-9 | llOC9-b            | 081<br>_2            | 2400                  | 0%                                         | 0                         | <1%           | 5.2                      | 0%                          | 0                                   | 10%                                 | 229                                         | 90%                           | 2166                                     |
|         | IIOC9-c            | 82                   | 2400                  | 0%                                         | 0                         | 0%            | 0                        | 0%                          | 0                                   | 3%                                  | 70                                          | 97%                           | 2330                                     |
| II-OC-  | llOC10-<br>a       | 83                   | 16000                 | 25%                                        | 4015                      | 0%            | 0                        | 0%                          | <1                                  | 4%                                  | 702                                         | 71%                           | 11283                                    |
| 10      | llOC10-<br>b       | 84                   | 7200                  | 3%                                         | 185                       | <1%           | 12                       | 0%                          | 0                                   | 8%                                  | 557                                         | 90%                           | 6447                                     |
|         | llOC11-<br>a       | 85                   | 11000                 | 52%                                        | 5712                      | 0%            | 0                        | 0%                          | 0                                   | 1%                                  | 114                                         | 47%                           | 5174                                     |

| Site                           | Golder_<br>horizon   | Sam<br>ple | Total<br>As<br>(µg/g) | As as<br>As <sub>2</sub> O<br><sup>3</sup> | As<br>μg/g<br>in<br>As₂O₃ | As as<br>Aspy     | As<br>μg/g<br>in<br>Aspy | As as<br>As-<br>sulfid<br>e | As<br>μg/g<br>in As<br>sul-<br>fide | As as<br>Fe-<br>oxide<br>s w/<br>As | As<br>μg/g<br>as Fe-<br>oxide<br>s w/<br>As | As as<br>other<br>As<br>hosts | As<br>μg/g<br>in<br>other<br>As<br>hosts |
|--------------------------------|----------------------|------------|-----------------------|--------------------------------------------|---------------------------|-------------------|--------------------------|-----------------------------|-------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------|------------------------------------------|
| II-OC-<br>11                   | llOC11-<br>b         | 086<br>dup | 7800                  | 30%                                        | 2312                      | 0%                | 0                        | 0%                          | 0                                   | 2%                                  | 176                                         | 68%                           | 5312                                     |
|                                | llOC11-<br>b         | 86         | 7800                  | 26%                                        | 2020                      | 0%                | 0                        | 0%                          | 0                                   | 2%                                  | 173                                         | 72%                           | 5606                                     |
| III-OC-2                       | IIIOC2-a             | 122        | 3200                  | 76%                                        | 2442                      | 0%                | 0                        | 0%                          | 0                                   | 1%                                  | 26                                          | 23%                           | 732                                      |
|                                | IVOC4-<br>a          | 147        | 4800                  | 33%                                        | 1593                      | 0%                | 0                        | 0%                          | 0                                   | 1%                                  | 68                                          | 65%                           | 3139                                     |
| IV-OC-4                        | IVOC4-<br>b          | 148<br>dup | 5100                  | 14%                                        | 706                       | <1%               | 17                       | 0%                          | 0                                   | 2%                                  | 100                                         | 84%                           | 4277                                     |
|                                | IVOC4-<br>b          | 148        | 5100                  | <1%                                        | 8                         | 0%                | 0                        | 0%                          | 0                                   | 1%                                  | 73                                          | 98%                           | 5019                                     |
| V-OC-2                         | VOC2-a               | 181        | 3600                  | 14%                                        | 510                       | 0%                | 0                        | 0%                          | 0                                   | 2%                                  | 56                                          | 84%                           | 3034                                     |
| VI-WL-                         | VIWL1A<br>-b         | 196<br>dup | 420                   | 0%                                         | 0                         | 94%               | 395                      | 1%                          | 5                                   | 0%                                  | 0                                           | 5%                            | 20                                       |
| 1B                             | VIWL1A<br>-b         | 196        | 420                   | 0%                                         | 0                         | 90%               | 380                      | 3%                          | 15                                  | <1%                                 | <1                                          | 6%                            | 26                                       |
| VI-WL-                         | VIWL1B<br>-a         | 197        | 870                   | <1%                                        | 4                         | 87%               | 757                      | 8%                          | 67                                  | 0%                                  | 0                                           | 5%                            | 43                                       |
| 1B                             | VIWL1B<br>-b         | 198        | 1200                  | <1%                                        | 2                         | 97%               | 1163                     | 2%                          | 29                                  | <1%                                 | 1                                           | <1%                           | 5                                        |
| IX-OC-2                        | IXOC2-<br>a          | 319        | 5500                  | 65%                                        | 3579                      | 17%               | 908                      | 0%                          | 0                                   | 13%                                 | 717                                         | 5%                            | 297                                      |
|                                | IXOC4-<br>a          | 324<br>dup | 5200                  | 82%                                        | 4260                      | 9%                | 485                      | 0%                          | 0                                   | 3%                                  | 140                                         | 6%                            | 315                                      |
| 1X-00-4                        | IXOC4-<br>a          | 324        | 5200                  | 85%                                        | 4410                      | 5%                | 261                      | 0%                          | 0                                   | 4%                                  | 190                                         | 7%                            | 340                                      |
|                                | IVF2-a               | 344        | 1700                  | 99%                                        | 1684                      | 0%                | 0                        | 0%                          | 0                                   | <1%                                 | 2                                           | 1%                            | 15                                       |
| 10-6-2                         | V-F-2 IVF2-b 345 130 |            |                       |                                            | 1277                      | 1%                | 9                        | 0%                          | 0                                   | <1%                                 | 2                                           | 1%                            | 11                                       |
|                                |                      |            | Den                   | sities us                                  | ed in ca                  | lculation         | s were a                 | s follows                   | s (in g/cr                          | n <sup>3</sup> ):                   |                                             | •                             |                                          |
| As <sub>2</sub> O <sub>3</sub> | 3.74                 | Aspy       | 6.07                  | As sulfide                                 | ∋ 3.56                    | Fe oxides<br>4.67 | with As:                 | Organics<br>2.9             | with As:                            | Fe-As-Mn<br>4.0                     | /Ca oxide                                   | Al-Mn-Fe-<br>3.5              | As oxide                                 |

Notes:

Sample sites VI-WL-1A and VI-WL-1B are actually two cores from the same site location. VI-WL-1A was aborted
partway through and re-started as VI-WL-1B.

• The 0.1%, 1%, and 5% calculations were performed for all MLA samples. However, numerical data in this table represents only a subset of this data. This subset is meant to include samples with the best chance of producing the most reliable As elemental distribution data. Samples included in this table contain:

• approximately 100 or more grains of either As<sub>2</sub>O<sub>3</sub>, arsenopyrite, or As-sulfide, AND/OR

• greater than 3000  $\mu$ g/g As, AND/OR

• a partial match with the two above criteria, plus close physical proximity to a sample does meet the above criteria

• Criteria for inclusion in this table may under-represent samples with a dominant As host other than As<sub>2</sub>O<sub>3</sub>, arsenopyrite, and As sulfide.

• Figures 3.13 and 3.15 both include calculated As distributions for the 1% variation for ALL MLA samples.





4000

4000 3000 As concentration (mg/kg) 2000 1000 0 0 IIIF2-b (028\*) -IXF4-a (001) IXF4-b (002) IXF4-c (003) IXF4-d (004) IXF4-e (005) IXF4-f (006) IIIF2-a (027) IIIF2-d (030) IIIF2-e (031) IVF2-a (344) IVF2-b (345) IVF2-c (346) IVF2-d (347) IVF2-e (348)

Figure 3.13: Elemental distribution for As for all MLA samples, plotted by depth horizon and with additional samples from the same sites that did not have MLA done on them for context. **TOP**: Outcrop soil samples. **MIDDLE**: Wetland soil samples. **BOT-TOM**: Forest soil samples.

Calculations were done assuming 1% As in the Fe oxide with As, Organics with As, Fe-As-Mn/Ca oxide, and Al-Mn-Fe-As oxide phases.

The dominant As hosts vary somewhat by sample site type. The only samples with significant As sulfide occur in wetlands. Several of the dominantly arsenopyrite samples may have a waste rock influence.

#### Important notes:

- Arsenic trioxide was found at ALL sample sites in this figure, in at least one sample. This may be difficult to discern due to local proportions of As hosts.
- This figure contains elemental distribution calculation data for ALL MLA samples, including those omitted from Table 3.8.

Figure 3.13 shows calculated elemental distribution for As for the 1 wt% variation is plotted for all MLA samples. There is a clear difference between dominant As hosts between site types, as well as between depth horizons at certain individual sites (mostly outcrop sites).

#### 3.3 Geographic extent of arsenic at Giant Mine

#### 3.3.1 Arsenic bulk concentrations

In Figure 3.14, high As concentrations can be seen within either rough proximity to the roaster within its dominant wind direction, or in close proximity to other areas that may invite anthropogenic As contamination, such as tailings ponds, Baker Pond, mine roads, and other historic areas of surface mine operations. See Appendix XI for additional maps.

#### 3.3.1 Arsenic trioxide geographic extent

A map showing MLA sample locations, site type, and relative proportions of calculated As differentiation amongst As hosts can be found in Figure 3.15. All MLA sites included at least one sample with  $As_2O_3$ .





## 4.0 Discussion and Conclusions

#### 4.1 Variation of As concentration with depth and soil type

The highest concentrations of As were found mostly in outcrop soil samples rather than wetland or forest samples, and in shallower samples rather than deeper samples (at the same site). Arsenic concentrations are usually highest near the surface and diminish with depth. This trend is clear for many samples but is most starkly obvious for core samples >40cm long. There are a few notable exceptions to this trend in wetland and forest samples located in areas that have likely experienced some displacement of surface material.

#### 4.2 Evidence for anthropogenic As

Most of the As in the samples examined by MLA is of anthropogenic origin. All sample sites included at least one sample with evidence of As<sub>2</sub>O<sub>3</sub>, a form of As of clear anthropogenic origin. There are several other pieces of evidence to suggest an anthropogenic origin for the majority of As in the samples examined; this includes samples with high concentrations of As dominantly hosted as secondary weathering products.

Being able to examine secondary weathering products of As has been especially helpful with regards to interpreting the significance of the presence of As<sub>2</sub>O<sub>3</sub>. Samples with arsenopyrite as the dominant primary As host did not tend to have as many secondary weathering products present relative to primary hosts as those samples with most primary As as As<sub>2</sub>O<sub>3</sub>. In the latter scenario, the ratios between As<sub>2</sub>O<sub>3</sub> content for different depth horizons and the collection of As weathering products (including As associated with organic matter and Fe other oxides) is striking (Figure 3.13). The proportion of weathering-related As hosts often increases relative to primary As hosts with depth. This could be a result of As dissolved from primary As hosts re-precipitating in secondary phases. If this is a valid interpretation, it provides a not unreasonable explanation for some soils at Giant with high As concentrations only having a few grains of As<sub>2</sub>O<sub>3</sub>. Most samples in the subset examined by MLA tend to have larger concentrations of primary As minerals relative to weathering products in higher horizons, and more weathering products relative to primary As hosts in lower horizons

Furthermore, most sites examined in this study have their highest As concentrations in the sample horizon closest to the surface. This should not be the case if the bulk of these As concentrations were related to background geology locally high in As (Risklogic 2002). All samples with a significant arsenopyrite presence as a primary As host also showed signs of introduced waste rock in SEM and MLA textural relationships and carbonate modal mineralogies, and (with the exception of samples with disturbed As-depth profiles, Figure 4.1) this presence decreased with depth.

The highest concentrations of natural As might be expected in samples closest to the mineralized shear zones and in soil just above the outcrop surface. The first situation is complicated by the fact that the shear zones are also likely to be disturbed sites since they were the locus of exploration and mining activity.

The soil samples in this study that best represent the second most likely area to concentrate natural As are the lowermost portion of the outcrop soil cores. Most of the outcrops are granitic and do not include shear zones. In fact, the samples with the highest total As concentrations in this study overlie mafic volcanic rocks, exhibit a distinct decrease of As concentration with depth, are removed from mining, road and other activities



Figure 4.1: MLA depth disturbed sites and anthropogenic As sources. This map is an interpretation of anthropogenic As provenance by site location at Giant Mine. All sites contained at least one sample with at least one grain of  $As_2O_3$ , and roaster-derived As has likely effected all sites tested to some degree. In the case of sites marked as having both a roaster and a waste rock component (orange cross), As hosts included As<sub>2</sub>O<sub>3</sub> as well as arsenopyrite in association with quartz/carbonate rock fragments. These sites are also all located near roads (often built of waste rock at mine sites). Sites marked as having a roaster, waste rock, and tailings component shared the same characteristics as those with both roaster and waste rock As sources, with the addition of extremely large numbers of roaster oxides (Table 3.7). Previous work at Giant (Bromstad 2011, Wrye 2008) has shown that soils effected only by roaster-derived As have a more modest number of roaster oxides in proportion to As<sub>2</sub>O<sub>3</sub> grains.

Sites marked as more likely disturbed show evidence disturbance of the depth profile of As concentrations in addition to the introduction of anthropogenic As. This is likely as a result of soil and other surface material being moved around after initial anthropogenic As deposition. This is supported by As concentration fluctuations with depth, as well as textural and host modal mineralogy As information collected during MLA analysis. All of these sites are located along Baker Creek, a known nexus of historic soil upheaval at Giant.

Other sites may have been anthropogenically effected by more than just roaster fallout, in the sense of being contaminated with waste rock or tailings. However, these sites do not show any disruption of the soil depth column in the manner that the Baker Creek wetland soils do (see Figure 3.13, Table 3.7). and lie within one of the downwind directions from the roaster. If we assume that the sampling done for this study is representative of near-surface soils on the Giant property, it can be concluded that most of the As is not of natural origin.

#### 4.2.1 Anthropogenic influences other than roaster fallout

During the MLA QA/QC process it became obvious that several sample sites examined were likely effected by As inputs in addition to roaster fallout (Figure 4.1, Table 4.1). The evidence for this is based in textural relationships of arsenopyrite associated with and still encapsulated within waste rock (mixed silicate/ carbonate), as well as the presence of an unusually large number of ROs. Roaster oxides were manually counted by looking through the Fe-oxides with As phase with the MLA software and visually identifying textures typical of these roaster-generated particles. Many samples analyzed had ratios of ROs to As<sub>2</sub>O<sub>3</sub> similar to those qualitatively observed in previous studies of roaster-impacted soils at Giant Mine (Wrye 2008, Bromstad 2011), however, several samples had noticeably large quantities of ROs relative to other As hosts. As a rule of thumb, most samples interpreted to be effected only by aerial As had less than 50 roaster oxides while some anomalous RO samples had well over 200 (the exception to this is sample 070, with 17,000 µg/g As and around 90 ROs identified). Samples with high RO counts likely represent soils affected by tailings, which are known to contain relatively high amounts of ROs (Walker *et al.* 2005, 2015).

Data in Table 3.7 shows supporting evidence for non-aerial anthropogenic As in the form of RO counts, and the relative proportion of carbonate gangue minerals, arsenopyrite, and As<sub>2</sub>O<sub>3</sub>. All samples with carbonate gangue material greater than 1% area contained silicate/carbonate nodules associated with arsenopyrite. Samples thought to be effected by waste rock are all nearby roads or other known disturbed areas. Samples thought to be effected by tailings also happen to be nearby tailings ponds. Figure 4.1 provides a summary of the various anthropogenic influences on MLA samples.

| Table 4     | .1: Determining             | g anthrop | ogenic As s      | ources of                      | ther than roaster emissions at Giant (supports Figure 4.1)                                                      |
|-------------|-----------------------------|-----------|------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ASU<br>name | Depth profile<br>disturbed? | source    | Golder<br>Sample | As <sub>2</sub> O <sub>3</sub> | Reasoning and justification for being anthropogenic (if no $\mbox{As}_2\mbox{O}_3$ in sample)                   |
| 2           | Y                           | RTW       | IXF4-b           | YES                            | Carbonate/arsenopyrite relationship, 260+ roaster oxides                                                        |
| 3           | Y                           | RTW       | IXF4-c           | YES                            | carbonate/arsenopyrite/ $As_2O_3$ relationship, 50+ roaster oxides with little $As_2O_3,$ proximity to sample 2 |
| 8           | Y                           | RTW       | IVWL2-b          | no                             | carbonate/arsenopyrite/ $As_2O_3$ relationship, relationship with other samples at site                         |
| 9           | Y                           | RTW       | IVWL2-c          | YES                            | carbonate/arsenopyrite/ $As_2O_3$ relationship, relationship with other samples at site                         |
| 10          | Y                           | RTW       | IVWL2-d          | YES                            | carbonate/arsenopyrite/As $_2O_3$ relationship, well over 200 roaster oxides                                    |
| 11          | Y                           | RTW       | IVWL2-e          | YES                            | carbonate/arsenopyrite/As2O3 relationship, well over 100 roaster oxides                                         |
| 17          |                             | R         | IVOC1-a          | YES                            |                                                                                                                 |
| 18          |                             | R         | IVOC1-b          | YES                            |                                                                                                                 |
| 27          |                             | R         | IIIF2-a          | YES                            |                                                                                                                 |
| 28          |                             | R         | IIIF2-b          | YES                            |                                                                                                                 |
| 70          |                             | R         | llOC5-a          | YES                            |                                                                                                                 |
| 71          |                             | R         | IIOC5-b          | YES                            |                                                                                                                 |
| 72          |                             | R         | IIOC5-c          | YES                            |                                                                                                                 |

| Table 4     | Table 4.1: Determining anthropogenic As sources other than roaster emissions at Giant (supports Figure 4.1) |        |                  |                                |                                                                                                                               |  |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| ASU<br>name | Depth profile disturbed?                                                                                    | source | Golder<br>Sample | As <sub>2</sub> O <sub>3</sub> | Reasoning and justification for being anthropogenic (if no $\mbox{As}_2\mbox{O}_3$ in sample)                                 |  |  |  |  |  |  |
| 80          |                                                                                                             | R      | llOC9-a          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 81          |                                                                                                             | R      | IIOC9-b          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 82          |                                                                                                             | R      | IIOC9-c          | no                             | As concentration and weathering product hosts relationship to $\ensuremath{As_2O_3}\xspace$ bearing horizon above             |  |  |  |  |  |  |
| 83          |                                                                                                             | R      | llOC10-a         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 84          |                                                                                                             | R      | IIOC10-b         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 85          |                                                                                                             | R      | IIOC11-a         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 86          |                                                                                                             | R      | IIOC11-b         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 118         | Y                                                                                                           | RW     | IIIWL1-a         | YES                            | arsenopyrite/carbonate relationship; also disrupted depth horizon rela-<br>tionship                                           |  |  |  |  |  |  |
| 119         | Y                                                                                                           | RW     | IIIWL1-b         | YES                            | arsenopyrite/carbonate relationship; also disrupted depth horizon rela-<br>tionship                                           |  |  |  |  |  |  |
| 93          | Y                                                                                                           | RW     | IIIWL1-c         | YES                            | arsenopyrite/carbonate relationship; also disrupted depth horizon rela-<br>tionship                                           |  |  |  |  |  |  |
| 122         |                                                                                                             | R      | IIIOC2-a         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 123         |                                                                                                             | R      | IIIOC2-b         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 124         |                                                                                                             | R      | IIIOC5-a         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 125         |                                                                                                             | R      | IIIOC5-b         | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 147         |                                                                                                             | R      | IVOC4-a          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 148         |                                                                                                             | R      | IVOC4-b          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 169         |                                                                                                             | RW     | VWL2-b           | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 179         |                                                                                                             | R      | VOC1-a           | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 180         |                                                                                                             | R      | VOC1-b           | no                             | As concentration and weathering product hosts relationship to $\ensuremath{As_2O_3}\xspace$ bearing horizon above             |  |  |  |  |  |  |
| 181         |                                                                                                             | R      | VOC2-a           | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 195         |                                                                                                             | RW     | VIWL1A-a         | no                             | Same location as VI-WL-1B, which does have As <sub>2</sub> O <sub>3</sub> . Also arsenopyrite/ carbonate rock relationship    |  |  |  |  |  |  |
| 196         |                                                                                                             | RW     | VIWL1A-b         | no                             | Same location as VI-WL-1B, which does have As <sub>2</sub> O <sub>3</sub> . Also arsenopyrite/<br>carbonate rock relationship |  |  |  |  |  |  |
| 197         |                                                                                                             | RW     | VIWL1B-a         | YES                            | Little As <sub>2</sub> O <sub>3</sub> , arsenopyrite/carbonate rock relationship                                              |  |  |  |  |  |  |
| 198         |                                                                                                             | RW     | VIWL1B-b         | YES                            | Little As <sub>2</sub> O <sub>3</sub> , arsenopyrite/carbonate rock relationship                                              |  |  |  |  |  |  |
| 199         |                                                                                                             | RW     | VIWL1B-c         | YES                            | Little As <sub>2</sub> O <sub>3</sub> , arsenopyrite/carbonate rock relationship                                              |  |  |  |  |  |  |
| 202         |                                                                                                             | R      | VIOC4-a          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 203         |                                                                                                             | R      | VIOC4-b          | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 295         |                                                                                                             | R      | VIIIOC4-a        | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 296         |                                                                                                             | R      | VIIIOC4-b        | YES                            |                                                                                                                               |  |  |  |  |  |  |
| 319         |                                                                                                             | RTW    | IXOC2-a          | YES                            | Well over 200 ROs, plus arsenopyrite/carbonate relationship                                                                   |  |  |  |  |  |  |
| 320         |                                                                                                             | RW     | IXOC2-b          | YES                            | arsenopyrite/carbonate relationship                                                                                           |  |  |  |  |  |  |
| 324         |                                                                                                             | RTW    | IXOC4-a          | YES                            | Close to 100 ROs (tailings possible), plus arsenopyrite/carbonate rela-<br>tionship                                           |  |  |  |  |  |  |
| 325         |                                                                                                             | RW     | IXOC4-b          | YES                            | arsenopyrite/carbonate relationship                                                                                           |  |  |  |  |  |  |

| Table 4     | Table 4.1: Determining anthropogenic As sources other than roaster emissions at Giant (supports Figure 4.1) |        |                  |                                |                                                                                 |  |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------|--------|------------------|--------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| ASU<br>name | Depth profile<br>disturbed?                                                                                 | source | Golder<br>Sample | As <sub>2</sub> O <sub>3</sub> | Reasoning and justification for being anthropogenic (if no $As_2O_3$ in sample) |  |  |  |  |  |
| 326         |                                                                                                             | RW     | IXOC4-c          | YES                            | arsenopyrite/carbonate relationship                                             |  |  |  |  |  |
| 344         |                                                                                                             | R      | IVF2-a           | YES                            |                                                                                 |  |  |  |  |  |
| 345         |                                                                                                             | R      | IVF2-b           | YES                            |                                                                                 |  |  |  |  |  |
| 354         |                                                                                                             | R      | IIIOC8-a         | YES                            |                                                                                 |  |  |  |  |  |

#### 4.3 Conclusions

Depth-stratified regional soil sampling across the Giant Mine lease in 2014 revealed wide-spread As concentrations above the site-specific cleanup guideline of 340 µg/g, with values as high as 17,000 µg/g. Sampling and analyzing all soil samples by depth proved extremely useful, and results indicate that the top soil horizons (usually 0-5cm depth) at a given sample site often had the most As for that site. The exceptions to this are areas with known disturbance, such as the wetland on the edge of Baker Creek. These results have important implications for interpreting results of previous soil sampling studies of the area that did not control sample depth as carefully. Results of this program indicate that a non-depth stratified approach likely underestimates the total concentration of As by diluting As concentrations. This is important with respect to risk assessment if the expectation is that humans and other organisms are most likely to interact with the top few cm of soil.

Mineral Liberation Analysis for this project has turned out to be an extremely useful tool in speciation of As in soils at Giant Mine. On multiple occasions during this project, for samples with very scarce amounts of As<sub>2</sub>O<sub>3</sub>, the MLA software found and catalogued As<sub>2</sub>O<sub>3</sub> grains that would have been difficult to impossible to find by conventional SEM analysis alone; sometimes the largest As<sub>2</sub>O<sub>3</sub> grain(s) in a sample were  $<5\mu$ m in diameter. While samples with low total As<sub>2</sub>O<sub>3</sub> grain counts and area per cents are not very statistically reliable for quantitative calculations, knowing that at least one grain of As<sub>2</sub>O<sub>3</sub> has been found at all 23 MLA sample sites across the Giant Mine Lease is valuable information.

While optimization of MLA operating and processing settings is a very time-consuming affair, once methods have matured they can be very widely applied. While it cannot quantify As weight percentages in poorly-defined phases, the MLA's ability to provide some kind of quantification for As hosts with indistinct BSE brightness levels is very powerful technology. The major As hosts documented in this report, other than As<sub>2</sub>O<sub>3</sub>, arsenopyrite, ROs and As-bearing Fe oxides/oxyhydroxides, had never before been documented in Giant Mine soils. Being able to visually analyze As-bearing weathering products and coatings on organic matter in comparison to As<sub>2</sub>O<sub>3</sub> provides much-needed context for the presence of As<sub>2</sub>O<sub>3</sub> and arsenopyrite in soils. This, in concert with depth-stratified sampling, has resulted in a wealth of new information about the fate of anthropogenic As in Giant Mine soils that will be useful for risk assessment and remediation planning. As well, the extensive MLA analysis of Giant Mine soils has produced a massive amount of data, of which this report only explores a fraction.

Soil samples in this study as a whole are likely to have come by their elevated As concentrations from anthropogenic sources. This is supported by depth horizon chemical information, MLA/SEM exploration

of As hosts amongst soil depths at specific locations, and geographic proximity to the source of contaminants.

The results of this As speciation study can be used to suggest which soils on the Giant property contain the most bioaccessible form of As if orally ingested, and which are most likely to leach As to surrounding surface and ground water. As noted by Plumlee and Morman (2011), As<sub>2</sub>O<sub>3</sub> is considered the most bioaccessible As mineral in terms of its solubility in simulated gastric fluid. Arsenopyrite is one of the least bioaccessible As minerals, and realgar is intermediate. However, the bioaccessibility of the As in the weathering products and organic material noted in this study are unknown. Similarly, the role that these weathering products and organic material play in releasing as to surface and groundwater on the Giant property is unknown. The preliminary evidence from this study is that these materials play a role in mobility of As in the near-surface horizon and require further study.

### 5. References

- Bromstad, Mackenzie and Heather E. Jamieson. (2012) Chapter 2: Giant Mine, Yellowknife, Canada: Arsenite waste as the legacy of gold mining and processing. *The Metabolism of Arsenite*, CRC Press, April 20, 2012, pp 25-41.
- Bromstad, Mackenzie Jane. (2011) *The characterization, persistence, and bioaccessibility of roaster-derived arsenic in surface soils at Giant Mine, Yellowknife, NT.* M.Sc.Thesis, Queen's University, Kingston, Ontario, Canada.
- Buckwalter-Davis, Martha Joy. (2013) *Automated mineral analysis of mine waste*. M.Sc.Thesis, Queen's University, Kingston, Ontario, Canada.
- Canadian Council of Ministers of the Environment (CCME) (2007) Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. Updated September, 2007. In: *Canadian environmental quality guidelines, 1999*, Canadian Council of Ministers of the Environment, Winnipeg
- FEI. (2012) MLA 3.0 User Guide. FEI Australia, Milton, BC. 41pps.
- Goodge, John. 2012. "Back-scattered Electron Detector (BSE)." Online. Accessed November 2014: <u>http://serc.carleton.edu/research\_education/geochemsheets/bse.html</u>
- Government of Canada (2009) CanVec, Canada. 1.1, Government of Canada, Natural Resources Canada, Earth Sciences Sector, Centre for Topographic Information. Online: http://geogratis.ca/geogratis/en/ product/search.do?id=5460AA9D-54CD-8349-C95E-1A4D03172FDF. Accessed 15 August 2011.
- Government of Northwest Territories (GNWT) (2003) APPENDIX 4: Remediation Criteria for Arsenic in the Yellowknife Area Soils and Sediment. In *Environmental guidelines for contaminated site remediation (GNWT)*.
- Hutchinson T.C., Aufreiter S., and Hancock G.V. (1982) Arsenic pollution in the Yellowknife area from gold smelter activities. *Journal of Radioanalytical Chemistry* **71**, 58-73.
- Indian and Northern Affairs Canada (INAC) (2007) *Giant mine remediation plan.* Report of the Giant mine remediation team-Department of Indian Affairs and Northern Development as submitted to the Mackenzie Valley Land and Water Board (MVLWB). 260 pps.
- Kerr D.E. (2001) *Till geochemistry, Yellowknife area, NWT*. Geological Survey of Canada, OpenFile D4019, Natural Resources Canada, Ottawa.
- Kerr D. E. (2006) Surficial geology and exploration geochemistry, Yellowknife area. In *Gold in the Yellowknife Greenstone Belt; Northwest Territories: Results of the EXTECH III Multidisciplinary Research Project*

(eds. C. D. Anglin, H. Falck, D. F. Wright and E. J. Ambrose). Geological Association of Canada, Mineral Deposits Division, pp. 301-324.

- Leffler, Brendan, and Francesca Fionda. 2014. "TIMELINE: Yellowknife's Giant Mine," Global News, November 20th, 2014. Online. Accessed November 23, 2014. <u>http://globalnews.ca/news/1682932/</u> <u>timeline-yellowknifes-giant-mine/</u>
- Meunier L., Koch I. and Reimer K. J. (2011) Effects of organic matter and ageing on the bioaccessibility of arsenic. *Environmental Pollution* **159**, 2530-2536.
- National Resources Conservation Services (NRCS). (2002) *Field Book for Describing and Sampling Soils*. National Soil Survey, U.S. Department of Agriculture, 228pp.
- Qi Y. and Donahoe R. J. (2008) The environmental fate of arsenic in surface soil contaminated by historical herbicide application. *Sci. Total Environ.* **405**, 246-254.
- Plumlee G. S. and Morman S.A. (2011). Mine Wastes and Human Health. *Elements* 7, 399-404.
- Reimann C., Matschullat J., Birke M. and Salminen R. (2009) Arsenic distribution in the environment: The effects of scale. *Appl. Geochem.* **24**, 1147-1167.
- Risklogic Scientific Services, Inc. (Risklogic). (2002) Determining natural (background) arsenic soil concentrations in Yellowknife, NWT, and deriving site-specific human-health based remediation objectives for arsenic in the Yellowknife area: Final Report, 34pp.
- Riveros P.A., Dutrizac J.E., Chen T.T. (2000) Recovery of marketable arsenic trioxide from arsenic rich roaster dust. *Environmental Improvements in Mineral Processing and Extractive Metallurgy: Proceedings of the V International Conference on Clean Technologies for the Mining Industry*. Volume II, 135-149.
- SENES Consultants Limited (SENES) (2005): Air quality monitoring at Giant Mine site-Yellowknife: a baseline study. In:INAC (2007): *Giant Mine Remediation Plan*, supporting document A11. 67pp.
- Sinclair, G.E.B. 1951. No title. Memo to Major MacKay (Director of Indian Affairs Branch, Dept of Citizenship and Immigration) referring to Yellowknife death of Frank Abel via arsenic trioxide poisoning. Accessed online on November 23, 2014: <u>http://globalnews.ca/news/1682932/timeline-yellowknifes-giant-mine/</u>
- Walker S. R., Jamieson H. E., Lanzirotti A., Andrade C. F. and Hall G. E. M. (2005) The speciation of arsenic in iron oxides in mine wastes from the Giant Gold Mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale. *The Canadian Mineralogist* **43**, 1205-1224.
- Walker S.R., Jamieson H.E., Lanzirotti A., Hall G.E.M., Peterson R.C. (2015) The effect of ore roasting on arsenic oxidation state and solid phase speciation in gold mine tailings. *Applied Geochemistry*, in press.
- Wang, Yong, and Ian D. Brindle. (2014) Rapid high-performance sample digestion for ICP determination by ColdBlock<sup>™</sup> digestion: part 2: gold determination in geological samples with memory effect elimination. *J. Anal. At. Spectrom.*, **29**, 1904–1911.

- Wrye L. (2008) Distinguishing between natural and anthropogenic sources of arsenic in soils from the Giant Mine, Northwest Territories, and the North Brookfield Mine, Nova Scotia. M.Sc.Thesis, Queen's University, Kingston, Ontario, Canada.
- Yue Z. and Donahoe R. J. (2009) Experimental simulation of soil contamination by arsenolite. *Applied Geochemistry* **24**, 650-656.

# Appendix I: Sample names, GPS coordinates, and processing information

All GPS coordinates are presented as UTM NAD 83, Zone 11N. "ASU" sample names are the simplified sample numbers used by the lab for all chemistry results.

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler     | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|------------|----------------------------|-------------------------------|
| O-1a            | IOC1-a                      | 141             | I-OC-1              | 0                     | 5                   | 5                         | 636185.01                        | 6931689.17                        | Sept 24, 2014    | 4          | 0                          | a                             |
| O-1b            | IOC1-b                      | 142             | I-OC-1              | 5                     | 15                  | 10                        | 636185.01                        | 6931689.17                        | Sept 24, 2014    | 4          | 0                          | b                             |
| O-2a            | IOC2-a                      | 91              | I-OC-2              | 2                     | 7                   | 5                         |                                  |                                   | Sept 24, 2014    | III OC ½   | 0                          | а                             |
| O-3a            | IOC3-a                      | 92              | I-OC-3              | 2                     | 5                   | 3                         |                                  |                                   | Sept 24, 2014    | III OC ½   | 0                          | а                             |
| O-4a            | llOC1-a                     | 61              | II-OC-1             | 0                     | 5                   | 5                         | 635950.66                        | 6931541.29                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-4b            | IIOC1-b                     | 62              | II-OC-1             | 5                     | 10                  | 5                         | 635950.66                        | 6931541.29                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-5a            | llOC10-a                    | 83              | II-OC-10            | 0                     | 5                   | 5                         | 636432.2                         | 6932428.69                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-5b            | IIOC10-b                    | 84              | II-OC-10            | 5                     | 8                   | 3                         | 636432.2                         | 6932428.69                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-6a            | IIOC11-a                    | 85              | II-OC-11            | 0                     | 5                   | 5                         | 636325                           | 6932364.07                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-6b            | IIOC11-b                    | 86              | II-OC-11            | 5                     | 10                  | 5                         | 636325                           | 6932364.07                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-7a            | llOC2-a                     | 63              | II-OC-2             | 0                     | 3                   | 3                         | 635922.81                        | 6931629.37                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-7b            | IIOC2-b                     | 64              | II-OC-2             | 3                     | 10                  | 7                         | 635922.81                        | 6931629.37                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-8a            | llOC3-a                     | 65              | II-OC-3             | 0                     | 5                   | 5                         | 636083.31                        | 6931640.4                         | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-8b            | IIOC3-b                     | 66              | II-OC-3             | 5                     | 10                  | 5                         | 636083.31                        | 6931640.4                         | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-9a            | llOC4-a                     | 67              | II-OC-4             | 0                     | 5                   | 5                         | 636048.51                        | 6931949.02                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-9b            | IIOC4-b                     | 68              | II-OC-4             | 5                     | 15                  | 10                        | 636048.51                        | 6931949.02                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-9c            | IIOC4-c                     | 69              | II-OC-4             | 15                    | 20                  | 5                         | 636048.51                        | 6931949.02                        | Sept 23, 2014    | OC II      | 0                          | с                             |
| O-10a           | llOC5-a                     | 70              | II-OC-5             | 0                     | 3                   | 3                         | 636451.05                        | 6932509.77                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-10b           | IIOC5-b                     | 71              | II-OC-5             | 3                     | 10                  | 7                         | 636451.05                        | 6932509.77                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-10c           | IIOC5-c                     | 72              | II-OC-5             | 10                    | 20                  | 10                        | 636451.05                        | 6932509.77                        | Sept 23, 2014    | OC II      | 0                          | С                             |
| O-11a           | llOC6-a                     | 73              | II-OC-6             | 0                     | 5                   | 5                         | 636398.7                         | 6932302.41                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-11b           | IIOC6-b                     | 74              | II-OC-6             | 5                     | 15                  | 10                        | 636398.7                         | 6932302.41                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-11c           | IIOC6-c                     | 75              | II-OC-6             | 15                    | 20                  | 5                         | 636398.7                         | 6932302.41                        | Sept 23, 2014    | OC II      | 0                          | с                             |
| O-12a           | llOC7-a                     | 76              | II-OC-7             | 0                     | 10                  | 10                        | 636122.55                        | 6931639.77                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-12b           | llOC7-b                     | 77              | II-OC-7             | 10                    | 16                  | 6                         | 636122.55                        | 6931639.77                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-13a           | llOC8-a                     | 78              | II-OC-8             | 0                     | 12                  | 12                        | 635941.7                         | 6931608.95                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-13b           | IIOC8-b                     | 79              | II-OC-8             | 12                    | 15                  | 3                         | 635941.7                         | 6931608.95                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-14a           | llOC9-a                     | 80              | II-OC-9             | 0                     | 3                   | 3                         | 636029.02                        | 6931857.88                        | Sept 23, 2014    | OC II      | 0                          | а                             |
| O-14b           | IIOC9-b                     | 81              | II-OC-9             | 3                     | 10                  | 7                         | 636029.02                        | 6931857.88                        | Sept 23, 2014    | OC II      | 0                          | b                             |
| O-14c           | IIOC9-c                     | 82              | II-OC-9             | 10                    | 15                  | 5                         | 636029.02                        | 6931857.88                        | Sept 23, 2014    | OC II      | 0                          | С                             |
| O-15a           | IIIOC1-a                    | 120             | III-OC-1            | 0                     | 5                   | 5                         | 635503.8                         | 6932278.09                        | Sept 18, 2014    | III OC 2/2 | 0                          | a                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler      | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|-------------|----------------------------|-------------------------------|
| O-15b           | IIIOC1-b                    | 121             | III-OC-1            | 5                     | 15                  | 10                        | 635503.8                         | 6932278.09                        | Sept 18, 2014    | III OC 2/2  | 0                          | b                             |
| O-16a           | IIIOC2-a                    | 122             | III-OC-2            | 0                     | 8                   | 8                         | 635380.53                        | 6931910.61                        | Sept 18, 2014    | III OC 2/2  | 0                          | а                             |
| O-16b           | IIIOC2-b                    | 123             | III-OC-2            | 8                     | 15                  | 7                         | 635380.53                        | 6931910.61                        | Sept 18, 2014    | III OC 2/2  | 0                          | b                             |
| O-17a           | IIIOC3-a                    | 107             | III-OC-3            | 0                     | 5                   | 5                         | 635383.51                        | 6931444.55                        | Sept 24, 2014    | III OC ½    | 0                          | а                             |
| O-17b           | IIIOC3-b                    | 108             | III-OC-3            | 5                     | 9                   | 4                         | 635383.51                        | 6931444.55                        | Sept 24, 2014    | III OC ½    | 0                          | b                             |
| O-18a           | IIIOC5-a                    | 124             | III-OC-5            | 0                     | 5                   | 5                         | 635474.54                        | 6932350.5                         | Sept 18, 2014    | III OC 2/2  | 0                          | а                             |
| O-18b           | IIIOC5-b                    | 125             | III-OC-5            | 5                     | 10                  | 5                         | 635474.54                        | 6932350.5                         | Sept 18, 2014    | III OC 2/2  | 0                          | b                             |
| O-19a           | IIIOC6-a                    | 109             | III-OC-6            | 0                     | 5                   | 5                         | 635407.47                        | 6931400.91                        | Sept 24, 2014    | III OC ½    | 0                          | а                             |
| O-19b           | IIIOC6-b                    | 110             | III-OC-6            | 5                     | 9                   | 4                         | 635407.47                        | 6931400.91                        | Sept 24, 2014    | III OC ½    | 0                          | b                             |
| O-20a           | IIIOC7-a                    | 111             | III-OC-7            | 0                     | 5                   | 5                         | 635313.32                        | 6931470.69                        | Sept 24, 2014    | III OC ½    | 0                          | а                             |
| O-20b           | IIIOC7-b                    | 112             | III-OC-7            | 5                     | 10                  | 5                         | 635313.32                        | 6931470.69                        | Sept 24, 2014    | III OC ½    | 0                          | b                             |
| O-21a           | IIIOC8-a                    | 354             | III-OC-8            | 0                     | 5                   | 5                         | 635524.27                        | 6930889.3                         | Sept 25, 2014    | Unlabeled 3 | 0                          | а                             |
| O-21b           | IIIOC8-b                    | 355             | III-OC-8            | 5                     | 15                  | 10                        | 635524.27                        | 6930889.3                         | Sept 25, 2014    | Unlabeled 3 | 0                          | b                             |
| O-22a           | IVOC1-a                     | 17              | IV-OC-1             | 0                     | 5                   | 5                         | 635624.43                        | 6933075.96                        | Sept 23, 2014    | Unlabeled 1 | 0                          | а                             |
| O-22b           | IVOC1-b                     | 18              | IV-OC-1             | 5                     | 10                  | 5                         | 635624.43                        | 6933075.96                        | Sept 23, 2014    | Unlabeled 1 | 0                          | b                             |
| O-23a           | IVOC2-a                     | 143             | IV-OC-2             | 0                     | 5                   | 5                         | 635439.89                        | 6934352.11                        | Sept 20, 2014    | 4           | 0                          | а                             |
| O-23b           | IVOC2-b                     | 144             | IV-OC-2             | 5                     | 10                  | 5                         | 635439.89                        | 6934352.11                        | Sept 20, 2014    | 4           | 0                          | b                             |
| O-24a           | IVOC3-a                     | 145             | IV-OC-3             | 0                     | 5                   | 5                         | 635637.44                        | 6934159.42                        | Sept 20, 2014    | 4           | 0                          | а                             |
| O-24b           | IVOC3-b                     | 146             | IV-OC-3             | 5                     | 15                  | 10                        | 635637.44                        | 6934159.42                        | Sept 20, 2014    | 4           | 0                          | b                             |
| O-25a           | IVOC4-a                     | 147             | IV-OC-4             | 0                     | 5                   | 5                         | 635534.69                        | 6933392.38                        | Sept 19, 2014    | 4           | 0                          | а                             |
| O-25b           | IVOC4-b                     | 148             | IV-OC-4             | 5                     | 12                  | 7                         | 635534.69                        | 6933392.38                        | Sept 19, 2014    | 4           | 0                          | b                             |
| O-26a           | IXOC1-a                     | 317             | IX-OC-1             | 0                     | 5                   | 5                         | 636381.15                        | 6933044.47                        | Sept 19, 2014    | IX          | 0                          | а                             |
| O-26b           | IXOC1-b                     | 318             | IX-OC-1             | 5                     | 15                  | 10                        | 636381.15                        | 6933044.47                        | Sept 19, 2014    | IX          | 0                          | b                             |
| O-27a           | IXOC2-a                     | 319             | IX-OC-2             | 0                     | 3                   | 3                         | 636398.38                        | 6932913.57                        | Sept 19, 2014    | IX          | 0                          | а                             |
| O-27b           | IXOC2-b                     | 320             | IX-OC-2             | 3                     | 10                  | 7                         | 636398.38                        | 6932913.57                        | Sept 19, 2014    | IX          | 0                          | b                             |
| O-27c           | IXOC2-c                     | 321             | IX-OC-2             | 10                    | 25                  | 15                        | 636398.38                        | 6932913.57                        | Sept 19, 2014    | IX          | 0                          | С                             |
| O-28a           | IXOC3-a                     | 322             | IX-OC-3             | 0                     | 5                   | 5                         | 636623.56                        | 6932591.58                        | Sept 18, 2014    | IX          | 0                          | а                             |
| O-28b           | IXOC3-b                     | 323             | IX-OC-3             | 5                     | 10                  | 5                         | 636623.56                        | 6932591.58                        | Sept 18, 2014    | IX          | 0                          | b                             |
| O-29a           | IXOC4-a                     | 324             | IX-OC-4             | 0                     | 6                   | 6                         | 636325.05                        | 6933004.24                        | Sept 18, 2014    | IX          | 0                          | а                             |
| O-29b           | IXOC4-b                     | 325             | IX-OC-4             | 6                     | 15                  | 9                         | 636325.05                        | 6933004.24                        | Sept 18, 2014    | IX          | 0                          | b                             |
| O-29c           | IXOC4-c                     | 326             | IX-OC-4             | 15                    | 20                  | 5                         | 636325.05                        | 6933004.24                        | Sept 18, 2014    | IX          | 0                          | С                             |
| O-30a           | IXOC5-a                     | 327             | IX-OC-5             | 0                     | 7                   | 7                         | 636228.05                        | 6934011.83                        | Sept 19, 2014    | IX          | 0                          | а                             |
| O-30b           | IXOC5-b                     | 328             | IX-OC-5             | 7                     | 15                  | 8                         | 636228.05                        | 6934011.83                        | Sept 19, 2014    | IX          | 0                          | b                             |
| O-31a           | VOC1-a                      | 179             | V-OC-1              | 0                     | 5                   | 5                         | 635422.67                        | 6934951.42                        | Sept 20, 2014    | V OC        | 0                          | а                             |
| O-31b           | VOC1-b                      | 180             | V-OC-1              | 5                     | 15                  | 10                        | 635422.67                        | 6934951.42                        | Sept 20, 2014    | V OC        | 0                          | b                             |
| O-32a           | VOC2-a                      | 181             | V-OC-2              | 0                     | 5                   | 5                         | 635540.94                        | 6935248.45                        | Sept 20, 2014    | V OC        | 0                          | а                             |
| O-32b           | VOC2-b                      | 182             | V-0C-2              | 5                     | 15                  | 10                        | 635540.94                        | 6935248.45                        | Sept 20, 2014    | V OC        | 0                          | b                             |
| O-32c           | VOC2-c                      | 183             | V-0C-2              | 15                    | 25                  | 10                        | 635540.94                        | 6935248.45                        | Sept 20, 2014    | V OC        | 0                          | С                             |
| O-32d           | VOC2-d                      | 184             | V-0C-2              | 25                    | 35                  | 10                        | 635540.94                        | 6935248.45                        | Sept 20, 2014    | V OC        | 0                          | d                             |
| O-33a           | VOC3-a                      | 185             | V-OC-3              | 0                     | 5                   | 5                         | 635830.81                        | 6936035.41                        | Sept 21, 2014    | V OC        | 0                          | а                             |
| O-33b           | VOC3-b                      | 186             | V-OC-3              | 5                     | 15                  | 10                        | 635830.81                        | 6936035.41                        | Sept 21, 2014    | V OC        | 0                          | b                             |
| O-33c           | VOC3-c                      | 187             | V-OC-3              | 15                    | 25                  | 10                        | 635830.81                        | 6936035.41                        | Sept 21, 2014    | V OC        | 0                          | С                             |
| O-34a           | VOC4-a                      | 188             | V-OC-4              | 0                     | 5                   | 5                         | 636109.43                        | 6935799.23                        | Sept 20, 2014    | V OC        | 0                          | а                             |
| O-34b           | VOC4-b                      | 189             | V-OC-4              | 5                     | 15                  | 10                        | 636109.43                        | 6935799.23                        | Sept 20, 2014    | V OC        | 0                          | b                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|--------|----------------------------|-------------------------------|
| O-34c           | VOC4-c                      | 190             | V-OC-4              | 15                    | 30                  | 15                        | 636109.43                        | 6935799.23                        | Sept 20, 2014    | V OC   | 0                          | с                             |
| O-35a           | VOC5-a                      | 191             | V-OC-5              | 0                     | 5                   | 5                         | 635488.15                        | 6935064.51                        | Sept 20, 2014    | V OC   | 0                          | а                             |
| O-35b           | VOC5-b                      | 192             | V-OC-5              | 5                     | 10                  | 5                         | 635488.15                        | 6935064.51                        | Sept 20, 2014    | V OC   | 0                          | b                             |
| O-36a           | VOC6-a                      | 193             | V-OC-6              | 0                     | 5                   | 5                         | 635863.32                        | 6936172.8                         | Sept 21, 2014    | V OC   | 0                          | а                             |
| O-36b           | VOC6-b                      | 194             | V-OC-6              | 5                     | 15                  | 10                        | 635863.32                        | 6936172.8                         | Sept 21, 2014    | V OC   | 0                          | b                             |
| O-37a           | VIOC1-a                     | 209             | VI-OC-1             | 0                     | 5                   | 5                         | 635739.69                        | 6936928.37                        | Sept 20, 2014    | 6 (2)  | 0                          | а                             |
| O-37b           | VIOC1-b                     | 210             | VI-OC-1             | 5                     | 15                  | 10                        | 635739.69                        | 6936928.37                        | Sept 20, 2014    | 6 (2)  | 0                          | b                             |
| O-38a           | VIOC2-a                     | 211             | VI-OC-2             | 0                     | 5                   | 5                         | 635376.33                        | 6937414.29                        | Sept 20, 2014    | 6 (2)  | 0                          | а                             |
| O-38b           | VIOC2-b                     | 212             | VI-OC-2             | 5                     | 10                  | 5                         | 635376.33                        | 6937414.29                        | Sept 20, 2014    | 6 (2)  | 0                          | b                             |
| O-39a           | VIOC3-a                     | 231             | VI-OC-3             | 0                     | 5                   | 5                         | 636016.33                        | 6936625.18                        | Sept 21, 2014    | 6 (2)  | 0                          | а                             |
| O-39b           | VIOC3-b                     | 232             | VI-OC-3             | 5                     | 10                  | 5                         | 636016.33                        | 6936625.18                        | Sept 21, 2014    | 6 (2)  | 0                          | b                             |
| O-40a           | VIOC4-a                     | 202             | VI-OC-4             | 0                     | 5                   | 5                         | 635412.78                        | 6936899.4                         | Sept 20, 2014    | VI     | 0                          | a                             |
| O-40b           | VIOC4-b                     | 203             | VI-OC-4             | 5                     | 10                  | 5                         | 635412.78                        | 6936899.4                         | Sept 20, 2014    | VI     | 0                          | b                             |
| O-41a           | VIOC5-a                     | 233             | VI-OC-5             | 0                     | 5                   | 5                         | 635334.11                        | 6937401.41                        | Sept 20, 2014    | 6 (2)  | 0                          | а                             |
| O-41b           | VIOC5-b                     | 234             | VI-OC-5             | 5                     | 10                  | 5                         | 635334.11                        | 6937401.41                        | Sept 20, 2014    | 6 (2)  | 0                          | b                             |
| O-41c           | VIOC5-c                     | 235             | VI-OC-5             | 10                    | 20                  | 10                        | 635334.11                        | 6937401.41                        | Sept 20, 2014    | 6 (2)  | 0                          | С                             |
| O-42a           | VIIOC1-a                    | 242             | VII-OC-1            | 0                     | 5                   | 5                         | 636334.58                        | 6935862                           | Sept 19, 2014    | VII    | 0                          | а                             |
| O-42b           | VIIOC1-b                    | 243             | VII-OC-1            | 5                     | 10                  | 5                         | 636334.58                        | 6935862                           | Sept 19, 2014    | VII    | 0                          | b                             |
| O-42c           | VIIOC1-c                    | 244             | VII-OC-1            | 10                    | 35                  | 25                        | 636334.58                        | 6935862                           | Sept 19, 2014    | VII    | 0                          | С                             |
| O-43a           | VIIOC2-a                    | 254             | VII-OC-2            | 0                     | 5                   | 5                         | 636392.48                        | 6935769.57                        | Sept 19, 2014    | 7 – 2  | 0                          | а                             |
| O-43b           | VIIOC2-b                    | 255             | VII-OC-2            | 5                     | 15                  | 10                        | 636392.48                        | 6935769.57                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-44a           | VIIOC3-a                    | 256             | VII-OC-3            | 0                     | 5                   | 5                         | 636451.42                        | 6935589.09                        | Sept 19, 2014    | 7 – 2  | 0                          | a                             |
| O-44b           | VIIOC3-b                    | 257             | VII-OC-3            | 5                     | 15                  | 10                        | 636451.42                        | 6935589.09                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-45a           | VIIOC4-a                    | 258             | VII-OC-4            | 0                     | 5                   | 5                         | 636801.34                        | 6935300.12                        | Sept 19, 2014    | 7 – 2  | 0                          | a                             |
| O-45b           | VIIOC4-b                    | 259             | VII-OC-4            | 5                     | 10                  | 5                         | 636801.34                        | 6935300.12                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-46a           | VIIOC5-a                    | 260             | VII-OC-5            | 0                     | 5                   | 5                         | 636755.79                        | 6935129.84                        | Sept 19, 2014    | 7 – 2  | 0                          | a                             |
| O-47a           | VIIOC6-a                    | 261             | VII-OC-6            | 0                     | 5                   | 5                         | 636603.53                        | 6934997.55                        | Sept 19, 2014    | 7 – 2  | 0                          | а                             |
| O-47b           | VIIOC6-b                    | 262             | VII-OC-6            | 5                     | 10                  | 5                         | 636603.53                        | 6934997.55                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-48a           | VIIOC7-a                    | 263             | VII-OC-7            | 0                     | 5                   | 5                         | 636697.62                        | 6935090.64                        | Sept 19, 2014    | 7 – 2  | 0                          | а                             |
| O-48b           | VIIOC7-b                    | 264             | VII-OC-7            | 5                     | 10                  | 5                         | 636697.62                        | 6935090.64                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-49a           | VIIOC8-a                    | 265             | VII-OC-8            | 0                     | 5                   | 5                         | 636781.22                        | 6935225.69                        | Sept 19, 2014    | 7 – 2  | 0                          | а                             |
| O-49b           | VIIOC8-b                    | 266             | VII-OC-8            | 5                     | 15                  | 10                        | 636781.22                        | 6935225.69                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-49c           | VIIOC8-c                    | 267             | VII-OC-8            | 15                    | 25                  | 10                        | 636781.22                        | 6935225.69                        | Sept 19, 2014    | 7 – 2  | 0                          | С                             |
| O-50a           | VIIOC9-a                    | 268             | VII-OC-9            | 0                     | 5                   | 5                         | 636441.03                        | 6935779.38                        | Sept 19, 2014    | 7 – 2  | 0                          | a                             |
| O-50b           | VIIOC9-b                    | 269             | VII-OC-9            | 5                     | 15                  | 10                        | 636441.03                        | 6935779.38                        | Sept 19, 2014    | 7 – 2  | 0                          | b                             |
| O-50c           | VIIOC9-c                    | 270             | VII-OC-9            | 15                    | 30                  | 15                        | 636441.03                        | 6935779.38                        | Sept 19, 2014    | 7 – 2  | 0                          | С                             |
| O-51a           | VIIIOC1-a                   | 288             | VIII-OC-1           | 0                     | 5                   | 5                         | 637083.34                        | 6934785.33                        | Sept 19, 2014    | VIII   | 0                          | a                             |
| O-51b           | VIIIOC1-b                   | 289             | VIII-OC-1           | 5                     | 10                  | 5                         | 637083.34                        | 6934785.33                        | Sept 19, 2014    | VIII   | 0                          | b                             |
| O-52a           | VIIIOC2-a                   | 290             | VIII-OC-2           | 0                     | 5                   | 5                         | 636768.33                        | 6934462.29                        | Sept 19, 2014    | VIII   | 0                          | a                             |
| O-52b           | VIIIOC2-b                   | 291             | VIII-OC-2           | 5                     | 10                  | 5                         | 636768.33                        | 6934462.29                        | Sept 19, 2014    | VIII   | 0                          | b                             |
| O-52c           | VIIIOC2-c                   | 292             | VIII-OC-2           | 10                    | 20                  | 10                        | 636768.33                        | 6934462.29                        | Sept 19, 2014    | VIII   | 0                          | С                             |
| O-53a           | VIIIOC3-a                   | 293             | VIII-OC-3           | 0                     | 5                   | 5                         | 636830.17                        | 6934349.96                        | Sept 19, 2014    | VIII   | 0                          | а                             |
| O-53b           | VIIIOC3-b                   | 294             | VIII-OC-3           | 5                     | 10                  | 5                         | 636830.17                        | 6934349.96                        | Sept 19, 2014    | VIII   | 0                          | b                             |
| O-54a           | VIIIOC4-a                   | 295             | VIII-OC-4           | 0                     | 5                   | 5                         | 636751.1                         | 6934342.25                        | Sept 19, 2014    | VIII   | 0                          | а                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler      | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|-------------|----------------------------|-------------------------------|
| O-54b           | VIIIOC4-b                   | 296             | VIII-OC-4           | 5                     | 20                  | 15                        | 636751.1                         | 6934342.25                        | Sept 19, 2014    | VIII        | 0                          | b                             |
| O-55a           | VIIIOC5-a                   | 279             | VIII-OC-5           | 0                     | 10                  | 10                        | 636385.08                        | 6934179.99                        | Sept 19, 2014    | VIII        | 0                          | а                             |
| O-55b           | VIIIOC5-b                   | 280             | VIII-OC-5           | 10                    | 15                  | 5                         | 636385.08                        | 6934179.99                        | Sept 19, 2014    | VIII        | 0                          | b                             |
| O-56a           | VIIIOC6-a                   | 281             | VIII-OC-6           | 0                     | 5                   | 5                         | 637059.27                        | 6934681.73                        | Sept 19, 2014    | VIII        | 0                          | а                             |
| O-56b           | VIIIOC6-b                   | 282             | VIII-OC-6           | 5                     | 10                  | 5                         | 637059.27                        | 6934681.73                        | Sept 19, 2014    | VIII        | 0                          | b                             |
| S-57a           | Stockpile<br>1-a            | 349             | Stockpile 1         |                       |                     | 0                         | 635571.06                        | 6933322.49                        | Sept 25, 2014    | Unlabeled 3 | S                          | а                             |
| S-57b           | Stockpile<br>2-b            | 350             | Stockpile 2         |                       |                     | 0                         | 635571.06                        | 6933322.49                        | Sept 25, 2014    | Unlabeled 3 | S                          | b                             |
| S-57c           | Stockpile<br>3-c            | 351             | Stockpile 3         |                       |                     | 0                         | 635571.06                        | 6933322.49                        | Sept 25, 2014    | Unlabeled 3 | S                          | С                             |
| S-57d           | Stockpile<br>4-d            | 352             | Stockpile 4         |                       |                     | 0                         | 635571.06                        | 6933322.49                        | Sept 25, 2014    | Unlabeled 3 | S                          | d                             |
| S-57e           | Stockpile<br>5-e            | 353             | Stockpile 5         |                       |                     | 0                         | 635571.06                        | 6933322.49                        | Sept 25, 2014    | Unlabeled 3 | S                          | е                             |
| F-58a           | IF1-a                       | 126             | I-F-1               | 0                     | 5                   | 5                         | 636350.79                        | 6931873.29                        | Sept 24, 2014    | 4           | F                          | а                             |
| F-58b           | IF1-b                       | 127             | I-F-1               | 5                     | 15                  | 10                        | 636350.79                        | 6931873.29                        | Sept 24, 2014    | 4           | F                          | b                             |
| F-58c           | IF1-c                       | 128             | I-F-1               | 15                    | 30                  | 15                        | 636350.79                        | 6931873.29                        | Sept 24, 2014    | 4           | F                          | С                             |
| F-58d           | IF1-d                       | 129             | I-F-1               | 30                    | 60                  | 30                        | 636350.79                        | 6931873.29                        | Sept 24, 2014    | 4           | F                          | d                             |
| F-58e           | IF1-e                       | 130             | I-F-1               | 60                    | 100                 | 40                        | 636350.79                        | 6931873.29                        | Sept 24, 2014    | 4           | F                          | е                             |
| F-59a           | IF2-a                       | 102             | I-F-2               | 0                     | 5                   | 5                         | 636212.25                        | 6931855.35                        | Sept 24, 2014    | III OC ½    | F                          | а                             |
| F-59b           | IF2-b                       | 103             | I-F-2               | 5                     | 15                  | 10                        | 636212.25                        | 6931855.35                        | Sept 24, 2014    | III OC ½    | F                          | b                             |
| F-59c           | IF2-c                       | 104             | I-F-2               | 15                    | 30                  | 15                        | 636212.25                        | 6931855.35                        | Sept 24, 2014    | III OC ½    | F                          | С                             |
| F-59d           | IF2-d                       | 105             | I-F-2               | 30                    | 60                  | 30                        | 636212.25                        | 6931855.35                        | Sept 24, 2014    | III OC ½    | F                          | d                             |
| F-59e           | IF2-e                       | 106             | I-F-2               | 60                    | 100                 | 40                        | 636212.25                        | 6931855.35                        | Sept 24, 2014    | III OC ½    | F                          | е                             |
| F-60a           | IIF1-a                      | 334             | II-F-1              | 0                     | 5                   | 5                         | 635728.32                        | 6931692.81                        | Sept 23, 2014    | IX          | F                          | а                             |
| F-60b           | llF1-b                      | 335             | II-F-1              | 5                     | 15                  | 10                        | 635728.32                        | 6931692.81                        | Sept 23, 2014    | IX          | F                          | b                             |
| F-60c           | IIF1-c                      | 336             | II-F-1              | 15                    | 30                  | 15                        | 635728.32                        | 6931692.81                        | Sept 23, 2014    | IX          | F                          | С                             |
| F-60d           | llF1-d                      | 337             | II-F-1              | 30                    | 60                  | 30                        | 635728.32                        | 6931692.81                        | Sept 23, 2014    | IX          | F                          | d                             |
| F-60e           | IIF1-e                      | 338             | II-F-1              | 60                    | 100                 | 40                        | 635728.32                        | 6931692.81                        | Sept 23, 2014    | IX          | F                          | е                             |
| F-61a           | IIF2-a                      | 56              | II-F-2              | 0                     | 5                   | 5                         | 635905.99                        | 6931977.76                        | Sept 23, 2014    | Unlabeled 2 | F                          | а                             |
| F-61b           | IIF2-b                      | 57              | II-F-2              | 5                     | 15                  | 10                        | 635905.99                        | 6931977.76                        | Sept 23, 2014    | Unlabeled 2 | F                          | b                             |
| F-61c           | IIF2-c                      | 58              | II-F-2              | 15                    | 30                  | 15                        | 635905.99                        | 6931977.76                        | Sept 23, 2014    | Unlabeled 2 | F                          | с                             |
| F-61d           | IIF2-d                      | 59              | II-F-2              | 30                    | 60                  | 30                        | 635905.99                        | 6931977.76                        | Sept 23, 2014    | Unlabeled 2 | F                          | d                             |
| F-61e           | IIF2-e                      | 60              | II-F-2              | 60                    | 100                 | 40                        | 635905.99                        | 6931977.76                        | Sept 23, 2014    | Unlabeled 2 | F                          | е                             |
| F-62a           | IIF3-a                      | 51              | II-F-3              | 0                     | 5                   | 5                         | 636019.77                        | 6932159.74                        | Sept 23, 2014    | Unlabeled 2 | F                          | а                             |
| F-62b           | IIF3-b                      | 52              | II-F-3              | 5                     | 15                  | 10                        | 636019.77                        | 6932159.74                        | Sept 23, 2014    | Unlabeled 2 | F                          | b                             |
| F-62c           | IIF3-c                      | 53              | II-F-3              | 15                    | 30                  | 15                        | 636019.77                        | 6932159.74                        | Sept 23, 2014    | Unlabeled 2 | F                          | с                             |
| F-62d           | llF3-d                      | 54              | II-F-3              | 30                    | 60                  | 30                        | 636019.77                        | 6932159.74                        | Sept 23, 2014    | Unlabeled 2 | F                          | d                             |
| F-62e           | IIF3-e                      | 55              | II-F-3              | 60                    | 90                  | 30                        | 636019.77                        | 6932159.74                        | Sept 23, 2014    | Unlabeled 2 | F                          | е                             |
| F-63a           | IIIF1-a                     | 356             | III-F-1             | 0                     | 5                   | 5                         | 635584.18                        | 6930900.66                        | Sept 25, 2014    | Unlabeled 3 | F                          | а                             |
| F-63b           | IIIOC8-b                    | 357             | III-OC-8            | 5                     | 15                  | 10                        | 635524.27                        | 6930889.3                         | Sept 25, 2014    | Unlabeled 3 | F                          | b                             |
| F-63c           | IIIOC8-c                    | 358             | III-OC-8            | 15                    | 30                  | 15                        | 635524.27                        | 6930889.3                         | Sept 25, 2014    | Unlabeled 3 | F                          | с                             |
| F-63d           | IIIOC8-d                    | 359             | III-OC-8            | 30                    | 70                  | 40                        | 635524.27                        | 6930889.3                         | Sept 25, 2014    | Unlabeled 3 | F                          | d                             |
| F-64a           | IIIF2-a                     | 27              | III-F-2             | 0                     | 5                   | 5                         | 635671.81                        | 6932673.05                        | Sept 23, 2014    | Unlabeled 1 | F                          | а                             |
| F-64b           | IIIF2-b                     | 28              | III-F-2             | 5                     | 15                  | 10                        | 635671.81                        | 6932673.05                        | Sept 23, 2014    | Unlabeled 1 | F                          | b                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler      | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|-------------|----------------------------|-------------------------------|
| F-64c           | IIIF2-c                     | 29              | III-F-2             | 15                    | 30                  | 15                        | 635671.81                        | 6932673.05                        | Sept 23, 2014    | Unlabeled 1 | F                          | с                             |
| F-64d           | IIIF2-d                     | 30              | III-F-2             | 30                    | 55                  | 25                        | 635671.81                        | 6932673.05                        | Sept 23, 2014    | Unlabeled 1 | F                          | d                             |
| F-64e           | IIIF2-e                     | 31              | III-F-2             | 55                    | 100                 | 45                        | 635671.81                        | 6932673.05                        | Sept 23, 2014    | Unlabeled 1 | F                          | е                             |
| F-65a           | IVF1-a                      | 101             | IV-F-1              | 0                     | 5                   | 5                         | 635676.81                        | 6933750.61                        | Sept 24, 2014    | III OC ½    | F                          | а                             |
| F-65b           | IVF1-b                      | 87              | IV-F-1              | 5                     | 15                  | 10                        | 635676.81                        | 6933750.61                        | Sept 24, 2014    | III OC ½    | F                          | b                             |
| F-65c           | IVF1-c                      | 88              | IV-F-1              | 15                    | 30                  | 15                        | 635676.81                        | 6933750.61                        | Sept 24, 2014    | III OC ½    | F                          | с                             |
| F-65d           | IVF1-d                      | 89              | IV-F-1              | 30                    | 60                  | 30                        | 635676.81                        | 6933750.61                        | Sept 24, 2014    | III OC ½    | F                          | d                             |
| F-65e           | IVF1-e                      | 90              | IV-F-1              | 60                    | 100                 | 40                        | 635676.81                        | 6933750.61                        | Sept 24, 2014    | III OC ½    | F                          | е                             |
| F-66a           | IVF2-a                      | 344             | IV-F-2              | 0                     | 5                   | 5                         | 635657.79                        | 6933610.42                        | Sept 25, 2014    | Unlabeled 3 | F                          | а                             |
| F-66b           | IVF2-b                      | 345             | IV-F-2              | 5                     | 20                  | 15                        | 635657.79                        | 6933610.42                        | Sept 25, 2014    | Unlabeled 3 | F                          | b                             |
| F-66c           | IVF2-c                      | 346             | IV-F-2              | 20                    | 30                  | 10                        | 635657.79                        | 6933610.42                        | Sept 25, 2014    | Unlabeled 3 | F                          | С                             |
| F-66d           | IVF2-d                      | 347             | IV-F-2              | 30                    | 60                  | 30                        | 635657.79                        | 6933610.42                        | Sept 25, 2014    | Unlabeled 3 | F                          | d                             |
| F-66e           | IVF2-e                      | 348             | IV-F-2              | 60                    | 100                 | 40                        | 635657.79                        | 6933610.42                        | Sept 25, 2014    | Unlabeled 3 | F                          | е                             |
| F-67a           | IVF3A-a                     | 19              | IV-F-3A             | 0                     | 5                   | 5                         | 635642.96                        | 6933228.39                        | Sept 23, 2014    | Unlabeled 1 | F                          | а                             |
| F-67b           | IVF3A-b                     | 20              | IV-F-3A             | 5                     | 15                  | 10                        | 635642.96                        | 6933228.39                        | Sept 23, 2014    | Unlabeled 1 | F                          | b                             |
| F-67c           | IVF3A-c                     | 21              | IV-F-3A             | 15                    | 35                  | 20                        | 635642.96                        | 6933228.39                        | Sept 23, 2014    | Unlabeled 1 | F                          | С                             |
| F-68a           | IVF3B-a                     | 22              | IV-F-3B             | 0                     | 5                   | 5                         | 635618.05                        | 6933181.65                        | Sept 23, 2014    | Unlabeled 1 | F                          | а                             |
| F-68b           | IVF3B-b                     | 23              | IV-F-3B             | 5                     | 15                  | 10                        | 635618.05                        | 6933181.65                        | Sept 23, 2014    | Unlabeled 1 | F                          | b                             |
| F-68c           | IVF3B-c                     | 24              | IV-F-3B             | 15                    | 30                  | 15                        | 635618.05                        | 6933181.65                        | Sept 23, 2014    | Unlabeled 1 | F                          | с                             |
| F-68d           | IVF3B-d                     | 25              | IV-F-3B             | 30                    | 60                  | 30                        | 635618.05                        | 6933181.65                        | Sept 23, 2014    | Unlabeled 1 | F                          | d                             |
| F-68e           | IVF3B-e                     | 26              | IV-F-3B             | 60                    | 100                 | 40                        | 635618.05                        | 6933181.65                        | Sept 23, 2014    | Unlabeled 1 | F                          | е                             |
| F-69a           | IXF1-a                      | 113             | IX-F-1              | 0                     | 5                   | 5                         | 636261.41                        | 6933286.03                        | Sept 24, 2014    | III OC ½    | F                          | а                             |
| F-69b           | IXF1-b                      | 114             | IX-F-1              | 5                     | 15                  | 10                        | 636261.41                        | 6933286.03                        | Sept 24, 2014    | III OC ½    | F                          | b                             |
| F-69c           | IXF1-c                      | 115             | IX-F-1              | 15                    | 30                  | 15                        | 636261.41                        | 6933286.03                        | Sept 24, 2014    | III OC ½    | F                          | с                             |
| F-69d           | IXF1-d                      | 116             | IX-F-1              | 30                    | 55                  | 25                        | 636261.41                        | 6933286.03                        | Sept 24, 2014    | III OC ½    | F                          | d                             |
| F-69e           | IXF1-e                      | 117             | IX-F-1              | 55                    | 100                 | 45                        | 636261.41                        | 6933286.03                        | Sept 24, 2014    | III OC ½    | F                          | е                             |
| F-70a           | IXF2-a                      | 37              | IX-F-2              | 0                     | 5                   | 5                         | 636275.36                        | 6933650.19                        | Sept 23, 2014    | Unlabeled 2 | F                          | а                             |
| F-70b           | IXF2-b                      | 38              | IX-F-2              | 5                     | 15                  | 10                        | 636275.36                        | 6933650.19                        | Sept 23, 2014    | Unlabeled 2 | F                          | b                             |
| F-70c           | IXF2-c                      | 39              | IX-F-2              | 15                    | 30                  | 15                        | 636275.36                        | 6933650.19                        | Sept 23, 2014    | Unlabeled 2 | F                          | с                             |
| F-70d           | IXF2-d                      | 40              | IX-F-2              | 30                    | 45                  | 15                        | 636275.36                        | 6933650.19                        | Sept 23, 2014    | Unlabeled 2 | F                          | d                             |
| F-71a           | IXF3-a                      | 329             | IX-F-3              | 0                     | 5                   | 5                         | 636126.95                        | 6934013.26                        | Sept 22, 2014    | IX          | F                          | а                             |
| F-71b           | IXF3-b                      | 330             | IX-F-3              | 5                     | 15                  | 10                        | 636126.95                        | 6934013.26                        | Sept 22, 2014    | IX          | F                          | b                             |
| F-71c           | IXF3-c                      | 331             | IX-F-3              | 15                    | 30                  | 15                        | 636126.95                        | 6934013.26                        | Sept 22, 2014    | IX          | F                          | с                             |
| F-71d           | IXF3-d                      | 332             | IX-F-3              | 30                    | 60                  | 30                        | 636126.95                        | 6934013.26                        | Sept 22, 2014    | IX          | F                          | d                             |
| F-71e           | IXF3-e                      | 333             | IX-F-3              | 60                    | 100                 | 40                        | 636126.95                        | 6934013.26                        | Sept 22, 2014    | IX          | F                          | е                             |
| F-72a           | IXF4-a                      | 1               | IX-F-4              | 0                     | 5                   | 5                         | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | а                             |
| F-72b           | IXF4-b                      | 2               | IX-F-4              | 5                     | 15                  | 10                        | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | b                             |
| F-72c           | IXF4-c                      | 3               | IX-F-4              | 15                    | 30                  | 15                        | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | С                             |
| F-72d           | IXF4-d                      | 4               | IX-F-4              | 30                    | 60                  | 30                        | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | d                             |
| F-72e           | IXF4-e                      | 5               | IX-F-4              | 60                    | 85                  | 25                        | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | е                             |
| F-72f           | IXF4-f                      | 6               | IX-F-4              | 85                    | 100                 | 15                        | 636187.95                        | 6933732.48                        | Sept 23, 2014    | Unlabeled 1 | F                          | f                             |
| F-73a           | VF1-a                       | 170             | V-F-1               | 0                     | 5                   | 5                         | 635549.57                        | 6934923.14                        | Sept 21, 2014    | V           | F                          | а                             |
| F-73b           | VF1-b                       | 171             | V-F-1               | 5                     | 15                  | 10                        | 635549.57                        | 6934923.14                        | Sept 21, 2014    | V           | F                          | b                             |
| F-73c           | VF1-c                       | 172             | V-F-1               | 15                    | 30                  | 15                        | 635549.57                        | 6934923.14                        | Sept 21, 2014    | V           | F                          | С                             |
| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|--------|----------------------------|-------------------------------|
| F-73d           | VF1-d                       | 173             | V-F-1               | 30                    | 50                  | 20                        | 635549.57                        | 6934923.14                        | Sept 21, 2014    | V      | F                          | d                             |
| F-73e           | VF1-e                       | 174             | V-F-1               | 50                    | 100                 | 50                        | 635549.57                        | 6934923.14                        | Sept 21, 2014    | V      | F                          | е                             |
| F-74a           | VF2-a                       | 175             | V-F-2               | 0                     | 10                  | 10                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | а                             |
| F-74b           | VF2-b                       | 176             | V-F-2               | 10                    | 20                  | 10                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | b                             |
| F-74c           | VF2-c                       | 177             | V-F-2               | 20                    | 50                  | 30                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | с                             |
| F-74d           | VF2-d                       | 178             | V-F-2               | 50                    | 80                  | 30                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | d                             |
| F-74e           | VF2-e                       | 161             | V-F-2               | 80                    | 90                  | 10                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | е                             |
| F-74f           | VF2-f                       | 162             | V-F-2               | 100                   | 110                 | 10                        | 635808.72                        | 6936399.2                         | Sept 21, 2014    | V      | F                          | f                             |
| F-75a           | VIF1-a                      | 222             | VI-F-1              | 0                     | 5                   | 5                         | 635933.86                        | 6936475.7                         | Sept 21, 2014    | 6 (2)  | F                          | а                             |
| F-75b           | VIF1-b                      | 223             | VI-F-1              | 5                     | 20                  | 15                        | 635933.86                        | 6936475.7                         | Sept 21, 2014    | 6 (2)  | F                          | b                             |
| F-75c           | VIF1-c                      | 224             | VI-F-1              | 20                    | 30                  | 10                        | 635933.86                        | 6936475.7                         | Sept 21, 2014    | 6 (2)  | F                          | с                             |
| F-75d           | VIF1-d                      | 225             | VI-F-1              | 30                    | 60                  | 30                        | 635933.86                        | 6936475.7                         | Sept 21, 2014    | 6 (2)  | F                          | d                             |
| F-75e           | VIF1-e                      | 226             | VI-F-1              | 60                    | 90                  | 30                        | 635933.86                        | 6936475.7                         | Sept 21, 2014    | 6 (2)  | F                          | е                             |
| F-76a           | VIF2-a                      | 227             | VI-F-2              | 0                     | 5                   | 5                         | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | а                             |
| F-76b           | VIF2-b                      | 228             | VI-F-2              | 5                     | 10                  | 5                         | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | b                             |
| F-76c           | VIF2-c                      | 229             | VI-F-2              | 10                    | 30                  | 20                        | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | С                             |
| F-76d           | VIF2-d                      | 230             | VI-F-2              | 30                    | 50                  | 20                        | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | d                             |
| F-76e           | VIF2-e                      | 213             | VI-F-2              | 50                    | 60                  | 10                        | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | е                             |
| F-76f           | VIF2-f                      | 214             | VI-F-2              | 60                    | 80                  | 20                        | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | f                             |
| F-76g           | VIF2-g                      | 215             | VI-F-2              | 80                    | 85                  | 5                         | 635606.08                        | 6936706.54                        | Sept 20, 2014    | 6 (2)  | F                          | g                             |
| F-77a           | VIF3-a                      | 216             | VI-F-3              | 0                     | 5                   | 5                         | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | а                             |
| F-77b           | VIF3-b                      | 217             | VI-F-3              | 5                     | 15                  | 10                        | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | b                             |
| F-77c           | VIF3-c                      | 218             | VI-F-3              | 15                    | 25                  | 10                        | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | С                             |
| F-77d           | VIF3-d                      | 219             | VI-F-3              | 25                    | 45                  | 20                        | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | d                             |
| F-77e           | VIF3-e                      | 220             | VI-F-3              | 45                    | 55                  | 10                        | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | е                             |
| F-77f           | VIF3-f                      | 221             | VI-F-3              | 55                    | 80                  | 25                        | 635353.5                         | 6937279.52                        | Sept 20, 2014    | 6 (2)  | F                          | f                             |
| F-78a           | VIF4-a                      | 204             | VI-F-4              | 0                     | 5                   | 5                         | 635401.46                        | 6936772.91                        | Sept 20, 2014    | 6 (2)  | F                          | a                             |
| F-78b           | VIF4-b                      | 205             | VI-F-4              | 5                     | 10                  | 5                         | 635401.46                        | 6936772.91                        | Sept 20, 2014    | 6 (2)  | F                          | b                             |
| F-78c           | VIF4-c                      | 206             | VI-F-4              | 10                    | 30                  | 20                        | 635401.46                        | 6936772.91                        | Sept 20, 2014    | 6 (2)  | F                          | С                             |
| F-78d           | VIF4-d                      | 207             | VI-F-4              | 30                    | 60                  | 30                        | 635401.46                        | 6936772.91                        | Sept 20, 2014    | 6 (2)  | F                          | d                             |
| F-78e           | VIF4-e                      | 208             | VI-F-4              | 60                    | 100                 | 40                        | 635401.46                        | 6936772.91                        | Sept 20, 2014    | 6 (2)  | F                          | е                             |
| F-79a           | VIIF1-a                     | 245             | VII-F-1             | 0                     | 5                   | 5                         | 636693.6                         | 6934875.22                        | Sept 21, 2014    | VII    | F                          | а                             |
| F-79b           | VIIF1-b                     | 246             | VII-F-1             | 5                     | 20                  | 15                        | 636693.6                         | 6934875.22                        | Sept 21, 2014    | VII    | F                          | b                             |
| F-79c           | VIIF1-c                     | 247             | VII-F-1             | 20                    | 30                  | 10                        | 636693.6                         | 6934875.22                        | Sept 21, 2014    | VII    | F                          | С                             |
| F-79d           | VIIF1-d                     | 248             | VII-F-1             | 30                    | 60                  | 30                        | 636693.6                         | 6934875.22                        | Sept 21, 2014    | VII    | F                          | d                             |
| F-79e           | VIIF1-e                     | 249             | VII-F-1             | 60                    | 100                 | 40                        | 636693.6                         | 6934875.22                        | Sept 21, 2014    | VII    | F                          | е                             |
| F-80a           | VIIF2-a                     | 250             | VII-F-2             | 0                     | 5                   | 5                         | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | a                             |
| F-80b           | VIIF2-b                     | 251             | VII-F-2             | 5                     | 15                  | 10                        | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | b                             |
| F-80c           | VIIF2-c                     | 252             | VII-F-2             | 15                    | 30                  | 15                        | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | С                             |
| F-80d           | VIIF2-d                     | 253             | VII-F-2             | 30                    | 60                  | 30                        | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | d                             |
| F-80e           | VIIF2-e                     | 236             | VII-F-2             | 60                    | 70                  | 10                        | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | е                             |
| F-80f           | VIIF2-f                     | 237             | VII-F-2             | 70                    | 100                 | 30                        | 636167.83                        | 6935606.44                        | Sept 21, 2014    | VII    | F                          | f                             |
| F-81a           | VIIIF1-a                    | 283             | VIII-F-1            | 0                     | 5                   | 5                         | 636844.61                        | 6934675.11                        | Sept 22, 2014    | VIII   | F                          | а                             |
| F-81b           | VIIIF1-b                    | 284             | VIII-F-1            | 5                     | 15                  | 10                        | 636844.61                        | 6934675.11                        | Sept 22, 2014    | VIII   | F                          | b                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler      | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|-------------|----------------------------|-------------------------------|
| F-81c           | VIIIF1-c                    | 285             | VIII-F-1            | 15                    | 30                  | 15                        | 636844.61                        | 6934675.11                        | Sept 22, 2014    | VIII        | F                          | С                             |
| F-81d           | VIIIF1-d                    | 286             | VIII-F-1            | 30                    | 60                  | 30                        | 636844.61                        | 6934675.11                        | Sept 22, 2014    | VIII        | F                          | d                             |
| F-81e           | VIIIF1-e                    | 287             | VIII-F-1            | 60                    | 70                  | 10                        | 636844.61                        | 6934675.11                        | Sept 22, 2014    | VIII        | F                          | е                             |
| F-82a           | VIIIF2-a                    | 271             | VIII-F-2            | 0                     | 5                   | 5                         | 636616.26                        | 6934575.37                        | Sept 22, 2014    | VIII        | F                          | а                             |
| F-82b           | VIIIF2-b                    | 272             | VIII-F-2            | 5                     | 15                  | 10                        | 636616.26                        | 6934575.37                        | Sept 22, 2014    | VIII        | F                          | b                             |
| F-82c           | VIIIF2-c                    | 273             | VIII-F-2            | 15                    | 30                  | 15                        | 636616.26                        | 6934575.37                        | Sept 22, 2014    | VIII        | F                          | С                             |
| F-82d           | VIIIF2-d                    | 274             | VIII-F-2            | 30                    | 60                  | 30                        | 636616.26                        | 6934575.37                        | Sept 22, 2014    | VIII        | F                          | d                             |
| F-83a           | VIIIF3-a                    | 275             | VIII-F-3            | 0                     | 5                   | 5                         | 636459.66                        | 6934384.91                        | Sept 22, 2014    | VIII        | F                          | а                             |
| F-83b           | VIIIF3-b                    | 276             | VIII-F-3            | 5                     | 15                  | 10                        | 636459.66                        | 6934384.91                        | Sept 22, 2014    | VIII        | F                          | b                             |
| F-83c           | VIIIF3-c                    | 277             | VIII-F-3            | 15                    | 30                  | 15                        | 636459.66                        | 6934384.91                        | Sept 22, 2014    | VIII        | F                          | С                             |
| F-83d           | VIIIF3-d                    | 278             | VIII-F-3            | 30                    | 60                  | 30                        | 636459.66                        | 6934384.91                        | Sept 22, 2014    | VIII        | F                          | d                             |
| F-84a           | VIIIF4-a                    | 297             | VIII-F-4            | 0                     | 5                   | 5                         | 637024.46                        | 6934550.92                        | Sept 22, 2014    | 8 – 2       | F                          | а                             |
| F-84b           | VIIIF4-b                    | 298             | VIII-F-4            | 5                     | 15                  | 10                        | 637024.46                        | 6934550.92                        | Sept 22, 2014    | 8 – 2       | F                          | b                             |
| F-84c           | VIIIF4-c                    | 299             | VIII-F-4            | 15                    | 30                  | 15                        | 637024.46                        | 6934550.92                        | Sept 22, 2014    | 8 – 2       | F                          | С                             |
| F-84d           | VIIIF4-d                    | 300             | VIII-F-4            | 30                    | 60                  | 30                        | 637024.46                        | 6934550.92                        | Sept 22, 2014    | 8 – 2       | F                          | d                             |
| F-84e           | VIIIF4-e                    | 301             | VIII-F-4            | 60                    | 90                  | 30                        | 637024.46                        | 6934550.92                        | Sept 22, 2014    | 8 – 2       | F                          | е                             |
| F-85a           | VIIIF5-a                    | 302             | VIII-F-5            | 0                     | 5                   | 5                         | 637029.16                        | 6934336.98                        | Sept 22, 2014    | 8 – 2       | F                          | а                             |
| F-85b           | VIIIF5-b                    | 303             | VIII-F-5            | 5                     | 15                  | 10                        | 637029.16                        | 6934336.98                        | Sept 22, 2014    | 8 – 2       | F                          | b                             |
| F-85c           | VIIIF5-c                    | 304             | VIII-F-5            | 15                    | 30                  | 15                        | 637029.16                        | 6934336.98                        | Sept 22, 2014    | 8 – 2       | F                          | с                             |
| F-85d           | VIIIF5-d                    | 305             | VIII-F-5            | 30                    | 60                  | 30                        | 637029.16                        | 6934336.98                        | Sept 22, 2014    | 8 – 2       | F                          | d                             |
| F-85e           | VIIIF5-e                    | 308             | VIII-F-5            | 60                    | 100                 | 40                        | 637029.16                        | 6934336.98                        | Sept 22, 2014    | 8 – 2       | F                          | е                             |
| W-86a           | IWL1-a                      | 136             | I-WL-1              | 0                     | 5                   | 5                         | 636471.88                        | 6931851.49                        | Sept 24, 2014    | 4           | W                          | а                             |
| W-86b           | IWL1-b                      | 137             | I-WL-1              | 5                     | 15                  | 10                        | 636471.88                        | 6931851.49                        | Sept 24, 2014    | 4           | W                          | b                             |
| W-86c           | IWL1-c                      | 138             | I-WL-1              | 15                    | 30                  | 15                        | 636471.88                        | 6931851.49                        | Sept 24, 2014    | 4           | W                          | С                             |
| W-86d           | IWL1-d                      | 139             | I-WL-1              | 30                    | 60                  | 30                        | 636471.88                        | 6931851.49                        | Sept 24, 2014    | 4           | W                          | d                             |
| W-86e           | IWL1-e                      | 140             | I-WL-1              | 60                    | 100                 | 40                        | 636471.88                        | 6931851.49                        | Sept 24, 2014    | 4           | W                          | е                             |
| W-87a           | IWL2-a                      | 46              | I-WL-2              | 0                     | 5                   | 5                         | 636672.24                        | 6932247.84                        | Sept 23, 2014    | Unlabeled 2 | W                          | а                             |
| W-87b           | IWL2-b                      | 47              | I-WL-2              | 5                     | 15                  | 10                        | 636672.24                        | 6932247.84                        | Sept 23, 2014    | Unlabeled 2 | W                          | b                             |
| W-87c           | IWL2-c                      | 48              | I-WL-2              | 15                    | 30                  | 15                        | 636672.24                        | 6932247.84                        | Sept 23, 2014    | Unlabeled 2 | W                          | С                             |
| W-87d           | IWL2-d                      | 49              | I-WL-2              | 30                    | 60                  | 30                        | 636672.24                        | 6932247.84                        | Sept 23, 2014    | Unlabeled 2 | W                          | d                             |
| W-87e           | IWL2-e                      | 50              | I-WL-2              | 60                    | 100                 | 40                        | 636672.24                        | 6932247.84                        | Sept 23, 2014    | Unlabeled 2 | W                          | е                             |
| W-88a           | IIWL2-a                     | 131             | II-WL-2             | 0                     | 5                   | 5                         | 636316.02                        | 6932016.85                        | Sept 24, 2014    | 4           | W                          | а                             |
| W-88b           | IIWL2-b                     | 132             | II-WL-2             | 5                     | 15                  | 10                        | 636316.02                        | 6932016.85                        | Sept 24, 2014    | 4           | W                          | b                             |
| W-88c           | IIWL2-c                     | 133             | II-WL-2             | 15                    | 30                  | 15                        | 636316.02                        | 6932016.85                        | Sept 24, 2014    | 4           | W                          | С                             |
| W-88d           | IIWL2-d                     | 134             | II-WL-2             | 30                    | 60                  | 30                        | 636316.02                        | 6932016.85                        | Sept 24, 2014    | 4           | W                          | d                             |
| W-88e           | IIWL2-e                     | 135             | II-WL-2             | 60                    | 100                 | 40                        | 636316.02                        | 6932016.85                        | Sept 24, 2014    | 4           | W                          | е                             |
| W-89a           | IIIWL1-a                    | 118             | III-WL-1            | 0                     | 5                   | 5                         | 635640.33                        | 6931459.47                        | Sept 24, 2014    | III OC ½    | W                          | а                             |
| W-89b           | IIIWL1-b                    | 119             | III-WL-1            | 5                     | 15                  | 10                        | 635640.33                        | 6931459.47                        | Sept 24, 2014    | III OC ½    | W                          | b                             |
| W-89c           | IIIWL1-c                    | 93              | III-WL-1            | 15                    | 30                  | 15                        | 635640.33                        | 6931459.47                        | Sept 24, 2014    | III OC ½    | W                          | С                             |
| W-89d           | IIIWL1-d                    | 94              | III-WL-1            | 30                    | 60                  | 30                        | 635640.33                        | 6931459.47                        | Sept 24, 2014    | III OC ½    | W                          | d                             |
| W-89e           | IIIWL1-e                    | 95              | III-WL-1            | 60                    | 100                 | 40                        | 635640.33                        | 6931459.47                        | Sept 24, 2014    | III OC ½    | W                          | е                             |
| W-90a           | IVWL1-a                     | 12              | IV-WL-1             | 0                     | 5                   | 5                         | 636018.58                        | 6933436.69                        | Sept 23, 2014    | Unlabeled 1 | W                          | а                             |
| W-90b           | IVWL1-b                     | 13              | IV-WL-1             | 5                     | 15                  | 10                        | 636018.58                        | 6933436.69                        | Sept 23, 2014    | Unlabeled 1 | W                          | b                             |
| W-90c           | IVWL1-c                     | 14              | IV-WL-1             | 15                    | 30                  | 15                        | 636018.58                        | 6933436.69                        | Sept 23, 2014    | Unlabeled 1 | W                          | С                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler      | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|-------------|----------------------------|-------------------------------|
| W-90d           | IVWL1-d                     | 15              | IV-WL-1             | 30                    | 60                  | 30                        | 636018.58                        | 6933436.69                        | Sept 23, 2014    | Unlabeled 1 | W                          | d                             |
| W-90e           | IVWL1-e                     | 16              | IV-WL-1             | 60                    | 100                 | 40                        | 636018.58                        | 6933436.69                        | Sept 23, 2014    | Unlabeled 1 | w                          | е                             |
| W-91a           | IVWL2-a                     | 7               | IV-WL-2             | 0                     | 5                   | 5                         | 636010.78                        | 6933702.92                        | Sept 23, 2014    | Unlabeled 1 | W                          | a                             |
| W-91b           | IVWL2-b                     | 8               | IV-WL-2             | 5                     | 15                  | 10                        | 636010.78                        | 6933702.92                        | Sept 23, 2014    | Unlabeled 1 | w                          | b                             |
| W-91c           | IVWL2-c                     | 9               | IV-WL-2             | 15                    | 30                  | 15                        | 636010.78                        | 6933702.92                        | Sept 23, 2014    | Unlabeled 1 | W                          | с                             |
| W-91d           | IVWL2-d                     | 10              | IV-WL-2             | 30                    | 60                  | 30                        | 636010.78                        | 6933702.92                        | Sept 23, 2014    | Unlabeled 1 | W                          | d                             |
| W-91e           | IVWL2-e                     | 11              | IV-WL-2             | 60                    | 100                 | 40                        | 636010.78                        | 6933702.92                        | Sept 23, 2014    | Unlabeled 1 | W                          | е                             |
| W-92a           | IVWL3-a                     | 96              | IV-WL-3             | 0                     | 5                   | 5                         | 635716.76                        | 6933820.27                        | Sept 24, 2014    | III OC ½    | W                          | а                             |
| W-92b           | IVWL3-b                     | 97              | IV-WL-3             | 5                     | 15                  | 10                        | 635716.76                        | 6933820.27                        | Sept 24, 2014    | III OC ½    | W                          | b                             |
| W-92c           | IVWL3-c                     | 98              | IV-WL-3             | 15                    | 30                  | 15                        | 635716.76                        | 6933820.27                        | Sept 24, 2014    | III OC ½    | W                          | с                             |
| W-92d           | IVWL3-d                     | 99              | IV-WL-3             | 30                    | 60                  | 30                        | 635716.76                        | 6933820.27                        | Sept 24, 2014    | III OC ½    | W                          | d                             |
| W-92e           | IVWL3-e                     | 100             | IV-WL-3             | 60                    | 100                 | 40                        | 635716.76                        | 6933820.27                        | Sept 24, 2014    | III OC ½    | W                          | е                             |
| W-93a           | IVWL4-a                     | 149             | IV-WL-4             | 0                     | 5                   | 5                         | 635845.61                        | 6934148.96                        | Sept 21, 2014    | 4           | W                          | а                             |
| W-93b           | IVWL4-b                     | 150             | IV-WL-4             | 5                     | 15                  | 10                        | 635845.61                        | 6934148.96                        | Sept 21, 2014    | 4           | W                          | b                             |
| W-93c           | IVWL4-c                     | 151             | IV-WL-4             | 15                    | 30                  | 15                        | 635845.61                        | 6934148.96                        | Sept 21, 2014    | 4           | W                          | с                             |
| W-93d           | IVWL4-d                     | 152             | IV-WL-4             | 30                    | 60                  | 30                        | 635845.61                        | 6934148.96                        | Sept 21, 2014    | 4           | W                          | d                             |
| W-93e           | IVWL4-e                     | 153             | IV-WL-4             | 60                    | 100                 | 40                        | 635845.61                        | 6934148.96                        | Sept 21, 2014    | 4           | W                          | е                             |
| W-94a           | IVWL5-a                     | 339             | IV-WL-5             | 0                     | 5                   | 5                         | 635737.09                        | 6933688.38                        | Sept 25, 2014    | Unlabeled 3 | W                          | а                             |
| W-94b           | IVWL5-b                     | 340             | IV-WL-5             | 5                     | 15                  | 10                        | 635737.09                        | 6933688.38                        | Sept 25, 2014    | Unlabeled 3 | W                          | b                             |
| W-94c           | IVWL5-c                     | 341             | IV-WL-5             | 15                    | 30                  | 15                        | 635737.09                        | 6933688.38                        | Sept 25, 2014    | Unlabeled 3 | W                          | с                             |
| W-94d           | IVWL5-d                     | 342             | IV-WL-5             | 30                    | 60                  | 30                        | 635737.09                        | 6933688.38                        | Sept 25, 2014    | Unlabeled 3 | W                          | d                             |
| W-94e           | IVWL5-e                     | 343             | IV-WL-5             | 60                    | 100                 | 40                        | 635737.09                        | 6933688.38                        | Sept 25, 2014    | Unlabeled 3 | W                          | е                             |
| W-95a           | IXWL1-a                     | 32              | IX-WL-1             | 0                     | 5                   | 5                         | 636338.6                         | 6933491.06                        | Sept 23, 2014    | Unlabeled 2 | W                          | а                             |
| W-95b           | IXWL1-b                     | 33              | IX-WL-1             | 5                     | 15                  | 10                        | 636338.6                         | 6933491.06                        | Sept 23, 2014    | Unlabeled 2 | W                          | b                             |
| W-95c           | IXWL1-c                     | 34              | IX-WL-1             | 15                    | 30                  | 15                        | 636338.6                         | 6933491.06                        | Sept 23, 2014    | Unlabeled 2 | W                          | с                             |
| W-95d           | IXWL1-d                     | 35              | IX-WL-1             | 30                    | 60                  | 30                        | 636338.6                         | 6933491.06                        | Sept 23, 2014    | Unlabeled 2 | W                          | d                             |
| W-95e           | IXWL1-e                     | 36              | IX-WL-1             | 60                    | 100                 | 40                        | 636338.6                         | 6933491.06                        | Sept 23, 2014    | Unlabeled 2 | W                          | е                             |
| W-96a           | IXWL2-a                     | 41              | IX-WL-2             | 0                     | 5                   | 5                         | 636228.76                        | 6933290.27                        | Sept 23, 2014    | Unlabeled 2 | w                          | a                             |
| W-96b           | IXWL2-b                     | 42              | IX-WL-2             | 5                     | 15                  | 10                        | 636228.76                        | 6933290.27                        | Sept 23, 2014    | Unlabeled 2 | w                          | b                             |
| W-96c           | IXWL2-c                     | 43              | IX-WL-2             | 15                    | 30                  | 15                        | 636228.76                        | 6933290.27                        | Sept 23, 2014    | Unlabeled 2 | w                          | с                             |
| W-96d           | IXWL2-d                     | 44              | IX-WL-2             | 30                    | 60                  | 30                        | 636228.76                        | 6933290.27                        | Sept 23, 2014    | Unlabeled 2 | w                          | d                             |
| W-96e           | IXWL2-e                     | 45              | IX-WL-2             | 60                    | 100                 | 40                        | 636228.76                        | 6933290.27                        | Sept 23, 2014    | Unlabeled 2 | W                          | е                             |
| W-97a           | VWL1-a                      | 163             | V-WL-1              | 0                     | 5                   | 5                         | 635651.65                        | 6934985.3                         | Sept 21, 2014    | V           | W                          | а                             |
| W-97b           | VWL1-b                      | 164             | V-WL-1              | 5                     | 15                  | 10                        | 635651.65                        | 6934985.3                         | Sept 21, 2014    | V           | W                          | b                             |
| W-97c           | VWL1-c                      | 165             | V-WL-1              | 15                    | 30                  | 15                        | 635651.65                        | 6934985.3                         | Sept 21, 2014    | V           | W                          | С                             |
| W-97d           | VWL1-d                      | 166             | V-WL-1              | 30                    | 60                  | 30                        | 635651.65                        | 6934985.3                         | Sept 21, 2014    | V           | W                          | d                             |
| W-97e           | VWL1-e                      | 167             | V-WL-1              | 60                    | 80                  | 20                        | 635651.65                        | 6934985.3                         | Sept 21, 2014    | V           | W                          | е                             |
| W-98a           | VWL2-a                      | 168             | V-WL-2              | 0                     | 5                   | 5                         | 635958.07                        | 6936337.28                        | Sept 21, 2014    | V           | W                          | а                             |
| W-98b           | VWL2-b                      | 169             | V-WL-2              | 5                     | 20                  | 15                        | 635958.07                        | 6936337.28                        | Sept 21, 2014    | V           | W                          | b                             |
| W-98c           | VWL2-c                      | 154             | V-WL-2              | 20                    | 40                  | 20                        | 635958.07                        | 6936337.28                        | Sept 21, 2014    | V           | W                          | С                             |
| W-98d           | VWL2-d                      | 155             | V-WL-2              | 40                    | 70                  | 30                        | 635958.07                        | 6936337.28                        | Sept 21, 2014    | V           | W                          | d                             |
| W-98e           | VWL2-e                      | 156             | V-WL-2              | 70                    | 100                 | 30                        | 635958.07                        | 6936337.28                        | Sept 21, 2014    | V           | W                          | е                             |
| W-99a           | VWL3-a                      | 157             | V-WL-3              | 0                     | 10                  | 10                        | 635634.5                         | 6936288.36                        | Sept 21, 2014    | V           | w                          | а                             |
| W-99b           | VWL3-b                      | 158             | V-WL-3              | 10                    | 50                  | 40                        | 635634.5                         | 6936288.36                        | Sept 21, 2014    | V           | W                          | b                             |

| Queen's<br>name | Golder<br>site +<br>horizon | ASU<br>nam<br>e | Golder<br>site name | from<br>depth<br>(cm) | to<br>depth<br>(cm) | interval<br>width<br>(cm) | Easting<br>(NAD 83,<br>Zone 11N) | Northing<br>(NAD 83,<br>Zone 11N) | Sampling<br>Date | Cooler | Lo-<br>ca-<br>tion<br>Type | Rela-<br>tive<br>Hori-<br>zon |
|-----------------|-----------------------------|-----------------|---------------------|-----------------------|---------------------|---------------------------|----------------------------------|-----------------------------------|------------------|--------|----------------------------|-------------------------------|
| W-99c           | VWL3-c                      | 159             | V-WL-3              | 50                    | 80                  | 30                        | 635634.5                         | 6936288.36                        | Sept 21, 2014    | V      | W                          | с                             |
| W-99d           | VWL3-d                      | 160             | V-WL-3              | 80                    | 100                 | 20                        | 635634.5                         | 6936288.36                        | Sept 21, 2014    | V      | W                          | d                             |
| W-100a          | VIWL1A-a                    | 195             | VI-WL-1A            | 0                     | 5                   | 5                         | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | а                             |
| W-100b          | VIWL1A-b                    | 196             | VI-WL-1A            | 5                     | 10                  | 5                         | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | b                             |
| W-101a          | VIWL1B-a                    | 197             | VI-WL-1B            | 0                     | 5                   | 5                         | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | а                             |
| W-101b          | VIWL1B-b                    | 198             | VI-WL-1B            | 5                     | 10                  | 5                         | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | b                             |
| W-101c          | VIWL1B-c                    | 199             | VI-WL-1B            | 10                    | 30                  | 20                        | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | с                             |
| W-101d          | VIWL1B-d                    | 200             | VI-WL-1B            | 30                    | 60                  | 30                        | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | d                             |
| W-101e          | VIWL1B-e                    | 201             | VI-WL-1B            | 60                    | 80                  | 20                        | 635564.03                        | 6936966.91                        | Sept 20, 2014    | VI     | W                          | е                             |
| W-102a          | VIIWL1-a                    | 238             | VII-WL-1            | 0                     | 10                  | 10                        | 636211.16                        | 6936120.14                        | Sept 21, 2014    | VII    | W                          | а                             |
| W-102b          | VIIWL1-b                    | 239             | VII-WL-1            | 10                    | 30                  | 20                        | 636211.16                        | 6936120.14                        | Sept 21, 2014    | VII    | W                          | b                             |
| W-102c          | VIIWL1-c                    | 240             | VII-WL-1            | 30                    | 55                  | 25                        | 636211.16                        | 6936120.14                        | Sept 21, 2014    | VII    | W                          | с                             |
| W-102d          | VIIWL1-d                    | 241             | VII-WL-1            | 55                    | 100                 | 45                        | 636211.16                        | 6936120.14                        | Sept 21, 2014    | VII    | W                          | d                             |
| W-103a          | VIIIWL1-a                   | 309             | VIII-WL-1           | 0                     | 5                   | 5                         | 636893.67                        | 6934897.96                        | Sept 22, 2014    | 8 – 2  | W                          | а                             |
| W-103b          | VIIIWL1-b                   | 310             | VIII-WL-1           | 5                     | 15                  | 10                        | 636893.67                        | 6934897.96                        | Sept 22, 2014    | 8 – 2  | W                          | b                             |
| W-103c          | VIIIWL1-c                   | 311             | VIII-WL-1           | 15                    | 30                  | 15                        | 636893.67                        | 6934897.96                        | Sept 22, 2014    | 8 – 2  | W                          | с                             |
| W-103d          | VIIIWL1-d                   | 312             | VIII-WL-1           | 30                    | 60                  | 30                        | 636893.67                        | 6934897.96                        | Sept 22, 2014    | 8 – 2  | W                          | d                             |
| W-103e          | VIIIWL1-e                   | 313             | VIII-WL-1           | 60                    | 100                 | 40                        | 636893.67                        | 6934897.96                        | Sept 22, 2014    | 8 – 2  | W                          | е                             |
| W-104a          | VIIIWL2-a                   | 314             | VIII-WL-2           | 0                     | 5                   | 5                         | 636889.76                        | 6934292.19                        | Sept 22, 2014    | 8 – 2  | W                          | а                             |
| W-104b          | VIIIWL2-b                   | 315             | VIII-WL-2           | 5                     | 15                  | 10                        | 636889.76                        | 6934292.19                        | Sept 22, 2014    | 8 – 2  | W                          | b                             |
| W-104c          | VIIIWL2-c                   | 316             | VIII-WL-2           | 15                    | 30                  | 15                        | 636889.76                        | 6934292.19                        | Sept 22, 2014    | 8 – 2  | W                          | с                             |
| W-104d          | VIIIWL2-d                   | 306             | VIII-WL-2           | 30                    | 60                  | 30                        | 636889.76                        | 6934292.19                        | Sept 22, 2014    | 8 – 2  | W                          | d                             |
| W-104e          | VIIIWL2-e                   | 307             | VIII-WL-2           | 60                    | 100                 | 40                        | 636889.76                        | 6934292.19                        | Sept 22, 2014    | 8 – 2  | W                          | е                             |

## Appendix II: All Chemistry Results (30-Element ICP-OES, Au and Sb ICP-MS, and Carbon Analyses)

All results are reported in  $\mu$ g/g, except for carbon (%).

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | Al<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Со<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| IOC1-a             | 141                | O-1a                | 0            | 5          | 11.9               | 0.19         | <2.0         | 33000        | 1200         | <20         | 90           | <4.0         | 3100         | <1.0         | 24           |
| IOC1-b             | 142                | O-1b                | 5            | 15         | 7.6                | 0.019        | <2.0         | 44000        | 230          | <20         | 46           | <4.0         | 1300         | <1.0         | 35           |
| IOC2-a             | 91                 | O-2a                | 2            | 7          | 15.8               | 0.20         | <2.0         | 27000        | 2000         | <20         | 120          | <4.0         | 2400         | 3.4          | 38           |
| IOC3-a             | 92                 | O-3a                | 2            | 5          | 18.9               | 0.18         | <2.0         | 25000        | 1700         | <20         | 110          | <4.0         | 2500         | 2.8          | 41           |
| llOC1-a            | 61                 | O-4a                | 0            | 5          | 29.7               | 0.56         | <2.0         | 9100         | 710          | <20         | 98           | <4.0         | 21000        | <1.0         | 12           |
| IIOC1-b            | 62                 | O-4b                | 5            | 10         | 7.2                | 0.021        | <2.0         | 28000        | 490          | <20         | 69           | <4.0         | 6500         | <1.0         | 30           |
| llOC10-a           | 83                 | O-5a                | 0            | 5          | 19.6               | 1.0          | <2.0         | 24000        | 16000        | <20         | 120          | <4.0         | 4700         | <1.0         | 24           |
| IIOC10-b           | 84                 | O-5b                | 5            | 8          | 5.0                | 0.081        | <2.0         | 45000        | 7200         | <20         | 53           | <4.0         | 4100         | <1.0         | 39           |
| llOC11-a           | 85                 | O-6a                | 0            | 5          | 15.4               | 0.90         | <2.0         | 34000        | 11000        | <20         | 140          | <4.0         | 3100         | <1.0         | 28           |
| IIOC11-b           | 86                 | O-6b                | 5            | 10         | 11.3               | 0.37         | <2.0         | 39000        | 7800         | <20         | 120          | <4.0         | 2600         | <1.0         | 24           |
| llOC2-a            | 63                 | O-7a                | 0            | 3          | 20.4               | 0.46         | <2.0         | 15000        | 1500         | <20         | 560          | <4.0         | 25000        | 1.6          | 50           |
| IIOC2-b            | 64                 | O-7b                | 3            | 10         | 6.8                | 0.028        | <2.0         | 29000        | 1400         | <20         | 200          | <4.0         | 9200         | <1.0         | 56           |
| IIOC3-a            | 65                 | O-8a                | 0            | 5          | 22.3               | 0.37         | <2.0         | 16000        | 1400         | <20         | 560          | <4.0         | 17000        | 1.6          | 26           |
| IIOC3-b            | 66                 | O-8b                | 5            | 10         | 5.8                | 0.030        | <2.0         | 27000        | 1400         | <20         | 200          | <4.0         | 7700         | 1.0          | 28           |
| llOC4-a            | 67                 | O-9a                | 0            | 5          | 14.4               | 0.32         | <2.0         | 16000        | 2400         | <20         | 270          | <4.0         | 3200         | 1.0          | 17           |
| IIOC4-b            | 68                 | O-9b                | 5            | 15         | 2.2                | 0.027        | <2.0         | 17000        | 460          | <20         | 29           | <4.0         | 1200         | <1.0         | 8.9          |
| IIOC4-c            | 69                 | O-9c                | 15           | 20         | 2.8                | 0.015        | <2.0         | 22000        | 410          | <20         | 40           | <4.0         | 1300         | <1.0         | 12           |
| llOC5-a            | 70                 | O-10a               | 0            | 3          | 24.3               | 3.1          | 4.5          | 11000        | 17000        | <20         | 210          | <4.0         | 5000         | <1.0         | 24           |
| IIOC5-b            | 71                 | O-10b               | 3            | 10         | 2.9                | 0.15         | <2.0         | 11000        | 1300         | <20         | 33           | <4.0         | 890          | <1.0         | 5.8          |
| IIOC5-c            | 72                 | O-10c               | 10           | 20         | 2.2                | 0.036        | <2.0         | 21000        | 2000         | <20         | 45           | <4.0         | 1200         | <1.0         | 16           |
| llOC6-a            | 73                 | O-11a               | 0            | 5          | 13.3               | 1.7          | <2.0         | 17000        | 9200         | <20         | 240          | <4.0         | 9100         | 1.2          | 37           |
| IIOC6-b            | 74                 | O-11b               | 5            | 15         | 4.4                | 0.060        | <2.0         | 30000        | 3600         | <20         | 94           | <4.0         | 6600         | <1.0         | 29           |
| IIOC6-c            | 75                 | O-11c               | 15           | 20         | 4.2                | 0.073        | <2.0         | 29000        | 3400         | <20         | 61           | <4.0         | 6700         | <1.0         | 26           |
| llOC7-a            | 76                 | O-12a               | 0            | 10         | 27.9               | 0.17         | <2.0         | 13000        | 500          | <20         | 89           | <4.0         | 26000        | <1.0         | 12           |
| IIOC7-b            | 77                 | O-12b               | 10           | 16         | 4.4                | 0.017        | <2.0         | 24000        | 72           | <20         | 88           | <4.0         | 5800         | <1.0         | 18           |
| IIOC8-a            | 78                 | O-13a               | 0            | 12         | 20.6               | 0.033        | <2.0         | 16000        | 480          | <20         | 90           | <4.0         | 3100         | <1.0         | <5.0         |
| IIOC8-b            | 79                 | O-13b               | 12           | 15         | 14.0               | 0.023        | <2.0         | 22000        | 320          | <20         | 100          | <4.0         | 3300         | <1.0         | 5.0          |
| llOC9-a            | 80                 | O-14a               | 0            | 3          | 29.7               | 0.35         | <2.0         | 13000        | 1400         | <20         | 110          | <4.0         | 4300         | 1.1          | 10           |
| IIOC9-b            | 81                 | O-14b               | 3            | 10         | 7.6                | 0.019        | <2.0         | 25000        | 2400         | <20         | 77           | <4.0         | 3600         | <1.0         | 14           |
| IIOC9-c            | 82                 | O-14c               | 10           | 15         | 8.3                | 0.016        | <2.0         | 29000        | 2400         | <20         | 72           | <4.0         | 3300         | <1.0         | 14           |
| IIIOC1-a           | 120                | O-15a               | 0            | 5          | 15.9               | 0.62         | <2.0         | 26000        | 3100         | <20         | 240          | <4.0         | 5400         | 2.7          | 40           |
| IIIOC1-b           | 121                | O-15b               | 5            | 15         | 14.1               | 0.056        | <2.0         | 29000        | 1400         | <20         | 140          | <4.0         | 6200         | 2.6          | 36           |
| IIIOC2-a           | 122                | O-16a               | 0            | 8          | 15.2               | 0.73         | <2.0         | 12000        | 3200         | <20         | 380          | <4.0         | 9900         | 1.2          | 24           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | ΑΙ<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| IIIOC2-b           | 123                | O-16b               | 8            | 15         | 2.0                | 0.049        | <2.0         | 14000        | 1300         | <20         | 120          | <4.0         | 3600         | <1.0         | 19           |
| IIIOC3-a           | 107                | O-17a               | 0            | 5          | 14.7               | 0.20         | <2.0         | 27000        | 1400         | <20         | 420          | <4.0         | 11000        | 5.2          | 65           |
| IIIOC3-b           | 108                | O-17b               | 5            | 9          | 10.2               | 0.046        | <2.0         | 32000        | 1500         | <20         | 310          | <4.0         | 7100         | 2.6          | 67           |
| IIIOC5-a           | 124                | O-18a               | 0            | 5          | 10.0               | 0.11         | <2.0         | 34000        | 3200         | <20         | 86           | <4.0         | 7000         | <1.0         | 34           |
| IIIOC5-b           | 125                | O-18b               | 5            | 10         | 8.4                | 0.059        | <2.0         | 37000        | 4100         | <20         | 110          | <4.0         | 5400         | <1.0         | 33           |
| IIIOC6-a           | 109                | O-19a               | 0            | 5          | 36.4               | 0.034        | <2.0         | 6600         | 270          | 23          | 90           | <4.0         | 24000        | <1.0         | <5.0         |
| IIIOC6-b           | 110                | O-19b               | 5            | 9          | 4.1                | 0.14         | <2.0         | 19000        | 1500         | <20         | 59           | <4.0         | 5200         | <1.0         | 20           |
| IIIOC7-a           | 111                | O-20a               | 0            | 5          | 10.4               | 0.049        | <2.0         | 30000        | 690          | <20         | 200          | <4.0         | 5600         | <1.0         | 19           |
| IIIOC7-b           | 112                | O-20b               | 5            | 10         | 8.4                | 0.032        | <2.0         | 43000        | 91           | <20         | 140          | <4.0         | 3700         | <1.0         | 22           |
| IIIOC8-a           | 354                | O-21a               | 0            | 5          | 10.5               | 0.12         | <2.0         | 26000        | 630          | <20         | 150          | <4.0         | 3500         | 1.8          | 18           |
| IIIOC8-b           | 355                | O-21b               | 5            | 15         | 11.6               | 0.030        | <2.0         | 26000        | 260          | <20         | 100          | <4.0         | 2400         | 1.6          | 13           |
| IVOC1-a            | 17                 | O-22a               | 0            | 5          | 8.6                | 0.76         | <2.0         | 19000        | 7000         | <20         | 150          | <4.0         | 2100         | <1.0         | 10           |
| IVOC1-b            | 18                 | O-22b               | 5            | 10         | 9.8                | 0.14         | <2.0         | 21000        | 5400         | <20         | 150          | <4.0         | 1900         | <1.0         | 8.7          |
| IVOC2-a            | 143                | O-23a               | 0            | 5          | 15.5               | 0.23         | <2.0         | 16000        | 840          | <20         | 77           | <4.0         | 4900         | 1.2          | 9.8          |
| IVOC2-b            | 144                | O-23b               | 5            | 10         | 10.6               | 0.030        | <2.0         | 14000        | 810          | <20         | 42           | <4.0         | 2600         | <1.0         | 5.9          |
| IVOC3-a            | 145                | O-24a               | 0            | 5          | 24.4               | 0.39         | <2.0         | 15000        | 1100         | <20         | 95           | <4.0         | 5100         | <1.0         | 10           |
| IVOC3-b            | 146                | O-24b               | 5            | 15         | 3.5                | 0.036        | <2.0         | 22000        | 580          | <20         | 60           | <4.0         | 2600         | <1.0         | 11           |
| IVOC4-a            | 147                | O-25a               | 0            | 5          | 28.0               | 0.56         | <2.0         | 18000        | 4800         | <20         | 140          | <4.0         | 7500         | <1.0         | 21           |
| IVOC4-b            | 148                | O-25b               | 5            | 12         | 9.4                | 0.046        | <2.0         | 33000        | 5100         | <20         | 93           | <4.0         | 4400         | <1.0         | 35           |
| IXOC1-a            | 317                | O-26a               | 0            | 5          | 5.0                | 0.64         | <2.0         | 25000        | 2500         | <20         | 110          | <4.0         | 8600         | <1.0         | 34           |
| IXOC1-b            | 318                | O-26b               | 5            | 15         | <1.0               | 0.015        | <2.0         | 23000        | 150          | <20         | 48           | <4.0         | 2300         | <1.0         | 15           |
| IXOC2-a            | 319                | O-27a               | 0            | 3          | 18.1               | 1.8          | <2.0         | 14000        | 5500         | <20         | 310          | <4.0         | 16000        | 1.1          | 36           |
| IXOC2-b            | 320                | O-27b               | 3            | 10         | 1.9                | 0.061        | <2.0         | 22000        | 910          | <20         | 62           | <4.0         | 1800         | <1.0         | 16           |
| IXOC2-c            | 321                | O-27c               | 10           | 25         | 1.7                | 0.037        | <2.0         | 23000        | 480          | <20         | 69           | <4.0         | 1700         | <1.0         | 15           |
| IXOC3-a            | 322                | O-28a               | 0            | 5          | 20.2               | 1.3          | <2.0         | 20000        | 4800         | <20         | 160          | <4.0         | 18000        | 1.4          | 43           |
| IXOC3-b            | 323                | O-28b               | 5            | 10         | 15.9               | 0.84         | <2.0         | 27000        | 4900         | <20         | 140          | <4.0         | 12000        | 1.3          | 52           |
| IXOC4-a            | 324                | O-29a               | 0            | 6          | 30.6               | 0.61         | <2.0         | 8100         | 5200         | <20         | 210          | <4.0         | 24000        | 1.7          | 24           |
| IXOC4-b            | 325                | O-29b               | 6            | 15         | 4.5                | 0.051        | <2.0         | 22000        | 1100         | <20         | 70           | <4.0         | 9800         | <1.0         | 14           |
| IXOC4-c            | 326                | O-29c               | 15           | 20         | 3.0                | 0.029        | <2.0         | 21000        | 1200         | <20         | 52           | <4.0         | 3300         | <1.0         | 14           |
| IXOC5-a            | 327                | O-30a               | 0            | 7          | 26.7               | 0.69         | <2.0         | 9300         | 920          | <20         | 190          | <4.0         | 19000        | 1.3          | 18           |
| IXOC5-b            | 328                | O-30b               | 7            | 15         | 8.8                | 0.037        | <2.0         | 23000        | 1100         | <20         | 94           | <4.0         | 5600         | 2.2          | 44           |
| VOC1-a             | 179                | O-31a               | 0            | 5          | 3.0                | 0.036        | <2.0         | 26000        | 1400         | <20         | 210          | <4.0         | 1900         | <1.0         | 34           |
| VOC1-b             | 180                | O-31b               | 5            | 15         | 1.1                | 0.024        | <2.0         | 28000        | 570          | <20         | 100          | <4.0         | 1900         | <1.0         | 25           |
| VOC2-a             | 181                | O-32a               | 0            | 5          | 7.8                | 0.15         | <2.0         | 17000        | 3600         | <20         | 62           | <4.0         | 1400         | <1.0         | 10           |
| VOC2-b             | 182                | O-32b               | 5            | 15         | <1.0               | <0.01        | <2.0         | 11000        | 27           | <20         | 27           | <4.0         | 1500         | <1.0         | 8.2          |
| VOC2-c             | 183                | O-32c               | 15           | 25         | 1.4                | 0.011        | <2.0         | 12000        | 400          | <20         | 22           | <4.0         | 990          | <1.0         | 7.5          |
| VOC2-d             | 184                | O-32d               | 25           | 35         | <1.0               | <0.01        | <2.0         | 12000        | 44           | <20         | 34           | <4.0         | 1600         | <1.0         | 9.2          |
| VOC3-a             | 185                | O-33a               | 0            | 5          | 13.5               | 0.030        | <2.0         | 30000        | 740          | <20         | 170          | <4.0         | 3400         | <1.0         | 19           |
| VOC3-b             | 186                | O-33b               | 5            | 15         | 9.5                | 0.016        | <2.0         | 32000        | 72           | <20         | 78           | <4.0         | 3200         | <1.0         | 15           |
| VOC3-c             | 187                | O-33c               | 15           | 25         | 9.8                | 0.021        | <2.0         | 30000        | 260          | <20         | 79           | <4.0         | 2600         | <1.0         | 13           |
| VOC4-a             | 188                | O-34a               | 0            | 5          | 9.4                | 0.067        | <2.0         | 16000        | 230          | <20         | 140          | <4.0         | 3600         | <1.0         | 9.5          |
| VOC4-b             | 189                | O-34b               | 5            | 15         | 8.2                | 0.015        | <2.0         | 26000        | 320          | <20         | 140          | <4.0         | 3500         | <1.0         | 13           |
| VOC4-c             | 190                | O-34c               | 15           | 30         | 8.3                | 0.013        | <2.0         | 34000        | 140          | <20         | 120          | <4.0         | 3600         | <1.0         | 17           |
| VOC5-a             | 191                | O-35a               | 0            | 5          | 5.9                | 0.10         | <2.0         | 13000        | 560          | <20         | 120          | <4.0         | 2000         | <1.0         | 9.8          |
| VOC5-b             | 192                | O-35b               | 5            | 10         | 2.4                | 0.021        | <2.0         | 16000        | 310          | <20         | 39           | <4.0         | 1200         | <1.0         | 12           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | ΑΙ<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| VOC6-a             | 193                | O-36a               | 0            | 5          | 15.4               | 0.078        | <2.0         | 24000        | 330          | <20         | 62           | <4.0         | 2800         | 1.3          | 14           |
| VOC6-b             | 194                | O-36b               | 5            | 15         | 12.1               | 0.23         | <2.0         | 30000        | 130          | <20         | 47           | <4.0         | 3500         | <1.0         | 24           |
| VIOC1-a            | 209                | O-37a               | 0            | 5          | 32.4               | 0.39         | <2.0         | 12000        | 700          | <20         | 150          | <4.0         | 7200         | 1.4          | 16           |
| VIOC1-b            | 210                | O-37b               | 5            | 15         | 10.1               | 0.023        | <2.0         | 20000        | 640          | <20         | 53           | <4.0         | 4800         | <1.0         | 17           |
| VIOC2-a            | 211                | O-38a               | 0            | 5          | 12.7               | 0.028        | <2.0         | 20000        | 370          | <20         | 100          | <4.0         | 2700         | <1.0         | 20           |
| VIOC2-b            | 212                | O-38b               | 5            | 10         | 9.6                | <0.01        | <2.0         | 21000        | 120          | <20         | 58           | <4.0         | 2300         | <1.0         | 16           |
| VIOC3-a            | 231                | O-39a               | 0            | 5          | 29.0               | 0.20         | <2.0         | 10000        | 550          | <20         | 340          | <4.0         | 12000        | <1.0         | 15           |
| VIOC3-b            | 232                | O-39b               | 5            | 10         | 9.3                | <0.01        | <2.0         | 24000        | 450          | <20         | 93           | <4.0         | 3200         | <1.0         | 22           |
| VIOC4-a            | 202                | O-40a               | 0            | 5          | 20.9               | 0.15         | <2.0         | 23000        | 1200         | <20         | 140          | <4.0         | 12000        | 2.0          | 31           |
| VIOC4-b            | 203                | O-40b               | 5            | 10         | 13.2               | 0.034        | <2.0         | 32000        | 1300         | <20         | 130          | <4.0         | 8200         | 1.9          | 49           |
| VIOC5-a            | 233                | O-41a               | 0            | 5          | 12.6               | 0.055        | <2.0         | 28000        | 750          | <20         | 110          | <4.0         | 4600         | 2.1          | 32           |
| VIOC5-b            | 234                | O-41b               | 5            | 10         | 12.2               | <0.01        | <2.0         | 37000        | 230          | <20         | 66           | <4.0         | 4600         | 1.8          | 33           |
| VIOC5-c            | 235                | O-41c               | 10           | 20         | 9.6                | <0.01        | <2.0         | 40000        | 100          | <20         | 55           | <4.0         | 4800         | 1.4          | 28           |
| VIIOC1-a           | 242                | O-42a               | 0            | 5          | 26.3               | 0.11         | <2.0         | 14000        | 530          | <20         | 400          | <4.0         | 11000        | <1.0         | 22           |
| VIIOC1-b           | 243                | O-42b               | 5            | 10         | 7.3                | 0.012        | <2.0         | 26000        | 450          | <20         | 130          | <4.0         | 4200         | <1.0         | 23           |
| VIIOC1-c           | 244                | O-42c               | 10           | 35         | 5.7                | 0.011        | <2.0         | 30000        | 230          | <20         | 73           | <4.0         | 3500         | <1.0         | 21           |
| VIIOC2-a           | 254                | O-43a               | 0            | 5          | 27.65              | 0.014        | <2.0         | 15000        | 530          | <20         | 140          | <4.0         | 3300         | 1.7          | 20           |
| VIIOC2-b           | 255                | O-43b               | 5            | 15         | 10.9               | <0.01        | <2.0         | 24000        | 64           | <20         | 56           | <4.0         | 3700         | <1.0         | 16           |
| VIIOC3-a           | 256                | O-44a               | 0            | 5          | 37.9               | 0.11         | <2.0         | 4600         | 170          | <20         | 99           | <4.0         | 53000        | 2.9          | 12           |
| VIIOC3-b           | 257                | O-44b               | 5            | 15         | 12.7               | 0.019        | <2.0         | 30000        | 530          | <20         | 260          | <4.0         | 22000        | 8.6          | 90           |
| VIIOC4-a           | 258                | O-45a               | 0            | 5          | 15.9               | 0.044        | <2.0         | 28000        | 530          | <20         | 390          | <4.0         | 12000        | 1.9          | 51           |
| VIIOC4-b           | 259                | O-45b               | 5            | 10         | 9.2                | <0.01        | <2.0         | 29000        | 120          | <20         | 180          | <4.0         | 5300         | 1.5          | 44           |
| VIIOC5-a           | 260                | O-46a               | 0            | 5          | 26.1               | 0.029        | <2.0         | 27000        | 230          | <20         | 69           | <4.0         | 7800         | 2.0          | 34           |
| VIIOC6-a           | 261                | O-47a               | 0            | 5          | 26.4               | 0.020        | <2.0         | 10000        | 160          | <20         | 83           | <4.0         | 5300         | 1.2          | 12           |
| VIIOC6-b           | 262                | O-47b               | 5            | 10         | 17.2               | 0.013        | <2.0         | 12000        | 150          | <20         | 43           | <4.0         | 2600         | <1.0         | 7.8          |
| VIIOC7-a           | 263                | O-48a               | 0            | 5          | 15.6               | 0.029        | <2.0         | 21000        | 290          | <20         | 160          | <4.0         | 5000         | 2.2          | 14           |
| VIIOC7-b           | 264                | O-48b               | 5            | 10         | 7.3                | <0.01        | <2.0         | 38000        | 120          | <20         | 180          | <4.0         | 4000         | 1.8          | 24           |
| VIIOC8-a           | 265                | O-49a               | 0            | 5          | 38.6               | 0.044        | <2.0         | 4200         | 51           | <20         | 99           | <4.0         | 14000        | 1.4          | <5.0         |
| VIIOC8-b           | 266                | O-49b               | 5            | 15         | 11.8               | <0.01        | <2.0         | 28000        | 99           | <20         | 79           | <4.0         | 3400         | 1.7          | 14           |
| VIIOC8-c           | 267                | O-49c               | 15           | 25         | 10.2               | <0.01        | <2.0         | 36000        | 14           | <20         | 130          | <4.0         | 3200         | 1.7          | 21           |
| VIIOC9-a           | 268                | O-50a               | 0            | 5          | 22.6               | <0.01        | <2.0         | 12000        | 52           | <20         | 44           | <4.0         | 5100         | 1.1          | 7.6          |
| VIIOC9-b           | 269                | O-50b               | 5            | 15         | 14.6               | <0.01        | <2.0         | 25000        | 72           | <20         | 51           | <4.0         | 3600         | 1.1          | 16           |
| VIIOC9-c           | 270                | O-50c               | 15           | 30         | 9.3                | 0.010        | <2.0         | 30000        | 52           | <20         | 43           | <4.0         | 3600         | <1.0         | 20           |
| VIIIOC1-a          | 288                | O-51a               | 0            | 5          | 8.9                | 0.018        | <2.0         | 21000        | 170          | <20         | 240          | <4.0         | 6000         | 1.2          | 25           |
| VIIIOC1-b          | 289                | O-51b               | 5            | 10         | 4.5                | <0.01        | <2.0         | 27000        | 20           | <20         | 51           | <4.0         | 2800         | <1.0         | 21           |
| VIIIOC2-a          | 290                | O-52a               | 0            | 5          | 10.0               | 0.029        | <2.0         | 32000        | 190          | <20         | 63           | <4.0         | 3200         | 1.1          | 28           |
| VIIIOC2-b          | 291                | O-52b               | 5            | 10         | 11.8               | <0.01        | <2.0         | 34000        | 51           | <20         | 54           | <4.0         | 3300         | <1.0         | 25           |
| VIIIOC2-c          | 292                | O-52c               | 10           | 20         | 11.1               | <0.01        | <2.0         | 34000        | 76           | <20         | 52           | <4.0         | 3400         | <1.0         | 25           |
| VIIIOC3-a          | 293                | O-53a               | 0            | 5          | 24.5               | 0.18         | <2.0         | 17000        | 940          | <20         | 180          | <4.0         | 9200         | 2.1          | 20           |
| VIIIOC3-b          | 294                | O-53b               | 5            | 10         | 9.9                | 0.011        | <2.0         | 32000        | 190          | <20         | 67           | <4.0         | 5200         | 1.1          | 30           |
| VIIIOC4-a          | 295                | O-54a               | 0            | 5          | 27.9               | 0.20         | <2.0         | 16000        | 840          | <20         | 190          | <4.0         | 6500         | 1.2          | 58           |
| VIIIOC4-b          | 296                | O-54b               | 5            | 20         | 8.0                | 0.016        | <2.0         | 29000        | 370          | <20         | 85           | <4.0         | 4100         | 1.0          | 81           |
| VIIIOC5-a          | 279                | O-55a               | 0            | 10         | 15.9               | 0.22         | <2.0         | 17000        | 400          | <20         | 130          | <4.0         | 7700         | 1.5          | 13           |
| VIIIOC5-b          | 280                | O-55b               | 10           | 15         | 15.1               | 0.034        | <2.0         | 24000        | 330          | <20         | 64           | <4.0         | 5400         | <1.0         | 9.5          |
| VIIIOC6-a          | 281                | O-56a               | 0            | 5          | 21.1               | 0.051        | <2.0         | 16000        | 380          | <20         | 260          | <4.0         | 6400         | <1.0         | 16           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(μg/g) | Al<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| VIIIOC6-b          | 282                | O-56b               | 5            | 10         | 13.2               | 0.014        | <2.0         | 17000        | 280          | <20         | 77           | <4.0         | 3700         | <1.0         | 15           |
| Stockpile 1-a      | 349                | S-57a               |              |            | <1.0               | <0.01        | <2.0         | 7900         | 33           | <20         | 28           | <4.0         | 6500         | <1.0         | 14           |
| Stockpile 2-b      | 350                | S-57b               |              |            | <1.0               | 0.011        | <2.0         | 10000        | 63           | <20         | 31           | <4.0         | 9200         | <1.0         | 24           |
| Stockpile 3-c      | 351                | S-57c               |              |            | <1.0               | 0.17         | <2.0         | 9500         | 27           | <20         | 29           | <4.0         | 14000        | <1.0         | 24           |
| Stockpile 4-d      | 352                | S-57d               |              |            | <1.0               | 0.011        | <2.0         | 10000        | 26           | <20         | 31           | <4.0         | 8300         | <1.0         | 20           |
| Stockpile 5-e      | 353                | S-57e               |              |            | <1.0               | 0.015        | <2.0         | 8100         | 66           | <20         | 33           | <4.0         | 6400         | <1.0         | 11           |
| IF1-a              | 126                | F-58a               | 0            | 5          | 35.7               | 0.26         | <2.0         | 3500         | 500          | 28          | 75           | <4.0         | 35000        | <1.0         | <5.0         |
| IF1-b              | 127                | F-58b               | 5            | 15         | 35.0               | 0.037        | <2.0         | 5200         | 100          | 27          | 100          | <4.0         | 43000        | <1.0         | <5.0         |
| IF1-c              | 128                | F-58c               | 15           | 30         | 10.8               | <0.01        | <2.0         | 14000        | 140          | <20         | 120          | <4.0         | 15000        | <1.0         | 9.7          |
| IF1-d              | 129                | F-58d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 20000        | 74           | <20         | 180          | <4.0         | 6300         | <1.0         | 14           |
| IF1-e              | 130                | F-58e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 28000        | 19           | <20         | 260          | <4.0         | 7000         | <1.0         | 17           |
| IF2-a              | 102                | F-59a               | 0            | 5          | 37.2               | 0.32         | <2.0         | 4900         | 250          | <20         | 68           | <4.0         | 22000        | <1.0         | 5.7          |
| IF2-b              | 103                | F-59b               | 5            | 15         | 41.2               | 0.23         | <2.0         | 4300         | 250          | <20         | 80           | <4.0         | 24000        | <1.0         | <5.0         |
| IF2-c              | 104                | F-59c               | 15           | 30         | 24.0               | 0.022        | <2.0         | 14000        | 250          | <20         | 140          | <4.0         | 20000        | <1.0         | 7.9          |
| IF2-d              | 105                | F-59d               | 30           | 60         | 2.0                | <0.01        | <2.0         | 22000        | 180          | <20         | 210          | <4.0         | 6800         | <1.0         | 15           |
| IF2-e              | 106                | F-59e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 23000        | 120          | <20         | 220          | <4.0         | 6400         | <1.0         | 17           |
| llF1-a             | 334                | F-60a               | 0            | 5          | 6.3                | 0.076        | <2.0         | 21000        | 270          | <20         | 150          | <4.0         | 9900         | <1.0         | 15           |
| llF1-b             | 335                | F-60b               | 5            | 15         | 3.4                | 0.013        | <2.0         | 22000        | 250          | <20         | 170          | <4.0         | 7500         | <1.0         | 14           |
| llF1-c             | 336                | F-60c               | 15           | 30         | 1.4                | <0.01        | <2.0         | 24000        | 110          | <20         | 220          | <4.0         | 5900         | <1.0         | 15           |
| llF1-d             | 337                | F-60d               | 30           | 60         | <1.0               | 0.015        | <2.0         | 18000        | 5.2          | <20         | 200          | <4.0         | 3800         | <1.0         | 11           |
| llF1-e             | 338                | F-60e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 24000        | 5.0          | 20          | 260          | <4.0         | 4600         | <1.0         | 13           |
| IIF2-a             | 56                 | F-61a               | 0            | 5          | 6.5                | 0.099        | <2.0         | 20000        | 120          | <20         | 180          | <4.0         | 9400         | <1.0         | 15           |
| IIF2-b             | 57                 | F-61b               | 5            | 15         | 1.3                | 0.10         | <2.0         | 24000        | 180          | <20         | 220          | <4.0         | 8200         | <1.0         | 18           |
| IIF2-c             | 58                 | F-61c               | 15           | 30         | <1.0               | 0.23         | <2.0         | 24000        | 170          | <20         | 230          | <4.0         | 6700         | <1.0         | 17           |
| IIF2-d             | 59                 | F-61d               | 30           | 60         | <1.0               | 0.033        | <2.0         | 25000        | 45           | 22          | 230          | <4.0         | 6200         | <1.0         | 16           |
| IIF2-e             | 60                 | F-61e               | 60           | 100        | <1.0               | 0.012        | <2.0         | 27000        | 21           | 25          | 270          | <4.0         | 7000         | <1.0         | 16           |
| IIF3-a             | 51                 | F-62a               | 0            | 5          | 1.2                | 0.061        | <2.0         | 13000        | 240          | <20         | 76           | <4.0         | 2600         | <1.0         | 12           |
| IIF3-b             | 52                 | F-62b               | 5            | 15         | <1.0               | <0.01        | <2.0         | 7700         | 63           | <20         | 43           | <4.0         | 2300         | <1.0         | 7.4          |
| IIF3-c             | 53                 | F-62c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 7300         | 52           | <20         | 42           | <4.0         | 2200         | <1.0         | 7.7          |
| llF3-d             | 54                 | F-62d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 9700         | 26           | <20         | 66           | <4.0         | 2500         | <1.0         | 8.0          |
| IIF3-e             | 55                 | F-62e               | 60           | 90         | <1.0               | <0.01        | <2.0         | 11000        | 16           | <20         | 88           | <4.0         | 2600         | <1.0         | 9.0          |
| IIIF1-a            | 356                | F-63a               | 0            | 5          | 8.2                | 0.018        | <2.0         | 18000        | 83           | <20         | 120          | <4.0         | 14000        | <1.0         | 15           |
| IIIOC8-b           | 357                | F-63b               | 5            | 15         | <1.0               | 0.037        | <2.0         | 22000        | 90           | <20         | 130          | <4.0         | 4900         | <1.0         | 17           |
| IIIOC8-c           | 358                | F-63c               | 15           | 30         | <1.0               | 0.014        | <2.0         | 19000        | 57           | <20         | 110          | <4.0         | 4000         | <1.0         | 15           |
| IIIOC8-d           | 359                | F-63d               | 30           | 70         | <1.0               | 0.030        | <2.0         | 20000        | 76           | <20         | 86           | <4.0         | 5700         | <1.0         | 16           |
| IIIF2-a            | 27                 | F-64a               | 0            | 5          | 6.7                | 0.53         | <2.0         | 15000        | 1500         | <20         | 130          | <4.0         | 8600         | <1.0         | 13           |
| IIIF2-b            | 28                 | F-64b               | 5            | 15         | 4.85               | 0.065        | <2.0         | 15000        | 840          | <20         | 120          | <4.0         | 7900         | <1.0         | 11           |
| IIIF2-c            | 29                 | F-64c               | 15           | 30         | 2.55               | 0.013        | <2.0         | 18000        | 280          | <20         | 160          | <4.0         | 6200         | <1.0         | 11           |
| IIIF2-d            | 30                 | F-64d               | 30           | 55         | 1.3                | <0.01        | <2.0         | 20000        | 250          | <20         | 180          | <4.0         | 5300         | <1.0         | 13           |
| IIIF2-e            | 31                 | F-64e               | 55           | 100        | <1.0               | <0.01        | <2.0         | 8400         | 40           | <20         | 68           | <4.0         | 3200         | <1.0         | 7.2          |
| IVF1-b             | 87                 | F-65b               | 5            | 15         | 2.7                | 0.018        | <2.0         | 10000        | 140          | <20         | 61           | <4.0         | 2900         | <1.0         | 6.0          |
| IVF1-c             | 88                 | F-65c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 8600         | 51           | <20         | 43           | <4.0         | 2100         | <1.0         | 6.7          |
| IVF1-d             | 89                 | F-65d               | 30           | 60         | <1.0               | 0.039        | <2.0         | 16000        | 25           | <20         | 140          | <4.0         | 3400         | <1.0         | 12           |
| IVF1-e             | 90                 | F-65e               | 60           | 100        | <1.0               | 0.012        | <2.0         | 23000        | 7.3          | <20         | 220          | <4.0         | 5000         | <1.0         | 14           |
| IVF1-a             | 101                | F-65a               | 0            | 5          | 40.5               | 0.24         | <2.0         | 4500         | 540          | <20         | 110          | <4.0         | 13000        | <1.0         | <5.0         |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(μg/g) | Al<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| IVF2-a             | 344                | F-66a               | 0            | 5          | 32.9               | 0.96         | <2.0         | 4100         | 1700         | <20         | 43           | <4.0         | 8200         | <1.0         | 6.5          |
| IVF2-b             | 345                | F-66b               | 5            | 20         | 41.6               | 0.25         | <2.0         | 5600         | 1300         | <20         | 39           | <4.0         | 5900         | <1.0         | 5.3          |
| IVF2-c             | 346                | F-66c               | 20           | 30         | 4.6                | 0.010        | <2.0         | 17000        | 80           | <20         | 140          | <4.0         | 2200         | <1.0         | 7.2          |
| IVF2-d             | 347                | F-66d               | 30           | 60         | 1.1                | <0.01        | <2.0         | 16000        | 17           | <20         | 140          | <4.0         | 2500         | <1.0         | 8.1          |
| IVF2-e             | 348                | F-66e               | 60           | 100        | <1.0               | 0.012        | <2.0         | 16000        | 14           | <20         | 170          | <4.0         | 3300         | <1.0         | 9.5          |
| IVF3A-a            | 19                 | F-67a               | 0            | 5          | 31.5               | 1.0          | <2.0         | 5600         | 770          | 27          | 73           | <4.0         | 24000        | <1.0         | 7.6          |
| IVF3A-b            | 20                 | F-67b               | 5            | 15         | 32.0               | 0.92         | <2.0         | 5800         | 2500         | 23          | 87           | <4.0         | 29000        | <1.0         | 5.3          |
| IVF3A-c            | 21                 | F-67c               | 15           | 35         | 16.7               | 0.070        | <2.0         | 15000        | 300          | <20         | 130          | <4.0         | 19000        | <1.0         | 10           |
| IVF3B-a            | 22                 | F-68a               | 0            | 5          | 20.5               | 0.58         | <2.0         | 4800         | 1300         | <20         | 64           | <4.0         | 14000        | <1.0         | <5.0         |
| IVF3B-b            | 23                 | F-68b               | 5            | 15         | 26.45              | 0.044        | <2.0         | 3800         | 130          | <20         | 60           | <4.0         | 21000        | <1.0         | <5.0         |
| IVF3B-c            | 24                 | F-68c               | 15           | 30         | 21.9               | 0.070        | <2.0         | 8800         | 170          | <20         | 93           | <4.0         | 25000        | <1.0         | 5.3          |
| IVF3B-d            | 25                 | F-68d               | 30           | 60         | 1.75               | 0.025        | <2.0         | 25000        | 36           | <20         | 280          | <4.0         | 9600         | <1.0         | 18           |
| IVF3B-e            | 26                 | F-68e               | 60           | 100        | <1.0               | 0.014        | <2.0         | 16000        | 21           | <20         | 140          | <4.0         | 6600         | <1.0         | 12           |
| IXF1-a             | 113                | F-69a               | 0            | 5          | 32.7               | 0.56         | <2.0         | 6600         | 2400         | 26          | 99           | <4.0         | 25000        | <1.0         | 6.7          |
| IXF1-b             | 114                | F-69b               | 5            | 15         | 34.6               | 0.066        | <2.0         | 5600         | 300          | <20         | 120          | <4.0         | 28000        | <1.0         | <5.0         |
| IXF1-c             | 115                | F-69c               | 15           | 30         | 32.65              | 0.021        | <2.0         | 8100         | 180          | 22          | 200          | <4.0         | 42000        | <1.0         | <5.0         |
| IXF1-d             | 116                | F-69d               | 30           | 55         | 34.3               | 0.010        | <2.0         | 6900         | 290          | 31          | 190          | <4.0         | 43000        | <1.0         | <5.0         |
| IXF1-e             | 117                | F-69e               | 55           | 100        | 7.6                | <0.01        | <2.0         | 16000        | 21           | <20         | 160          | <4.0         | 12000        | <1.0         | 9.7          |
| IXF2-a             | 37                 | F-70a               | 0            | 5          | 15.8               | 3.1          | <2.0         | 18000        | 930          | <20         | 41           | <4.0         | 12000        | <1.0         | 24           |
| IXF2-b             | 38                 | F-70b               | 5            | 15         | 30.6               | 0.66         | <2.0         | 9500         | 730          | <20         | 59           | <4.0         | 20000        | <1.0         | 16           |
| IXF2-c             | 39                 | F-70c               | 15           | 30         | 32.1               | 0.10         | <2.0         | 6800         | 220          | <20         | 73           | <4.0         | 33000        | <1.0         | 8.7          |
| IXF2-d             | 40                 | F-70d               | 30           | 45         | 8.0                | 0.019        | <2.0         | 13000        | 53           | <20         | 79           | <4.0         | 12000        | <1.0         | 13           |
| IXF3-a             | 329                | F-71a               | 0            | 5          | 19.5               | 0.26         | <2.0         | 13000        | 510          | <20         | 80           | <4.0         | 16000        | <1.0         | 20           |
| IXF3-b             | 330                | F-71b               | 5            | 15         | <1.0               | 0.025        | <2.0         | 10000        | 73           | <20         | 63           | <4.0         | 3300         | <1.0         | 8.7          |
| IXF3-c             | 331                | F-71c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 14000        | 59           | <20         | 100          | <4.0         | 3600         | <1.0         | 12           |
| IXF3-d             | 332                | F-71d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 19000        | 28           | <20         | 150          | <4.0         | 4400         | <1.0         | 15           |
| IXF3-e             | 333                | F-71e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 12000        | 14           | <20         | 84           | <4.0         | 3100         | <1.0         | 11           |
| IXF4-a             | 1                  | F-72a               | 0            | 5          | 39.8               | 0.22         | <2.0         | 4100         | 240          | 37          | 52           | <4.0         | 27000        | <1.0         | 23           |
| IXF4-b             | 2                  | F-72b               | 5            | 15         | 4.4                | 48           | 16           | 20000        | 3600         | <20         | 44           | <4.0         | 40000        | 1.8          | 34           |
| IXF4-c             | 3                  | F-72c               | 15           | 30         | 5.1                | 0.86         | <2.0         | 20000        | 600          | <20         | 140          | <4.0         | 10000        | <1.0         | 16           |
| IXF4-d             | 4                  | F-72d               | 30           | 60         | 1.4                | 0.20         | <2.0         | 23000        | 180          | <20         | 210          | <4.0         | 6700         | <1.0         | 16           |
| IXF4-e             | 5                  | F-72e               | 60           | 85         | <1.0               | 0.17         | <2.0         | 21000        | 48           | <20         | 190          | <4.0         | 4900         | <1.0         | 15           |
| IXF4-f             | 6                  | F-72f               | 85           | 100        | <1.0               | 0.027        | <2.0         | 14000        | 22           | <20         | 110          | <4.0         | 4100         | <1.0         | 11           |
| VF1-a              | 170                | F-73a               | 0            | 5          | 32.3               | 0.17         | <2.0         | 8600         | 250          | <20         | 120          | <4.0         | 22000        | <1.0         | <5.0         |
| VF1-b              | 171                | F-73b               | 5            | 15         | 7.1                | <0.01        | <2.0         | 14000        | 66           | <20         | 140          | <4.0         | 8800         | <1.0         | 6.8          |
| VF1-c              | 172                | F-73c               | 15           | 30         | 5.9                | 0.12         | <2.0         | 16000        | 23           | <20         | 160          | <4.0         | 8700         | <1.0         | 7.8          |
| VF1-d              | 173                | F-73d               | 30           | 50         | 1.8                | 0.055        | <2.0         | 18000        | 9.1          | <20         | 170          | <4.0         | 6000         | <1.0         | 9.3          |
| VF1-e              | 174                | F-73e               | 50           | 100        | <1.0               | 0.039        | <2.0         | 22000        | 7.7          | <20         | 240          | <4.0         | 6600         | <1.0         | 14           |
| VF2-e              | 161                | F-74e               | 80           | 90         | <1.0               | <0.01        | <2.0         | 14000        | 21           | <20         | 120          | <4.0         | 3400         | <1.0         | 11           |
| VF2-f              | 162                | F-74f               | 100          | 110        | <1.0               | 0.011        | <2.0         | 10000        | 20           | <20         | 64           | <4.0         | 2500         | <1.0         | 9.3          |
| VF2-a              | 175                | F-74a               | 0            | 10         | 26.1               | 0.090        | <2.0         | 4800         | 78           | <20         | 58           | <4.0         | 20000        | <1.0         | 5.9          |
| VF2-b              | 176                | F-74b               | 10           | 20         | 1.0                | 0.016        | <2.0         | 11000        | 48           | <20         | 76           | <4.0         | 3600         | <1.0         | 6.8          |
| VF2-c              | 177                | F-74c               | 20           | 50         | <1.0               | 0.013        | <2.0         | 8000         | 17           | <20         | 58           | <4.0         | 2100         | <1.0         | 6.7          |
| VF2-d              | 178                | F-74d               | 50           | 80         | <1.0               | 0.014        | <2.0         | 9700         | 22           | <20         | 68           | <4.0         | 2300         | <1.0         | 8.0          |
| VIF1-a             | 222                | F-75a               | 0            | 5          | 41.3               | 0.11         | <2.0         | 3900         | 220          | <20         | 100          | <4.0         | 25000        | <1.0         | 7.8          |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(μg/g) | Al<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| VIF1-b             | 223                | F-75b               | 5            | 20         | 16.3               | <0.01        | <2.0         | 14000        | 120          | <20         | 160          | <4.0         | 17000        | <1.0         | 11           |
| VIF1-c             | 224                | F-75c               | 20           | 30         | 1.1                | <0.01        | <2.0         | 16000        | 38           | <20         | 140          | <4.0         | 5100         | <1.0         | 10           |
| VIF1-d             | 225                | F-75d               | 30           | 60         | <1.0               | 0.015        | <2.0         | 16000        | 13           | <20         | 140          | <4.0         | 4800         | <1.0         | 9.9          |
| VIF1-e             | 226                | F-75e               | 60           | 90         | <1.0               | <0.01        | <2.0         | 18000        | 6.8          | <20         | 180          | <4.0         | 4800         | <1.0         | 12           |
| VIF2-e             | 213                | F-76e               | 50           | 60         | 9.3                | <0.01        | <2.0         | 9000         | 12           | <20         | 110          | <4.0         | 12000        | <1.0         | 5.1          |
| VIF2-f             | 214                | F-76f               | 60           | 80         | <1.0               | <0.01        | <2.0         | 7600         | 6.3          | <20         | 37           | <4.0         | 1600         | <1.0         | 6.3          |
| VIF2-g             | 215                | F-76g               | 80           | 85         | <1.0               | <0.01        | <2.0         | 14000        | 11           | <20         | 93           | <4.0         | 2700         | <1.0         | 9.3          |
| VIF2-a             | 227                | F-76a               | 0            | 5          | 40.2               | 0.20         | <2.0         | 4800         | 150          | <20         | 200          | <4.0         | 9900         | <1.0         | 5.6          |
| VIF2-b             | 228                | F-76b               | 5            | 10         | 32.5               | 0.014        | <2.0         | 9000         | 370          | <20         | 240          | <4.0         | 14000        | <1.0         | 13           |
| VIF2-c             | 229                | F-76c               | 10           | 30         | <1.0               | <0.01        | <2.0         | 6200         | 52           | <20         | 34           | <4.0         | 2200         | <1.0         | <5.0         |
| VIF2-d             | 230                | F-76d               | 30           | 50         | 1.9                | <0.01        | <2.0         | 6900         | 16           | <20         | 48           | <4.0         | 3100         | <1.0         | <5.0         |
| VIF3-a             | 216                | F-77a               | 0            | 5          | 12.0               | 0.061        | <2.0         | 13000        | 580          | <20         | 280          | <4.0         | 6000         | <1.0         | 42           |
| VIF3-b             | 217                | F-77b               | 5            | 15         | 1.5                | <0.01        | <2.0         | 7800         | 110          | <20         | 40           | <4.0         | 1400         | <1.0         | 8.7          |
| VIF3-c             | 218                | F-77c               | 15           | 25         | <1.0               | 0.33         | <2.0         | 7300         | 41           | <20         | 21           | <4.0         | 1000         | <1.0         | 6.5          |
| VIF3-d             | 219                | F-77d               | 25           | 45         | <1.0               | <0.01        | <2.0         | 8100         | 33           | <20         | 26           | <4.0         | 1300         | <1.0         | 8.0          |
| VIF3-e             | 220                | F-77e               | 45           | 55         | <1.0               | <0.01        | <2.0         | 6800         | 25           | <20         | 26           | <4.0         | 1500         | <1.0         | 6.6          |
| VIF3-f             | 221                | F-77f               | 55           | 80         | <1.0               | <0.01        | <2.0         | 6900         | 30           | <20         | 37           | <4.0         | 2100         | <1.0         | 6.6          |
| VIF4-a             | 204                | F-78a               | 0            | 5          | 41.3               | 0.27         | <2.0         | 1800         | 68           | <20         | 74           | <4.0         | 36000        | <1.0         | <5.0         |
| VIF4-b             | 205                | F-78b               | 5            | 10         | 34.4               | 0.016        | <2.0         | 2700         | 46           | <20         | 110          | <4.0         | 34000        | <1.0         | <5.0         |
| VIF4-c             | 206                | F-78c               | 10           | 30         | <1.0               | <0.01        | <2.0         | 5000         | 50           | <20         | 23           | <4.0         | 2100         | <1.0         | 5.7          |
| VIF4-d             | 207                | F-78d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 6400         | 39           | <20         | 29           | <4.0         | 1800         | <1.0         | 6.6          |
| VIF4-e             | 208                | F-78e               | 60           | 100        | <1.0               | 0.022        | <2.0         | 6400         | 32           | <20         | 35           | <4.0         | 1700         | <1.0         | 6.9          |
| VIIF1-a            | 245                | F-79a               | 0            | 5          | 18.6               | 0.063        | <2.0         | 3900         | 94           | 31          | 82           | <4.0         | 54000        | <1.0         | <5.0         |
| VIIF1-b            | 246                | F-79b               | 5            | 20         | 18.0               | <0.01        | <2.0         | 8400         | 43           | <20         | 97           | <4.0         | 25000        | <1.0         | 6.9          |
| VIIF1-c            | 247                | F-79c               | 20           | 30         | 3.6                | <0.01        | <2.0         | 21000        | 32           | <20         | 170          | <4.0         | 10000        | <1.0         | 12           |
| VIIF1-d            | 248                | F-79d               | 30           | 60         | 1.3                | <0.01        | <2.0         | 23000        | 13           | <20         | 200          | <4.0         | 6700         | <1.0         | 14           |
| VIIF1-e            | 249                | F-79e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 23000        | 8.7          | <20         | 210          | <4.0         | 5800         | <1.0         | 16           |
| VIIF2-e            | 236                | F-80e               | 60           | 70         | <1.0               | <0.01        | <2.0         | 15000        | 24           | <20         | 97           | <4.0         | 2800         | <1.0         | 12           |
| VIIF2-f            | 237                | F-80f               | 70           | 100        | <1.0               | <0.01        | <2.0         | 16000        | 22           | <20         | 100          | <4.0         | 3000         | <1.0         | 12           |
| VIIF2-a            | 250                | F-80a               | 0            | 5          | 10.3               | 0.018        | <2.0         | 13000        | 120          | <20         | 96           | <4.0         | 9600         | <1.0         | 12           |
| VIIF2-b            | 251                | F-80b               | 5            | 15         | 1.4                | <0.01        | <2.0         | 11000        | 28           | <20         | 86           | <4.0         | 4500         | <1.0         | 8.8          |
| VIIF2-c            | 252                | F-80c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 14000        | 26           | <20         | 99           | <4.0         | 4100         | <1.0         | 12           |
| VIIF2-d            | 253                | F-80d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 17000        | 19           | <20         | 120          | <4.0         | 3800         | <1.0         | 14           |
| VIIIF1-a           | 283                | F-81a               | 0            | 5          | 30.4               | 0.075        | <2.0         | 2100         | 80           | <20         | 32           | <4.0         | 14000        | <1.0         | <5.0         |
| VIIIF1-b           | 284                | F-81b               | 5            | 15         | 28.8               | 0.043        | <2.0         | 4100         | 100          | <20         | 78           | <4.0         | 23000        | <1.0         | <5.0         |
| VIIIF1-c           | 285                | F-81c               | 15           | 30         | 19.9               | 0.019        | <2.0         | 12000        | 55           | <20         | 130          | <4.0         | 19000        | <1.0         | 6.9          |
| VIIIF1-d           | 286                | F-81d               | 30           | 60         | 13.2               | <0.01        | <2.0         | 17000        | 11           | <20         | 180          | <4.0         | 16000        | <1.0         | 10           |
| VIIIF1-e           | 287                | F-81e               | 60           | 70         | 14.2               | <0.01        | <2.0         | 17000        | 10           | <20         | 190          | <4.0         | 17000        | <1.0         | 10           |
| VIIIF2-a           | 271                | F-82a               | 0            | 5          | 31.3               | 0.25         | <2.0         | 6000         | 340          | <20         | 31           | <4.0         | 9800         | <1.0         | 11           |
| VIIIF2-b           | 272                | F-82b               | 5            | 15         | 37.1               | 0.017        | <2.0         | 5800         | 81           | <20         | 90           | <4.0         | 14000        | <1.0         | <5.0         |
| VIIIF2-c           | 273                | F-82c               | 15           | 30         | 19.9               | <0.01        | <2.0         | 17000        | 51           | <20         | 230          | <4.0         | 14000        | <1.0         | 8.4          |
| VIIIF2-d           | 274                | F-82d               | 30           | 60         | 3.15               | <0.01        | <2.0         | 26000        | 8.8          | <20         | 250          | <4.0         | 7400         | <1.0         | 15           |
| VIIIF3-a           | 275                | F-83a               | 0            | 5          | 3.4                | 0.14         | <2.0         | 24000        | 160          | <20         | 220          | <4.0         | 5100         | <1.0         | 18           |
| VIIIF3-b           | 276                | F-83b               | 5            | 15         | 1.4                | 0.059        | <2.0         | 28000        | 220          | 20          | 260          | <4.0         | 5400         | <1.0         | 19           |
| VIIIF3-c           | 277                | F-83c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 20000        | 19           | <20         | 200          | <4.0         | 4500         | <1.0         | 15           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | ΑΙ<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| VIIIF3-d           | 278                | F-83d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 17000        | 14           | <20         | 150          | <4.0         | 3900         | <1.0         | 14           |
| VIIIF4-a           | 297                | F-84a               | 0            | 5          | 30.2               | 0.11         | <2.0         | 4500         | 80           | <20         | 73           | <4.0         | 28000        | <1.0         | <5.0         |
| VIIIF4-b           | 298                | F-84b               | 5            | 15         | 24.5               | 0.019        | <2.0         | 12000        | 76           | <20         | 170          | <4.0         | 32000        | <1.0         | 5.6          |
| VIIIF4-c           | 299                | F-84c               | 15           | 30         | 10.2               | 0.010        | <2.0         | 20000        | 71           | <20         | 190          | <4.0         | 17000        | <1.0         | 11           |
| VIIIF4-d           | 300                | F-84d               | 30           | 60         | 3.7                | <0.01        | <2.0         | 24000        | 40           | <20         | 220          | <4.0         | 9400         | <1.0         | 14           |
| VIIIF4-e           | 301                | F-84e               | 60           | 90         | 3.1                | <0.01        | <2.0         | 25000        | 23           | <20         | 230          | <4.0         | 9100         | <1.0         | 15           |
| VIIIF5-a           | 302                | F-85a               | 0            | 5          | 2.0                | 0.020        | <2.0         | 23000        | 110          | <20         | 200          | <4.0         | 26000        | <1.0         | 17           |
| VIIIF5-b           | 303                | F-85b               | 5            | 15         | <1.0               | 0.013        | <2.0         | 26000        | 64           | <20         | 270          | <4.0         | 8400         | <1.0         | 19           |
| VIIIF5-c           | 304                | F-85c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 22000        | 13           | <20         | 230          | <4.0         | 16000        | <1.0         | 17           |
| VIIIF5-d           | 305                | F-85d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 24000        | 8.3          | <20         | 250          | <4.0         | 12000        | <1.0         | 18           |
| VIIIF5-e           | 308                | F-85e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 18000        | 7.3          | <20         | 160          | <4.0         | 19000        | <1.0         | 15           |
| IWL1-a             | 136                | W-86a               | 0            | 5          | 3.5                | 0.25         | <2.0         | 7600         | 130          | <20         | 38           | <4.0         | 5300         | <1.0         | 7.4          |
| IWL1-b             | 137                | W-86b               | 5            | 15         | <1.0               | 0.48         | <2.0         | 7400         | 93           | <20         | 38           | <4.0         | 4200         | <1.0         | 7.3          |
| IWL1-c             | 138                | W-86c               | 15           | 30         | <1.0               | 0.018        | <2.0         | 8500         | 25           | <20         | 52           | <4.0         | 3500         | <1.0         | 7.7          |
| IWL1-d             | 139                | W-86d               | 30           | 60         | <1.0               | 0.014        | <2.0         | 8000         | 14           | <20         | 50           | <4.0         | 3200         | <1.0         | 7.2          |
| IWL1-e             | 140                | W-86e               | 60           | 100        | <1.0               | 0.016        | <2.0         | 10000        | 15           | <20         | 52           | <4.0         | 4000         | <1.0         | 8.9          |
| IWL2-a             | 46                 | W-87a               | 0            | 5          | 14.6               | 1.5          | <2.0         | 8100         | 780          | <20         | 41           | <4.0         | 40000        | <1.0         | 9.4          |
| IWL2-b             | 47                 | W-87b               | 5            | 15         | 2.3                | 0.97         | <2.0         | 12000        | 500          | <20         | 46           | <4.0         | 28000        | <1.0         | 10           |
| IWL2-c             | 48                 | W-87c               | 15           | 30         | <1.0               | 0.16         | <2.0         | 12000        | 80           | <20         | 88           | <4.0         | 9200         | <1.0         | 10           |
| IWL2-d             | 49                 | W-87d               | 30           | 60         | <1.0               | 0.028        | <2.0         | 12000        | 24           | <20         | 89           | <4.0         | 5300         | <1.0         | 9.6          |
| IWL2-e             | 50                 | W-87e               | 60           | 100        | <1.0               | 0.018        | <2.0         | 15000        | 13           | <20         | 110          | <4.0         | 4900         | <1.0         | 12           |
| IIWL2-a            | 131                | W-88a               | 0            | 5          | 37.6               | 0.68         | <2.0         | 3200         | 900          | 20          | 61           | <4.0         | 29000        | <1.0         | <5.0         |
| IIWL2-b            | 132                | W-88b               | 5            | 15         | 37.8               | 0.12         | <2.0         | 3200         | 240          | <20         | 110          | <4.0         | 44000        | <1.0         | <5.0         |
| IIWL2-c            | 133                | W-88c               | 15           | 30         | 3.2                | <0.01        | <2.0         | 17000        | 110          | <20         | 150          | <4.0         | 7700         | <1.0         | 11.0         |
| IIWL2-d            | 134                | W-88d               | 30           | 60         | 1.5                | <0.01        | <2.0         | 21000        | 39           | <20         | 190          | <4.0         | 6300         | <1.0         | 13           |
| IIWL2-e            | 135                | W-88e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 26000        | 21           | 22          | 260          | <4.0         | 7800         | <1.0         | 14           |
| IIIWL1-c           | 93                 | W-89c               | 15           | 30         | 4.2                | 4.0          | 6.0          | 18000        | 2700         | <20         | 99           | <4.0         | 11000        | 1.9          | 28           |
| IIIWL1-d           | 94                 | W-89d               | 30           | 60         | <1.0               | 0.086        | <2.0         | 19000        | 65           | <20         | 190          | <4.0         | 4700         | <1.0         | 13           |
| IIIWL1-e           | 95                 | W-89e               | 60           | 100        | <1.0               | 0.058        | <2.0         | 21000        | 62           | <20         | 220          | <4.0         | 5100         | <1.0         | 14           |
| IIIWL1-a           | 118                | W-89a               | 0            | 5          | 5.4                | 2.4          | 2.5          | 16000        | 1000         | <20         | 79           | <4.0         | 6800         | 1.0          | 30           |
| IIIWL1-b           | 119                | W-89b               | 5            | 15         | 3.55               | 4.4          | 3.5          | 18000        | 920          | <20         | 88           | <4.0         | 6900         | 1.0          | 38           |
| IVWL1-a            | 12                 | W-90a               | 0            | 5          | 5.0                | 2.1          | 3.4          | 20000        | 1100         | <20         | 170          | <4.0         | 5300         | <1.0         | 14           |
| IVWL1-b            | 13                 | W-90b               | 5            | 15         | 1.3                | 0.54         | <2.0         | 19000        | 250          | <20         | 140          | <4.0         | 4300         | <1.0         | 13           |
| IVWL1-c            | 14                 | W-90c               | 15           | 30         | 1.1                | 0.13         | <2.0         | 22000        | 94           | <20         | 180          | <4.0         | 4900         | <1.0         | 13           |
| IVWL1-d            | 15                 | W-90d               | 30           | 60         | <1.0               | 0.17         | <2.0         | 22000        | 120          | <20         | 210          | <4.0         | 4700         | <1.0         | 14           |
| IVWL1-e            | 16                 | W-90e               | 60           | 100        | <1.0               | 0.11         | <2.0         | 21000        | 57           | <20         | 200          | <4.0         | 4500         | <1.0         | 14           |
| IVWL2-a            | 7                  | W-91a               | 0            | 5          | <1.0               | 0.15         | <2.0         | 14000        | 210          | <20         | 150          | <4.0         | 5400         | <1.0         | 11           |
| IVWL2-b            | 8                  | W-91b               | 5            | 15         | <1.0               | 0.98         | 2.4          | 18000        | 1000         | <20         | 130          | <4.0         | 13000        | <1.0         | 17           |
| IVWL2-c            | 9                  | W-91c               | 15           | 30         | 1.3                | 1.6          | 4.1          | 21000        | 2800         | <20         | 51           | <4.0         | 32000        | 2.4          | 23           |
| IVWL2-d            | 10                 | W-91d               | 30           | 60         | 1.8                | 2.0          | 2.7          | 16000        | 3400         | <20         | 26           | <4.0         | 38000        | 2.8          | 32           |
| IVWL2-e            | 11                 | W-91e               | 60           | 100        | 2.3                | 0.22         | 2.7          | 17000        | 1800         | <20         | 28           | <4.0         | 36000        | 2.1          | 19           |
| IVWL3-a            | 96                 | W-92a               | 0            | 5          | 7.8                | 0.019        | <2.0         | 9200         | 67           | <20         | 72           | <4.0         | 8100         | <1.0         | 7.0          |
| IVWL3-b            | 97                 | W-92b               | 5            | 15         | 5.3                | 0.056        | <2.0         | 10000        | 130          | <20         | 78           | <4.0         | 6200         | <1.0         | 7.7          |
| IVWL3-c            | 98                 | W-92c               | 15           | 30         | 3.5                | 0.028        | <2.0         | 13000        | 110          | <20         | 100          | <4.0         | 5400         | <1.0         | 8.5          |
| IVWL3-d            | 99                 | W-92d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 14000        | 79           | <20         | 90           | <4.0         | 3400         | <1.0         | 11           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | ΑΙ<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| IVWL3-e            | 100                | W-92e               | 60           | 100        | <1.0               | <0.01        | <2.0         | 15000        | 38           | <20         | 100          | <4.0         | 3300         | <1.0         | 12           |
| IVWL4-a            | 149                | W-93a               | 0            | 5          | 5.45               | 0.034        | <2.0         | 12000        | 260          | <20         | 100          | <4.0         | 6100         | <1.0         | 8.6          |
| IVWL4-b            | 150                | W-93b               | 5            | 15         | 5.0                | 0.040        | <2.0         | 16000        | 210          | <20         | 150          | <4.0         | 6800         | <1.0         | 11           |
| IVWL4-c            | 151                | W-93c               | 15           | 30         | 4.0                | 0.031        | <2.0         | 16000        | 140          | <20         | 150          | <4.0         | 5700         | <1.0         | 10           |
| IVWL4-d            | 152                | W-93d               | 30           | 60         | 6.6                | 0.074        | <2.0         | 16000        | 180          | <20         | 160          | <4.0         | 8200         | <1.0         | 10           |
| IVWL4-e            | 153                | W-93e               | 60           | 100        | 3.2                | 0.031        | <2.0         | 21000        | 160          | <20         | 190          | <4.0         | 6300         | <1.0         | 12           |
| IVWL5-a            | 339                | W-94a               | 0            | 5          | 4.0                | 0.023        | <2.0         | 12000        | 330          | <20         | 94           | <4.0         | 5100         | <1.0         | 7.1          |
| IVWL5-b            | 340                | W-94b               | 5            | 15         | 4.3                | 0.030        | <2.0         | 13000        | 210          | <20         | 94           | <4.0         | 5100         | <1.0         | 7.0          |
| IVWL5-c            | 341                | W-94c               | 15           | 30         | 3.2                | 0.029        | <2.0         | 14000        | 200          | <20         | 100          | <4.0         | 4900         | <1.0         | 7.7          |
| IVWL5-d            | 342                | W-94d               | 30           | 60         | 1.2                | <0.01        | <2.0         | 19000        | 30           | <20         | 190          | <4.0         | 4200         | <1.0         | 12           |
| IVWL5-e            | 343                | W-94e               | 60           | 100        | 1.4                | <0.01        | <2.0         | 16000        | 22           | <20         | 150          | <4.0         | 3600         | <1.0         | 11           |
| IXWL1-a            | 32                 | W-95a               | 0            | 5          | 2.0                | 0.74         | <2.0         | 23000        | 1500         | <20         | 200          | <4.0         | 16000        | <1.0         | 21           |
| IXWL1-b            | 33                 | W-95b               | 5            | 15         | <1.0               | 0.31         | <2.0         | 25000        | 690          | 20          | 240          | <4.0         | 9200         | <1.0         | 17           |
| IXWL1-c            | 34                 | W-95c               | 15           | 30         | <1.0               | 0.16         | <2.0         | 24000        | 220          | <20         | 220          | <4.0         | 7100         | <1.0         | 17           |
| IXWL1-d            | 35                 | W-95d               | 30           | 60         | <1.0               | 0.040        | <2.0         | 22000        | 150          | <20         | 220          | <4.0         | 5600         | <1.0         | 15           |
| IXWL1-e            | 36                 | W-95e               | 60           | 100        | <1.0               | 0.055        | <2.0         | 25000        | 120          | <20         | 250          | <4.0         | 6700         | <1.0         | 17           |
| IXWL2-a            | 41                 | W-96a               | 0            | 5          | 5.1                | 0.13         | <2.0         | 25000        | 700          | 26          | 210          | <4.0         | 8400         | <1.0         | 17           |
| IXWL2-b            | 42                 | W-96b               | 5            | 15         | <1.0               | 0.017        | <2.0         | 28000        | 160          | 26          | 250          | <4.0         | 6100         | <1.0         | 18           |
| IXWL2-c            | 43                 | W-96c               | 15           | 30         | <1.0               | <0.01        | <2.0         | 26000        | 110          | 24          | 250          | <4.0         | 5500         | <1.0         | 16           |
| IXWL2-d            | 44                 | W-96d               | 30           | 60         | <1.0               | <0.01        | <2.0         | 28000        | 19           | 25          | 270          | <4.0         | 5400         | <1.0         | 18           |
| IXWL2-e            | 45                 | W-96e               | 60           | 100        | <1.0               | 0.028        | <2.0         | 27000        | 29           | 28          | 270          | <4.0         | 5400         | <1.0         | 17           |
| VWL1-a             | 163                | W-97a               | 0            | 5          | 41.7               | 0.54         | <2.0         | 4300         | 810          | <20         | 98           | <4.0         | 15000        | <1.0         | 5.1          |
| VWL1-b             | 164                | W-97b               | 5            | 15         | 43.3               | 0.099        | <2.0         | 2400         | 190          | <20         | 77           | <4.0         | 19000        | <1.0         | <5.0         |
| VWL1-c             | 165                | W-97c               | 15           | 30         | 35.4               | 0.040        | <2.0         | 3300         | 120          | <20         | 72           | <4.0         | 19000        | <1.0         | <5.0         |
| VWL1-d             | 166                | W-97d               | 30           | 60         | 39.4               | <0.01        | <2.0         | 4200         | 50           | <20         | 81           | <4.0         | 18000        | <1.0         | <5.0         |
| VWL1-e             | 167                | W-97e               | 60           | 80         | 29.0               | 0.012        | <2.0         | 9100         | 34           | <20         | 110          | <4.0         | 15000        | <1.0         | <5.0         |
| VWL2-c             | 154                | W-98c               | 20           | 40         | 35.3               | 0.052        | <2.0         | 5400         | 220          | 21          | 76           | <4.0         | 26000        | <1.0         | <5.0         |
| VWL2-d             | 155                | W-98d               | 40           | 70         | 35.2               | 0.029        | <2.0         | 4800         | 190          | 23          | 82           | <4.0         | 28000        | <1.0         | <5.0         |
| VWL2-e             | 156                | W-98e               | 70           | 100        | <1.0               | 0.036        | <2.0         | 23000        | 8.2          | <20         | 230          | <4.0         | 5400         | <1.0         | 14           |
| VWL2-a             | 168                | W-98a               | 0            | 5          | 34.8               | 0.045        | <2.0         | 5100         | 240          | 22          | 70           | <4.0         | 24000        | <1.0         | <5.0         |
| VWL2-b             | 169                | W-98b               | 5            | 20         | 7.1                | 0.28         | <2.0         | 16000        | 1100         | <20         | 58           | <4.0         | 6900         | <1.0         | 26           |
| VWL3-a             | 157                | W-99a               | 0            | 10         | 4.9                | 0.11         | <2.0         | 7900         | 35           | <20         | 64           | <4.0         | 6100         | <1.0         | 6.1          |
| VWL3-b             | 158                | W-99b               | 10           | 50         | 4.7                | 0.056        | <2.0         | 8100         | 29           | <20         | 75           | <4.0         | 6500         | <1.0         | 6.8          |
| VWL3-c             | 159                | W-99c               | 50           | 80         | <1.0               | <0.01        | <2.0         | 8300         | 4.9          | <20         | 49           | <4.0         | 2800         | <1.0         | 6.4          |
| VWL3-d             | 160                | W-99d               | 80           | 100        | <1.0               | <0.01        | <2.0         | 12000        | 5.7          | <20         | 98           | <4.0         | 3200         | <1.0         | 6.9          |
| VIWL1A-a           | 195                | W-100a              | 0            | 5          | 9.3                | 0.31         | <2.0         | 25000        | 1500         | <20         | 42           | <4.0         | 75000        | <1.0         | 33           |
| VIWL1A-b           | 196                | W-100b              | 5            | 10         | 2.5                | 0.16         | <2.0         | 30000        | 420          | <20         | 10           | <4.0         | 50000        | <1.0         | 42           |
| VIWL1B-a           | 197                | W-101a              | 0            | 5          | 12.0               | 0.21         | <2.0         | 19000        | 870          | <20         | 44           | <4.0         | 81000        | <1.0         | 26           |
| VIWL1B-b           | 198                | W-101b              | 5            | 10         | 10.9               | 0.23         | <2.0         | 25000        | 1200         | <20         | 32           | <4.0         | 40000        | <1.0         | 32           |
| VIWL1B-c           | 199                | W-101c              | 10           | 30         | 14.0               | 0.33         | <2.0         | 19000        | 790          | <20         | 54           | <4.0         | 26000        | 1.6          | 25           |
| VIWL1B-d           | 200                | W-101d              | 30           | 60         | 9.7                | 0.039        | <2.0         | 16000        | 170          | <20         | 120          | <4.0         | 12000        | <1.0         | 13           |
| VIWL1B-e           | 201                | W-101e              | 60           | 80         | 4.9                | 0.014        | <2.0         | 13000        | 88           | <20         | 100          | <4.0         | 6500         | <1.0         | 10           |
| VIIWL1-a           | 238                | W-102a              | 0            | 10         | 34.1               | 0.056        | <2.0         | 3700         | 260          | 24          | 58           | <4.0         | 13000        | <1.0         | <5.0         |
| VIIWL1-b           | 239                | W-102b              | 10           | 30         | 40.1               | 0.013        | <2.0         | 3100         | 170          | <20         | 45           | <4.0         | 13000        | <1.0         | <5.0         |
| VIIWL1-c           | 240                | W-102c              | 30           | 55         | 35.7               | <0.01        | <2.0         | 2800         | 45           | <20         | 56           | <4.0         | 11000        | <1.0         | <5.0         |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Car-<br>bon<br>(%) | Au<br>(µg/g) | Ag<br>(µg/g) | Al<br>(µg/g) | As<br>(µg/g) | В<br>(µg/g) | Ba<br>(µg/g) | Be<br>(µg/g) | Ca<br>(µg/g) | Cd<br>(µg/g) | Co<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
| VIIWL1-d           | 241                | W-102d              | 55           | 100        | 26.8               | <0.01        | <2.0         | 9900         | 30           | <20         | 120          | <4.0         | 10000        | <1.0         | 7.6          |
| VIIIWL1-a          | 309                | W-103a              | 0            | 5          | 29.4               | 0.11         | <2.0         | 4900         | 94           | <20         | 59           | <4.0         | 27000        | <1.0         | 6.7          |
| VIIIWL1-b          | 310                | W-103b              | 5            | 15         | 35.2               | <0.01        | <2.0         | 2400         | 32           | <20         | 87           | <4.0         | 52000        | <1.0         | <5.0         |
| VIIIWL1-c          | 311                | W-103c              | 15           | 30         | 32.4               | <0.01        | <2.0         | 3200         | 40           | <20         | 81           | <4.0         | 44000        | <1.0         | <5.0         |
| VIIIWL1-d          | 312                | W-103d              | 30           | 60         | 34.1               | <0.01        | <2.0         | 3900         | 23           | <20         | 84           | <4.0         | 34000        | <1.0         | <5.0         |
| VIIIWL1-e          | 313                | W-103e              | 60           | 100        | <1.0               | <0.01        | <2.0         | 26000        | 6.4          | 24          | 260          | <4.0         | 6300         | <1.0         | 16           |
| VIIIWL2-d          | 306                | W-104d              | 30           | 60         | 1.2                | <0.01        | <2.0         | 26000        | 7.3          | <20         | 250          | <4.0         | 6100         | <1.0         | 18           |
| VIIIWL2-e          | 307                | W-104e              | 60           | 100        | <1.0               | <0.01        | <2.0         | 27000        | 6.2          | <20         | 270          | <4.0         | 5900         | <1.0         | 18           |
| VIIIWL2-a          | 314                | W-104a              | 0            | 5          | 19.9               | 0.024        | <2.0         | 15000        | 41           | <20         | 160          | <4.0         | 18000        | <1.0         | 9.5          |
| VIIIWL2-b          | 315                | W-104b              | 5            | 15         | 9.4                | <0.01        | <2.0         | 20000        | 18           | <20         | 180          | <4.0         | 11000        | <1.0         | 12           |
| VIIIWL2-c          | 316                | W-104c              | 15           | 30         | 4.5                | <0.01        | <2.0         | 22000        | 11           | <20         | 180          | <4.0         | 7500         | <1.0         | 14           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (µg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| IOC1-a             | 141                | O-1a                | 0            | 5          | 190          | 240          | 42000         | 390          | 22000        | 600          | <2.0         | 88           | 53            | 1000         | 22           |
| IOC1-b             | 142                | O-1b                | 5            | 15         | 260          | 200          | 56000         | 330          | 33000        | 830          | <2.0         | <75          | 68            | 690          | 13           |
| IOC2-a             | 91                 | O-2a                | 2            | 7          | 140          | 160          | 58000         | 350          | 8400         | 1900         | <2.0         | 84           | 51            | 2800         | 40           |
| IOC3-a             | 92                 | O-3a                | 2            | 5          | 130          | 130          | 48000         | 360          | 11000        | 2500         | <2.0         | 78           | 45            | 1800         | 37           |
| llOC1-a            | 61                 | O-4a                | 0            | 5          | 21           | 100          | 15000         | 360          | 4700         | 740          | <2.0         | <75          | 20            | 770          | 41           |
| llOC1-b            | 62                 | O-4b                | 5            | 10         | 69           | 130          | 47000         | 350          | 17000        | 800          | <2.0         | 99           | 43            | 580          | 14           |
| llOC10-a           | 83                 | O-5a                | 0            | 5          | 51           | 100          | 52000         | 380          | 8300         | 520          | <2.0         | 100          | 45            | 1800         | 89           |
| llOC10-b           | 84                 | O-5b                | 5            | 8          | 75           | 62           | 110000        | 180          | 30000        | 1200         | <2.0         | <75          | 53            | 780          | 37           |
| llOC11-a           | 85                 | O-6a                | 0            | 5          | 58           | 130          | 59000         | 260          | 13000        | 680          | <2.0         | 88           | 40            | 910          | 60           |
| IIOC11-b           | 86                 | O-6b                | 5            | 10         | 66           | 180          | 49000         | 250          | 9800         | 450          | <2.0         | 88           | 34            | 840          | 31           |
| IIOC2-a            | 63                 | 0-7a                | 0            | 3          | 37           | 75           | 24000         | 710          | 6900         | 3600         | <2.0         | 170          | 45            | 1300         | 52           |
| IIOC2-b            | 64                 | O-7b                | 3            | 10         | 71           | 45           | 44000         | 420          | 11000        | 1600         | <2.0         | 130          | 45            | 450          | 18           |
| IIOC3-a            | 65                 | O-8a                | 0            | 5          | 34           | 56           | 28000         | 540          | 7300         | 3500         | <2.0         | 120          | 31            | 800          | 46           |
| IIOC3-b            | 66                 | O-8b                | 5            | 10         | 55           | 44           | 49000         | 340          | 11000        | 1600         | <2.0         | 92           | 31            | 520          | 21           |
| llOC4-a            | 67                 | O-9a                | 0            | 5          | 38           | 66           | 21000         | 580          | 4400         | 510          | <2.0         | 120          | 39            | 1100         | 42           |
| IIOC4-b            | 68                 | O-9b                | 5            | 15         | 45           | 12           | 23000         | 300          | 6800         | 210          | <2.0         | <75          | 21            | 140          | <10          |
| IIOC4-c            | 69                 | O-9c                | 15           | 20         | 55           | 23           | 26000         | 510          | 7900         | 210          | <2.0         | 110          | 26            | 210          | <10          |
| llOC5-a            | 70                 | O-10a               | 0            | 3          | 38           | 130          | 41000         | 520          | 4900         | 270          | <2.0         | 120          | 59            | 1400         | 280          |
| IIOC5-b            | 71                 | O-10b               | 3            | 10         | 37           | 12           | 13000         | 460          | 3900         | 98           | <2.0         | 120          | 12            | 190          | 16           |
| IIOC5-c            | 72                 | O-10c               | 10           | 20         | 62           | 32           | 28000         | 800          | 9400         | 260          | <2.0         | 120          | 31            | 310          | 16           |
| llOC6-a            | 73                 | O-11a               | 0            | 5          | 47           | 120          | 34000         | 610          | 6500         | 1200         | <2.0         | 110          | 57            | 1200         | 140          |
| IIOC6-b            | 74                 | O-11b               | 5            | 15         | 78           | 82           | 56000         | 380          | 12000        | 360          | <2.0         | 96           | 39            | 540          | 23           |
| IIOC6-c            | 75                 | O-11c               | 15           | 20         | 85           | 75           | 62000         | 370          | 15000        | 520          | <2.0         | 78           | 34            | 360          | 23           |
| llOC7-a            | 76                 | O-12a               | 0            | 10         | 34           | 340          | 19000         | 470          | 3700         | 590          | <2.0         | 100          | 40            | 1500         | 36           |
| IIOC7-b            | 77                 | O-12b               | 10           | 16         | 73           | 270          | 36000         | 460          | 9100         | 310          | <2.0         | 140          | 43            | 750          | 53           |
| IIOC8-a            | 78                 | O-13a               | 0            | 12         | 31           | 93           | 9400          | 290          | 1400         | 57           | <2.0         | 100          | 20            | 1800         | <10          |
| IIOC8-b            | 79                 | O-13b               | 12           | 15         | 40           | 120          | 9700          | 280          | 2000         | 70           | <2.0         | 94           | 20            | 1000         | 10           |
| IIOC9-a            | 80                 | O-14a               | 0            | 3          | 32           | 76           | 26000         | 280          | 2700         | 190          | <2.0         | 89           | 25            | 980          | 38           |
| IIOC9-b            | 81                 | O-14b               | 3            | 10         | 63           | 150          | 50000         | 290          | 4900         | 320          | <2.0         | 84           | 24            | 1000         | 26           |
| IIOC9-c            | 82                 | O-14c               | 10           | 15         | 70           | 200          | 50000         | 350          | 5300         | 310          | <2.0         | 76           | 24            | 1000         | 28           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| IIIOC1-a           | 120                | O-15a               | 0            | 5          | 38           | 110          | 42000         | 490          | 7000         | 1100         | <2.0         | 120          | 49            | 2400         | 44           |
| IIIOC1-b           | 121                | O-15b               | 5            | 15         | 44           | 98           | 49000         | 330          | 11000        | 1300         | <2.0         | 91           | 55            | 2000         | 15           |
| IIIOC2-a           | 122                | O-16a               | 0            | 8          | 23           | 64           | 28000         | 390          | 5700         | 4900         | <2.0         | 230          | 28            | 450          | 85           |
| IIIOC2-b           | 123                | O-16b               | 8            | 15         | 25           | 20           | 30000         | 240          | 5400         | 1100         | <2.0         | 250          | 19            | 160          | 24           |
| IIIOC3-a           | 107                | O-17a               | 0            | 5          | 74           | 190          | 61000         | 510          | 9500         | 9400         | <2.0         | 300          | 78            | 1600         | 96           |
| IIIOC3-b           | 108                | O-17b               | 5            | 9          | 78           | 190          | 61000         | 450          | 9400         | 8600         | <2.0         | 300          | 67            | 1600         | 85           |
| IIIOC5-a           | 124                | O-18a               | 0            | 5          | 88           | 62           | 60000         | 380          | 20000        | 560          | <2.0         | 95           | 75            | 760          | 22           |
| IIIOC5-b           | 125                | O-18b               | 5            | 10         | 73           | 140          | 48000         | 440          | 10000        | 380          | <2.0         | 180          | 58            | 1100         | 19           |
| IIIOC6-a           | 109                | O-19a               | 0            | 5          | <20          | 23           | 8900          | 810          | 3100         | 110          | 2.3          | 200          | 11            | 460          | <10          |
| IIIOC6-b           | 110                | O-19b               | 5            | 9          | 35           | 59           | 52000         | 400          | 5700         | 560          | <2.0         | 350          | 19            | 400          | 52           |
| IIIOC7-a           | 111                | O-20a               | 0            | 5          | 59           | 190          | 37000         | 590          | 5200         | 580          | <2.0         | 300          | 40            | 1500         | 16           |
| IIIOC7-b           | 112                | O-20b               | 5            | 10         | 66           | 270          | 41000         | 640          | 6100         | 430          | <2.0         | 240          | 44            | 2800         | 14           |
| IIIOC8-a           | 354                | O-21a               | 0            | 5          | 32           | 110          | 38000         | 530          | 7800         | 740          | <2.0         | 140          | 26            | 1200         | 52           |
| IIIOC8-b           | 355                | O-21b               | 5            | 15         | 30           | 130          | 36000         | 460          | 7200         | 570          | <2.0         | 110          | 22            | 1300         | 48           |
| IVOC1-a            | 17                 | O-22a               | 0            | 5          | 38           | 50           | 29000         | 690          | 5300         | 270          | <2.0         | 200          | 25            | 2400         | 70           |
| IVOC1-b            | 18                 | O-22b               | 5            | 10         | 36           | 41           | 33000         | 510          | 3800         | 210          | <2.0         | 130          | 20            | 3000         | 22           |
| IVOC2-a            | 143                | O-23a               | 0            | 5          | 22           | 130          | 16000         | 340          | 2100         | 270          | <2.0         | 240          | 26            | 1400         | 39           |
| IVOC2-b            | 144                | O-23b               | 5            | 10         | 21           | 210          | 12000         | 260          | 1700         | 110          | <2.0         | 230          | 23            | 1100         | 20           |
| IVOC3-a            | 145                | O-24a               | 0            | 5          | 28           | 38           | 24000         | 430          | 5700         | 180          | <2.0         | 130          | 17            | 520          | 34           |
| IVOC3-b            | 146                | O-24b               | 5            | 15         | 41           | 24           | 27000         | 380          | 6100         | 160          | <2.0         | 120          | 18            | 300          | 13           |
| IVOC4-a            | 147                | O-25a               | 0            | 5          | <20          | 77           | 35000         | 500          | 3800         | 500          | <2.0         | 170          | 37            | 1000         | 36           |
| IVOC4-b            | 148                | O-25b               | 5            | 12         | 27           | 55           | 57000         | 450          | 5800         | 500          | <2.0         | 170          | 42            | 590          | 15           |
| IXOC1-a            | 317                | O-26a               | 0            | 5          | 58           | 53           | 40000         | 600          | 12000        | 1700         | <2.0         | 140          | 52            | 390          | 50           |
| IXOC1-b            | 318                | O-26b               | 5            | 15         | 75           | 30           | 30000         | 430          | 11000        | 320          | <2.0         | 150          | 35            | 150          | <10          |
| IXOC2-a            | 319                | O-27a               | 0            | 3          | 35           | 76           | 40000         | 530          | 9400         | 1300         | <2.0         | 110          | 58            | 550          | 140          |
| IXOC2-b            | 320                | O-27b               | 3            | 10         | 60           | 16           | 28000         | 420          | 8600         | 240          | <2.0         | 120          | 30            | 180          | 12           |
| IXOC2-c            | 321                | O-27c               | 10           | 25         | 60           | 17           | 29000         | 510          | 8900         | 270          | <2.0         | 160          | 30            | 140          | 10           |
| IXOC3-a            | 322                | O-28a               | 0            | 5          | 70           | 140          | 62000         | 460          | 13000        | 4600         | <2.0         | 87           | 48            | 830          | 100          |
| IXOC3-b            | 323                | O-28b               | 5            | 10         | 98           | 120          | 100000        | 450          | 13000        | 5200         | <2.0         | 93           | 43            | 840          | 74           |
| IXOC4-a            | 324                | O-29a               | 0            | 6          | <20          | 90           | 20000         | 410          | 6100         | 880          | <2.0         | 110          | 49            | 670          | 81           |
| IXOC4-b            | 325                | O-29b               | 6            | 15         | 41           | 22           | 27000         | 380          | 10000        | 270          | <2.0         | 130          | 23            | 210          | 11           |
| IXOC4-c            | 326                | O-29c               | 15           | 20         | 41           | 19           | 28000         | 370          | 6800         | 220          | <2.0         | 120          | 22            | 180          | 10           |
| IXOC5-a            | 327                | O-30a               | 0            | 7          | 33           | 53           | 21000         | 740          | 6500         | 1400         | <2.0         | 120          | 33            | 810          | 61           |
| IXOC5-b            | 328                | O-30b               | 7            | 15         | 87           | 80           | 44000         | 470          | 10000        | 2300         | <2.0         | 110          | 55            | 1000         | 27           |
| VOC1-a             | 179                | O-31a               | 0            | 5          | 78           | 24           | 34000         | 530          | 8500         | 630          | <2.0         | 160          | 48            | 610          | 15           |
| VOC1-b             | 180                | O-31b               | 5            | 15         | 88           | 46           | 36000         | 550          | 10000        | 280          | <2.0         | 170          | 56            | 440          | 13           |
| VOC2-a             | 181                | O-32a               | 0            | 5          | 51           | 110          | 22000         | 200          | 3400         | 91           | <2.0         | 120          | 21            | 1200         | 26           |
| VOC2-b             | 182                | O-32b               | 5            | 15         | 32           | 36           | 13000         | 300          | 4200         | 120          | <2.0         | 120          | 19            | 410          | <10          |
| VOC2-c             | 183                | O-32c               | 15           | 25         | 32           | 34           | 13000         | 260          | 3700         | 90           | <2.0         | 88           | 17            | 360          | <10          |
| VOC2-d             | 184                | O-32d               | 25           | 35         | 33           | 38           | 14000         | 330          | 4600         | 120          | <2.0         | 120          | 20            | 380          | <10          |
| VOC3-a             | 185                | O-33a               | 0            | 5          | 67           | 130          | 32000         | 550          | 4700         | 370          | <2.0         | 130          | 38            | 2200         | 18           |
| VOC3-b             | 186                | O-33b               | 5            | 15         | 77           | 160          | 34000         | 320          | 5300         | 190          | <2.0         | 87           | 29            | 1000         | 15           |
| VOC3-c             | 187                | O-33c               | 15           | 25         | 72           | 150          | 31000         | 310          | 4700         | 160          | <2.0         | 77           | 26            | 930          | 16           |
| VOC4-a             | 188                | O-34a               | 0            | 5          | 24           | 55           | 13000         | 310          | 2400         | 80           | <2.0         | 190          | 14            | 360          | 12           |
| VOC4-b             | 189                | O-34b               | 5            | 15         | 36           | 67           | 22000         | 280          | 3500         | 110          | <2.0         | 130          | 19            | 400          | 12           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (μg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| VOC4-c             | 190                | O-34c               | 15           | 30         | 47           | 70           | 39000         | 370          | 5800         | 190          | <2.0         | 110          | 24            | 560          | 14           |
| VOC5-a             | 191                | O-35a               | 0            | 5          | 35           | 18           | 19000         | 450          | 4600         | 240          | <2.0         | 100          | 20            | 630          | 16           |
| VOC5-b             | 192                | O-35b               | 5            | 10         | 46           | 16           | 24000         | 450          | 5700         | 160          | <2.0         | 98           | 20            | 290          | 11           |
| VOC6-a             | 193                | O-36a               | 0            | 5          | 75           | 310          | 23000         | 290          | 6400         | 230          | <2.0         | 79           | 39            | 1300         | 18           |
| VOC6-b             | 194                | O-36b               | 5            | 15         | 100          | 490          | 36000         | 280          | 13000        | 430          | <2.0         | <75          | 59            | 1100         | 18           |
| VIOC1-a            | 209                | O-37a               | 0            | 5          | 36           | 54           | 26000         | 360          | 5800         | 420          | <2.0         | <75          | 30            | 1000         | 46           |
| VIOC1-b            | 210                | O-37b               | 5            | 15         | 53           | 34           | 45000         | 290          | 9300         | 600          | <2.0         | <75          | 22            | 620          | 17           |
| VIOC2-a            | 211                | O-38a               | 0            | 5          | 87           | 45           | 31000         | 240          | 12000        | 880          | <2.0         | 100          | 42            | 1200         | 12           |
| VIOC2-b            | 212                | O-38b               | 5            | 10         | 92           | 41           | 31000         | 250          | 11000        | 760          | <2.0         | <75          | 38            | 1400         | <10          |
| VIOC3-a            | 231                | O-39a               | 0            | 5          | 24           | 31           | 16000         | 600          | 4500         | 1600         | <2.0         | 120          | 28            | 700          | 21           |
| VIOC3-b            | 232                | O-39b               | 5            | 10         | 50           | 21           | 36000         | 500          | 9100         | 600          | <2.0         | 120          | 39            | 360          | 10           |
| VIOC4-a            | 202                | O-40a               | 0            | 5          | 70           | 130          | 26000         | 400          | 6100         | 3900         | <2.0         | 150          | 36            | 1200         | 19           |
| VIOC4-b            | 203                | O-40b               | 5            | 10         | 120          | 170          | 44000         | 360          | 8200         | 3400         | <2.0         | 180          | 47            | 1100         | 16           |
| VIOC5-a            | 233                | O-41a               | 0            | 5          | 21           | 200          | 71000         | 300          | 9700         | 1600         | <2.0         | 130          | 28            | 1300         | 27           |
| VIOC5-b            | 234                | O-41b               | 5            | 10         | 24           | 250          | 78000         | 330          | 12000        | 1600         | <2.0         | 140          | 27            | 2000         | 16           |
| VIOC5-c            | 235                | O-41c               | 10           | 20         | 26           | 270          | 77000         | 460          | 15000        | 1300         | <2.0         | 110          | 26            | 2500         | 16           |
| VIIOC1-a           | 242                | O-42a               | 0            | 5          | 37           | 30           | 26000         | 750          | 4900         | 3600         | <2.0         | 180          | 21            | 1100         | 21           |
| VIIOC1-b           | 243                | O-42b               | 5            | 10         | 82           | 28           | 49000         | 770          | 10000        | 1200         | <2.0         | 160          | 30            | 950          | 13           |
| VIIOC1-c           | 244                | O-42c               | 10           | 35         | 100          | 38           | 50000         | 710          | 12000        | 650          | <2.0         | 150          | 35            | 780          | 12           |
| VIIOC2-a           | 254                | O-43a               | 0            | 5          | 28           | 90           | 28000         | 380          | 2100         | 520          | <2.0         | 94           | 28            | 2100         | 13           |
| VIIOC2-b           | 255                | O-43b               | 5            | 15         | 63           | 190          | 34000         | 280          | 9000         | 370          | <2.0         | <75          | 28            | 1000         | 12           |
| VIIOC3-a           | 256                | O-44a               | 0            | 5          | <20          | 370          | 6700          | 390          | 2000         | 1100         | <2.0         | <75          | 23            | 1400         | 14           |
| VIIOC3-b           | 257                | O-44b               | 5            | 15         | 59           | 1200         | 42000         | 360          | 6000         | 6900         | <2.0         | 140          | 140           | 1600         | 28           |
| VIIOC4-a           | 258                | O-45a               | 0            | 5          | 70           | 120          | 51000         | 430          | 12000        | 2900         | <2.0         | 150          | 59            | 1100         | 26           |
| VIIOC4-b           | 259                | O-45b               | 5            | 10         | 68           | 130          | 54000         | 370          | 7000         | 1300         | <2.0         | 120          | 52            | 890          | 27           |
| VIIOC5-a           | 260                | O-46a               | 0            | 5          | 48           | 100          | 46000         | 240          | 19000        | 1200         | <2.0         | 76           | 44            | 970          | 12           |
| VIIOC6-a           | 261                | O-47a               | 0            | 5          | <20          | 82           | 9500          | 330          | 970          | 79           | <2.0         | 140          | 33            | 1500         | 17           |
| VIIOC6-b           | 262                | O-47b               | 5            | 10         | 27           | 74           | 13000         | 290          | 2700         | 110          | <2.0         | 150          | 19            | 970          | 23           |
| VIIOC7-a           | 263                | O-48a               | 0            | 5          | 42           | 110          | 30000         | 390          | 4200         | 330          | <2.0         | 130          | 44            | 2000         | 15           |
| VIIOC7-b           | 264                | O-48b               | 5            | 10         | 77           | 170          | 48000         | 440          | 6400         | 280          | <2.0         | 140          | 59            | 2300         | 20           |
| VIIOC8-a           | 265                | O-49a               | 0            | 5          | <20          | 32           | 6200          | 340          | 890          | 120          | <2.0         | <75          | 14            | 1300         | <10          |
| VIIOC8-b           | 266                | O-49b               | 5            | 15         | 39           | 200          | 29000         | 230          | 4300         | 180          | <2.0         | 78           | 44            | 2300         | 13           |
| VIIOC8-c           | 267                | O-49c               | 15           | 25         | 49           | 460          | 28000         | 350          | 3900         | 160          | <2.0         | 88           | 82            | 2800         | 16           |
| VIIOC9-a           | 268                | O-50a               | 0            | 5          | 21           | 92           | 11000         | 240          | 2000         | 88           | <2.0         | <75          | 28            | 2100         | <10          |
| VIIOC9-b           | 269                | O-50b               | 5            | 15         | 46           | 180          | 19000         | 220          | 3000         | 130          | <2.0         | <75          | 40            | 1800         | 12           |
| VIIOC9-c           | 270                | O-50c               | 15           | 30         | 52           | 180          | 26000         | 170          | 2600         | 130          | <2.0         | <75          | 47            | 2100         | 13           |
| VIIIOC1-a          | 288                | O-51a               | 0            | 5          | 48           | 64           | 34000         | 670          | 8900         | 1900         | <2.0         | 110          | 35            | 700          | 12           |
| VIIIOC1-b          | 289                | O-51b               | 5            | 10         | 82           | 58           | 45000         | 660          | 14000        | 750          | <2.0         | 88           | 45            | 620          | 13           |
| VIIIOC2-a          | 290                | O-52a               | 0            | 5          | 140          | 62           | 49000         | 300          | 27000        | 630          | <2.0         | <75          | 82            | 670          | 12           |
| VIIIOC2-b          | 291                | O-52b               | 5            | 10         | 130          | 86           | 44000         | 310          | 22000        | 540          | <2.0         | 75           | 70            | 1100         | 12           |
| VIIIOC2-c          | 292                | O-52c               | 10           | 20         | 130          | 77           | 45000         | 290          | 22000        | 540          | <2.0         | <75          | 68            | 1300         | 11           |
| VIIIOC3-a          | 293                | O-53a               | 0            | 5          | <20          | 120          | 29000         | 510          | 4500         | 1200         | <2.0         | 120          | 27            | 1500         | 32           |
| VIIIOC3-b          | 294                | O-53b               | 5            | 10         | 32           | 160          | 59000         | 400          | 12000        | 910          | <2.0         | 83           | 28            | 900          | 20           |
| VIIIOC4-a          | 295                | O-54a               | 0            | 5          | 37           | 62           | 24000         | 440          | 4700         | 4800         | <2.0         | 97           | 34            | 850          | 29           |
| VIIIOC4-b          | 296                | O-54b               | 5            | 20         | 93           | 57           | 50000         | 400          | 8800         | 2000         | <2.0         | 110          | 58            | 320          | 22           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm)  | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|-------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| VIIIOC5-a          | 279                | O-55a               | 0            | 10          | 30           | 86           | 26000         | 590          | 5500         | 320          | <2.0         | 84           | 32            | 1900         | 42           |
| VIIIOC5-b          | 280                | O-55b               | 10           | 15          | 33           | 82           | 25000         | 550          | 7000         | 270          | <2.0         | <75          | 24            | 1700         | 14           |
| VIIIOC6-a          | 281                | O-56a               | 0            | 5           | <20          | 51           | 24000         | 360          | 4700         | 550          | <2.0         | 130          | 23            | 660          | 18           |
| VIIIOC6-b          | 282                | O-56b               | 5            | 10          | 24           | 35           | 28000         | 340          | 7000         | 380          | <2.0         | 130          | 20            | 520          | 16           |
| Stockpile 1-a      | 349                | S-57a               |              | 1           | <20          | 52           | 20000         | 1000         | 4500         | 310          | <2.0         | 490          | 27            | 210          | 15           |
| Stockpile 2-b      | 350                | S-57b               |              | 1           | 28           | 97           | 28000         | 850          | 6000         | 420          | 2.4          | 720          | 46            | 270          | 12           |
| Stockpile 3-c      | 351                | S-57c               |              | 1           | 25           | 100          | 26000         | 840          | 5300         | 480          | <2.0         | 740          | 48            | 250          | 11           |
| Stockpile 4-d      | 352                | S-57d               |              | 1           | 26           | 84           | 25000         | 940          | 5900         | 390          | <2.0         | 620          | 46            | 270          | 12           |
| Stockpile 5-e      | 353                | S-57e               |              | 1<br>1<br>1 | <20          | 58           | 17000         | 1100         | 5400         | 360          | <2.0         | 500          | 18            | 250          | 20           |
| IF1-a              | 126                | F-58a               | 0            | 5           | <20          | 36           | 5500          | 720          | 4700         | 290          | <2.0         | 150          | 8.6           | 890          | 22           |
| IF1-b              | 127                | F-58b               | 5            | 15          | <20          | 40           | 7000          | 740          | 5800         | 240          | <2.0         | 200          | 8.4           | 760          | <10          |
| IF1-c              | 128                | F-58c               | 15           | 30          | 33           | 28           | 21000         | 2000         | 7900         | 310          | <2.0         | 330          | 19            | 520          | <10          |
| IF1-d              | 129                | F-58d               | 30           | 60          | 46           | 25           | 30000         | 3200         | 10000        | 360          | <2.0         | 440          | 26            | 510          | 12           |
| IF1-e              | 130                | F-58e               | 60           | 100         | 54           | 34           | 37000         | 4800         | 13000        | 520          | <2.0         | 710          | 32            | 580          | 15           |
| IF2-a              | 102                | F-59a               | 0            | 5           | <20          | 21           | 8900          | 820          | 4000         | 130          | <2.0         | 140          | 11            | 1100         | 22           |
| IF2-b              | 103                | F-59b               | 5            | 15          | <20          | 16           | 6500          | 640          | 3400         | 160          | <2.0         | 140          | 8.6           | 740          | 21           |
| IF2-c              | 104                | F-59c               | 15           | 30          | 27           | 19           | 18000         | 2200         | 6200         | 180          | <2.0         | 260          | 16            | 640          | <10          |
| IF2-d              | 105                | F-59d               | 30           | 60          | 53           | 29           | 33000         | 4200         | 12000        | 430          | <2.0         | 580          | 31            | 610          | 13           |
| IF2-e              | 106                | F-59e               | 60           | 100         | 57           | 33           | 36000         | 4400         | 13000        | 510          | <2.0         | 620          | 34            | 580          | 14           |
| IIF1-a             | 334                | F-60a               | 0            | 5           | 50           | 23           | 30000         | 3500         | 10000        | 330          | <2.0         | 390          | 30            | 520          | 18           |
| IIF1-b             | 335                | F-60b               | 5            | 15          | 50           | 21           | 29000         | 3600         | 9700         | 300          | <2.0         | 400          | 29            | 430          | 14           |
| IIF1-c             | 336                | F-60c               | 15           | 30          | 55           | 28           | 32000         | 3900         | 10000        | 310          | <2.0         | 470          | 32            | 400          | 15           |
| llF1-d             | 337                | F-60d               | 30           | 60          | 35           | 24           | 23000         | 2600         | 8300         | 350          | <2.0         | 480          | 22            | 460          | <10          |
| IIF1-e             | 338                | F-60e               | 60           | 100         | 41           | 27           | 28000         | 3700         | 11000        | 440          | <2.0         | 650          | 25            | 450          | 11           |
| IIF2-a             | 56                 | F-61a               | 0            | 5           | 45           | 44           | 29000         | 3600         | 10000        | 390          | <20          | 480          | 31            | 770          | 18           |
| IIF2-b             | 57                 | F-61b               | 5            | 15          | 53           | 35           | 34000         | 4000         | 12000        | 580          | <2.0         | 560          | 36            | 620          | 19           |
| IIF2-c             | 58                 | F-61c               | 15           | 30          | 53           | 32           | 34000         | 4200         | 12000        | 540          | <2.0         | 640          | 34            | 630          | 17           |
| IIF2-d             | 59                 | F-61d               | 30           | 60          | 48           | 29           | 32000         | 4400         | 12000        | 490          | <20          | 680          | 32            | 610          | 15           |
| IIF2-e             | 60                 | F-61e               | 60           | 100         | 51           | 30           | 35000         | 4700         | 13000        | 630          | <20          | 760          | 33            | 670          | 15           |
| IIF3-a             | 51                 | F-62a               | 0            | 5           | 41           | 25           | 20000         | 980          | 6600         | 250          | <20          | 240          | 26            | 310          | 10           |
| IIE3-b             | 52                 | F-62h               | 5            | 15          | 24           | 16           | 12000         | 690          | 4200         | 170          | <2.0         | 200          | 16            | 440          | <10          |
| IIF3-c             | 53                 | F-62c               | 15           | 30          | 22           | 15           | 12000         | 680          | 3900         | 180          | <2.0         | 200          | 15            | 440          | <10          |
| IIF3-d             | 54                 | F-62d               | 30           | 60          | 28           | 20           | 14000         | 1000         | 4800         | 190          | <2.0         | 250          | 18            | 420          | <10          |
| IIF3-e             | 55                 | E-62e               | 60           | 90          | 31           | 24           | 17000         | 2000         | 5900         | 210          | <2.0         | 320          | 21            | 400          | <10          |
| IIIF1-a            | 356                | F-63a               | 0            | 5           | 45           | 36           | 26000         | 2600         | 11000        | 520          | <2.0         | 270          | 35            | 400          | <10          |
|                    | 357                | F-63b               | 5            | 15          | 58           | 12           | 31000         | 1400         | 11000        | 430          | <2.0         | 340          | 36            | 240          | <10          |
|                    | 250                | E 620               | 15           | 20          | 50           | 42           | 28000         | 1200         | 0800         | 200          | <2.0         | 210          | 20            | 240          | <10          |
|                    | 350                |                     | 15           | 30          | 52           | 40           | 20000         | 1200         | 9000         | 500          | <2.0         | 050          | 32<br>05      | 250          | <10          |
|                    | 07                 | F-030               | 30           | 70          | 20           | 40           | 32000         | 0400         | 7900         | 500          | <2.0         | 250          | 35            | 006          | <10          |
|                    | 21                 | г-04a               |              | о<br>15     | 40           | 30           | 23000         | 2400         | 7800         | 0.10         | <2.0         | 270          | 25            | 510          | 34           |
| IIIF2-D            | 28                 | F-64D               | 5            | 15          | 40           | 23           | 21000         | 2200         | 7000         | 310          | <2.0         | 230          | 22            | 540          | 12           |
| IIIF2-C            | 29                 | F-64C               | 15           | 30          | 45           | 21           | 24000         | 2600         | 8000         | 250          | <2.0         | 270          | 23            | 400          | 10           |
| IIIF2-0            | 30                 | r-640               | 30           | 55          | 43           | 22           | 20000         | 3400         | 8300         | 330          | <2.0         | 320          | 25            | 420          | 11           |
| IIIF2-e            | 31                 | F-64e               | 55           | 100         | 22           | 16           | 14000         | 1500         | 4800         | 200          | <2.0         | 230          | 14            | 400          | <10          |
| IVF1-b             | 87                 | F-65b               | 5            | 15          | 24           | 14           | 13000         | 740          | 4000         | 140          | <2.0         | 150          | 14            | 300          | <10          |
| IVF1-c             | 88                 | F-65c               | 15           | 30          | 24           | 8.3          | 14000         | 700          | 4400         | 160          | <2.0         | 160          | 14            | 310          | <10          |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (μg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| IVF1-d             | 89                 | F-65d               | 30           | 60         | 35           | 20           | 24000         | 2700         | 7600         | 330          | <2.0         | 370          | 22            | 470          | <10          |
| IVF1-e             | 90                 | F-65e               | 60           | 100        | 46           | 25           | 31000         | 4300         | 11000        | 380          | <2.0         | 630          | 28            | 580          | 14           |
| IVF1-a             | 101                | F-65a               | 0            | 5          | <20          | 21           | 7800          | 780          | 2500         | 40           | <2.0         | 120          | 9.8           | 860          | 18           |
| IVF2-a             | 344                | F-66a               | 0            | 5          | <20          | 26           | 6800          | 810          | 1900         | 130          | <2.0         | 75           | 20            | 440          | 51           |
| IVF2-b             | 345                | F-66b               | 5            | 20         | <20          | 28           | 4600          | 680          | 790          | 34           | <2.0         | <75          | 29            | 820          | 24           |
| IVF2-c             | 346                | F-66c               | 20           | 30         | 36           | 27           | 22000         | 1900         | 5700         | 150          | 2.3          | 260          | 20            | 390          | <10          |
| IVF2-d             | 347                | F-66d               | 30           | 60         | 38           | 25           | 20000         | 2300         | 7000         | 180          | <2.0         | 340          | 19            | 380          | <10          |
| IVF2-e             | 348                | F-66e               | 60           | 100        | 40           | 25           | 21000         | 2600         | 7800         | 220          | <2.0         | 400          | 20            | 410          | <10          |
| IVF3A-a            | 19                 | F-67a               | 0            | 5          | <20          | 57           | 13000         | 680          | 6300         | 440          | 5.7          | 450          | 19            | 1100         | 67           |
| IVF3A-b            | 20                 | F-67b               | 5            | 15         | <20          | 45           | 9600          | 620          | 5400         | 240          | 15           | 540          | 15            | 760          | 39           |
| IVF3A-c            | 21                 | F-67c               | 15           | 35         | 34           | 40           | 19000         | 1600         | 8100         | 450          | 4.2          | 430          | 22            | 620          | <10          |
| IVF3B-a            | 22                 | F-68a               | 0            | 5          | <20          | 21           | 8700          | 640          | 3600         | 180          | <2.0         | 140          | 12            | 570          | 31           |
| IVF3B-b            | 23                 | F-68b               | 5            | 15         | <20          | 18           | 4600          | 470          | 2500         | 78           | <2.0         | 120          | 7.8           | 460          | <10          |
| IVF3B-c            | 24                 | F-68c               | 15           | 30         | <20          | 26           | 11000         | 820          | 4300         | 180          | <2.0         | 180          | 15            | 490          | <10          |
| IVF3B-d            | 25                 | F-68d               | 30           | 60         | 60           | 44           | 35000         | 4200         | 14000        | 550          | <2.0         | 640          | 39            | 550          | 13           |
| IVF3B-e            | 26                 | F-68e               | 60           | 100        | 41           | 26           | 25000         | 3000         | 9600         | 350          | <2.0         | 430          | 26            | 410          | <10          |
| IXF1-a             | 113                | F-69a               | 0            | 5          | <20          | 26           | 12000         | 1100         | 5800         | 580          | <2.0         | 140          | 13            | 790          | 49           |
| IXF1-b             | 114                | F-69b               | 5            | 15         | <20          | 18           | 6600          | 1200         | 4200         | 140          | <2.0         | 190          | 7.8           | 660          | <10          |
| IXF1-c             | 115                | F-69c               | 15           | 30         | <20          | 27           | 9400          | 890          | 5200         | 190          | <2.0         | 280          | 12            | 750          | <10          |
| IXF1-d             | 116                | F-69d               | 30           | 55         | <20          | 30           | 8300          | 630          | 4600         | 190          | <2.0         | 240          | 13            | 800          | <10          |
| IXF1-e             | 117                | F-69e               | 55           | 100        | 31           | 18           | 22000         | 3100         | 7800         | 240          | <2.0         | 340          | 20            | 400          | <10          |
| IXF2-a             | 37                 | F-70a               | 0            | 5          | 59           | 51           | 36000         | 920          | 14000        | 700          | <2.0         | 120          | 44            | 620          | 80           |
| IXF2-b             | 38                 | F-70b               | 5            | 15         | 29           | 37           | 17000         | 880          | 6800         | 830          | <2.0         | 120          | 25            | 640          | 90           |
| IXF2-c             | 39                 | F-70c               | 15           | 30         | <20          | 35           | 9600          | 670          | 4700         | 310          | <2.0         | 110          | 21            | 650          | 14           |
| IXF2-d             | 40                 | F-70d               | 30           | 45         | 42           | 62           | 20000         | 740          | 7200         | 270          | <2.0         | 180          | 34            | 500          | <10          |
| IXF3-a             | 329                | F-71a               | 0            | 5          | 46           | 46           | 29000         | 2400         | 10000        | 740          | <2.0         | 270          | 39            | 840          | 54           |
| IXF3-b             | 330                | F-71b               | 5            | 15         | 33           | 16           | 17000         | 1800         | 5400         | 210          | <2.0         | 260          | 19            | 500          | <10          |
| IXF3-c             | 331                | F-71c               | 15           | 30         | 50           | 27           | 24000         | 2400         | 7900         | 270          | <2.0         | 350          | 28            | 540          | <10          |
| IXF3-d             | 332                | F-71d               | 30           | 60         | 66           | 32           | 32000         | 3700         | 11000        | 370          | <2.0         | 610          | 38            | 550          | 12           |
| IXF3-e             | 333                | F-71e               | 60           | 100        | 41           | 23           | 20000         | 2300         | 6800         | 250          | <2.0         | 370          | 26            | 530          | <10          |
| IXF4-a             | 1                  | F-72a               | 0            | 5          | <20          | 42           | 10000         | 1100         | 5200         | 380          | <2.0         | 110          | 24            | 890          | 34           |
| IXF4-b             | 2                  | F-72b               | 5            | 15         | 53           | 110          | 56000         | 910          | 25000        | 1100         | <2.0         | 140          | 66            | 490          | 450          |
| IXF4-c             | 3                  | F-72c               | 15           | 30         | 46           | 37           | 30000         | 3500         | 12000        | 520          | <2.0         | 400          | 33            | 380          | 70           |
| IXF4-d             | 4                  | F-72d               | 30           | 60         | 58           | 34           | 31000         | 4200         | 13000        | 470          | <2.0         | 690          | 36            | 490          | 26           |
| IXF4-e             | 5                  | F-72e               | 60           | 85         | 57           | 30           | 28000         | 4000         | 12000        | 400          | <2.0         | 720          | 34            | 520          | 15           |
| IXF4-f             | 6                  | F-72f               | 85           | 100        | 41           | 25           | 21000         | 2700         | 8100         | 280          | <2.0         | 530          | 25            | 580          | <10          |
| VF1-a              | 170                | F-73a               | 0            | 5          | <20          | 16           | 9200          | 1200         | 3300         | 69           | <2.0         | 360          | 13            | 660          | 13           |
| VF1-b              | 171                | F-73b               | 5            | 15         | 27           | 14           | 18000         | 1900         | 5200         | 160          | <2.0         | 370          | 16            | 520          | <10          |
| VF1-c              | 172                | F-73c               | 15           | 30         | 31           | 16           | 20000         | 2100         | 5800         | 160          | <2.0         | 380          | 18            | 500          | <10          |
| VF1-d              | 173                | F-73d               | 30           | 50         | 36           | 19           | 23000         | 2800         | 7000         | 210          | <2.0         | 450          | 20            | 420          | 11           |
| VF1-e              | 174                | F-73e               | 50           | 100        | 49           | 29           | 32000         | 4400         | 11000        | 400          | <2.0         | 740          | 31            | 480          | 13           |
| VF2-e              | 161                | F-74e               | 80           | 90         | 38           | 28           | 22000         | 2800         | 6700         | 260          | <2.0         | 330          | 26            | 400          | <10          |
| VF2-f              | 162                | F-74f               | 100          | 110        | 35           | 24           | 18000         | 2000         | 5800         | 190          | <2.0         | 220          | 23            | 460          | <10          |
| VF2-a              | 175                | F-74a               | 0            | 10         | <20          | 13           | 6700          | 1000         | 3600         | 160          | <2.0         | 110          | 9.6           | 670          | 16           |
| VF2-b              | 176                | F-74b               | 10           | 20         | 28           | 13           | 13000         | 720          | 4200         | 140          | <2.0         | 180          | 14            | 240          | <10          |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| VF2-c              | 177                | F-74c               | 20           | 50         | 24           | 9.6          | 12000         | 840          | 3800         | 130          | <2.0         | 160          | 12            | 250          | <10          |
| VF2-d              | 178                | F-74d               | 50           | 80         | 32           | 21           | 15000         | 1600         | 5000         | 170          | <2.0         | 210          | 19            | 420          | <10          |
| VIF1-a             | 222                | F-75a               | 0            | 5          | <20          | 20           | 5400          | 880          | 3800         | 610          | 2.2          | 190          | 12            | 820          | <10          |
| VIF1-b             | 223                | F-75b               | 5            | 20         | 33           | 22           | 18000         | 2000         | 6600         | 520          | <2.0         | 330          | 21            | 540          | <10          |
| VIF1-c             | 224                | F-75c               | 20           | 30         | 41           | 16           | 21000         | 2400         | 7000         | 270          | <2.0         | 320          | 21            | 460          | 10           |
| VIF1-d             | 225                | F-75d               | 30           | 60         | 38           | 21           | 22000         | 2700         | 6800         | 270          | <2.0         | 410          | 23            | 500          | <10          |
| VIF1-e             | 226                | F-75e               | 60           | 90         | 40           | 23           | 26000         | 3400         | 7900         | 350          | <2.0         | 550          | 25            | 580          | 11           |
| VIF2-e             | 213                | F-76e               | 50           | 60         | 31           | 53           | 12000         | 650          | 4500         | 130          | <2.0         | 140          | 21            | 570          | <10          |
| VIF2-f             | 214                | F-76f               | 60           | 80         | 29           | 6.3          | 13000         | 1000         | 5000         | 180          | <2.0         | 140          | 16            | 270          | <10          |
| VIF2-g             | 215                | F-76g               | 80           | 85         | 40           | 15           | 21000         | 2100         | 7400         | 310          | <2.0         | 270          | 23            | 400          | <10          |
| VIF2-a             | 227                | F-76a               | 0            | 5          | <20          | 19           | 7600          | 810          | 3000         | 74           | <2.0         | 110          | 10            | 640          | 24           |
| VIF2-b             | 228                | F-76b               | 5            | 10         | 22           | 31           | 13000         | 420          | 2500         | 390          | <2.0         | 120          | 14            | 800          | <10          |
| VIF2-c             | 229                | F-76c               | 10           | 30         | <20          | <5.0         | 11000         | 320          | 3000         | 110          | <2.0         | 120          | 8.9           | 390          | <10          |
| VIF2-d             | 230                | F-76d               | 30           | 50         | 21           | 8.9          | 11000         | 440          | 3200         | 110          | <2.0         | 120          | 10            | 390          | <10          |
| VIF3-a             | 216                | F-77a               | 0            | 5          | 40           | 48           | 22000         | 640          | 4000         | 6000         | <2.0         | 120          | 24            | 1200         | 18           |
| VIF3-b             | 217                | F-77b               | 5            | 15         | 24           | 5.5          | 12000         | 280          | 3400         | 390          | <2.0         | 85           | 11            | 120          | <10          |
| VIF3-c             | 218                | F-77c               | 15           | 25         | 25           | 5.8          | 13000         | 310          | 3600         | 160          | <2.0         | 120          | 14            | 76           | <10          |
| VIF3-d             | 219                | F-77d               | 25           | 45         | 32           | 9.2          | 13000         | 320          | 3900         | 160          | <2.0         | 150          | 18            | 150          | <10          |
| VIF3-e             | 220                | F-77e               | 45           | 55         | 25           | 7.6          | 12000         | 350          | 3700         | 150          | <2.0         | 160          | 16            | 190          | <10          |
| VIF3-f             | 221                | F-77f               | 55           | 80         | 24           | 7.8          | 12000         | 440          | 3800         | 180          | <2.0         | 240          | 15            | 300          | <10          |
| VIF4-a             | 204                | F-78a               | 0            | 5          | <20          | 17           | 2800          | 760          | 3800         | 1000         | <2.0         | 120          | 6.2           | 740          | 13           |
| VIF4-b             | 205                | F-78b               | 5            | 10         | <20          | 26           | 3600          | 320          | 3600         | 1100         | <2.0         | 140          | 9.3           | 520          | <10          |
| VIF4-c             | 206                | F-78c               | 10           | 30         | <20          | 5.3          | 9900          | 350          | 3100         | 230          | <2.0         | 110          | 10            | 310          | <10          |
| VIF4-d             | 207                | F-78d               | 30           | 60         | 26           | 7.5          | 11000         | 570          | 4000         | 220          | <2.0         | 120          | 14            | 340          | <10          |
| VIF4-e             | 208                | F-78e               | 60           | 100        | 25           | 12           | 10000         | 730          | 3800         | 240          | <2.0         | 140          | 18            | 330          | <10          |
| VIIF1-a            | 245                | F-79a               | 0            | 5          | <20          | 26           | 6500          | 580          | 4100         | 690          | <2.0         | 160          | 12            | 670          | <10          |
| VIIF1-b            | 246                | F-79b               | 5            | 20         | 22           | 26           | 14000         | 730          | 4900         | 880          | <2.0         | 180          | 17            | 490          | <10          |
| VIIF1-c            | 247                | F-79c               | 20           | 30         | 47           | 27           | 28000         | 3000         | 9000         | 650          | <2.0         | 390          | 29            | 500          | 11           |
| VIIF1-d            | 248                | F-79d               | 30           | 60         | 47           | 27           | 30000         | 3700         | 9300         | 660          | <2.0         | 460          | 31            | 490          | 13           |
| VIIF1-e            | 249                | F-79e               | 60           | 100        | 56           | 31           | 32000         | 4400         | 11000        | 470          | <2.0         | 590          | 37            | 510          | 14           |
| VIIF2-e            | 236                | F-80e               | 60           | 70         | 42           | 29           | 23000         | 2700         | 7400         | 330          | <2.0         | 360          | 29            | 480          | <10          |
| VIIF2-f            | 237                | F-80f               | 70           | 100        | 51           | 33           | 24000         | 2900         | 8200         | 320          | <2.0         | 370          | 33            | 570          | <10          |
| VIIF2-a            | 250                | F-80a               | 0            | 5          | 32           | 42           | 18000         | 2000         | 5500         | 290          | <2.0         | 330          | 25            | 590          | 10           |
| VIIF2-b            | 251                | F-80b               | 5            | 15         | 31           | 21           | 16000         | 1500         | 4900         | 210          | <2.0         | 280          | 20            | 470          | <10          |
| VIIF2-c            | 252                | F-80c               | 15           | 30         | 44           | 33           | 21000         | 2500         | 7000         | 260          | <2.0         | 350          | 30            | 560          | <10          |
| VIIF2-d            | 253                | F-80d               | 30           | 60         | 47           | 34           | 25000         | 3300         | 8200         | 330          | <2.0         | 420          | 35            | 570          | 10           |
| VIIIF1-a           | 283                | F-81a               | 0            | 5          | <20          | 11           | 5400          | 680          | 2200         | 110          | <2.0         | 80           | 5.3           | 600          | 13           |
| VIIIF1-b           | 284                | F-81b               | 5            | 15         | <20          | 15           | 4900          | 730          | 2500         | 76           | 5.5          | 130          | 8.4           | 490          | <10          |
| VIIIF1-c           | 285                | F-81c               | 15           | 30         | 22           | 17           | 14000         | 2100         | 4700         | 140          | 2.3          | 250          | 15            | 470          | <10          |
| VIIIF1-d           | 286                | F-81d               | 30           | 60         | 33           | 22           | 21000         | 3000         | 6900         | 190          | <2.0         | 320          | 22            | 490          | <10          |
| VIIIF1-e           | 287                | F-81e               | 60           | 70         | 33           | 24           | 21000         | 2900         | 6700         | 180          | <2.0         | 350          | 23            | 470          | <10          |
| VIIIF2-a           | 271                | F-82a               | 0            | 5          | <20          | 36           | 16000         | 1100         | 4600         | 190          | <2.0         | 100          | 20            | 680          | 46           |
| VIIIF2-b           | 272                | F-82b               | 5            | 15         | <20          | 15           | 6900          | 1300         | 3000         | 84           | <2.0         | 190          | 9.3           | 630          | <10          |
| VIIIF2-c           | 273                | F-82c               | 15           | 30         | 27           | 25           | 18000         | 2700         | 5400         | 170          | <2.0         | 450          | 22            | 490          | <10          |
| VIIIF2-d           | 274                | F-82d               | 30           | 60         | 54           | 32           | 30000         | 4500         | 10000        | 370          | <2.0         | 610          | 35            | 500          | 13           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | P (µg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| VIIIF3-a           | 275                | F-83a               | 0            | 5          | 59           | 46           | 35000         | 4600         | 12000        | 390          | <2.0         | 520          | 40            | 630          | 35           |
| VIIIF3-b           | 276                | F-83b               | 5            | 15         | 68           | 40           | 39000         | 5200         | 13000        | 450          | <2.0         | 610          | 42            | 610          | 22           |
| VIIIF3-c           | 277                | F-83c               | 15           | 30         | 60           | 32           | 31000         | 4000         | 11000        | 380          | <2.0         | 590          | 36            | 570          | 12           |
| VIIIF3-d           | 278                | F-83d               | 30           | 60         | 55           | 31           | 28000         | 3500         | 9900         | 340          | <2.0         | 440          | 34            | 550          | 11           |
| VIIIF4-a           | 297                | F-84a               | 0            | 5          | <20          | 40           | 8800          | 860          | 3800         | 170          | <2.0         | 480          | 23            | 610          | 12           |
| VIIIF4-b           | 298                | F-84b               | 5            | 15         | <20          | 30           | 12000         | 1800         | 4600         | 120          | <2.0         | 690          | 21            | 740          | <10          |
| VIIIF4-c           | 299                | F-84c               | 15           | 30         | 37           | 19           | 24000         | 3300         | 7600         | 300          | <2.0         | 560          | 22            | 560          | 11           |
| VIIIF4-d           | 300                | F-84d               | 30           | 60         | 47           | 22           | 31000         | 4000         | 9600         | 400          | <2.0         | 500          | 28            | 480          | 14           |
| VIIIF4-e           | 301                | F-84e               | 60           | 90         | 50           | 25           | 32000         | 4100         | 10000        | 450          | <2.0         | 600          | 30            | 480          | 14           |
| VIIIF5-a           | 302                | F-85a               | 0            | 5          | 60           | 36           | 33000         | 4000         | 13000        | 640          | <2.0         | 570          | 36            | 380          | 14           |
| VIIIF5-b           | 303                | F-85b               | 5            | 15         | 63           | 41           | 41000         | 4700         | 15000        | 560          | <2.0         | 780          | 40            | 490          | 15           |
| VIIIF5-c           | 304                | F-85c               | 15           | 30         | 55           | 35           | 34000         | 4300         | 14000        | 560          | <2.0         | 700          | 34            | 470          | 13           |
| VIIIF5-d           | 305                | F-85d               | 30           | 60         | 61           | 35           | 36000         | 4700         | 14000        | 540          | <2.0         | 810          | 37            | 520          | 14           |
| VIIIF5-e           | 308                | F-85e               | 60           | 100        | 51           | 30           | 32000         | 3800         | 13000        | 510          | <2.0         | 570          | 31            | 500          | 11           |
| IWL1-a             | 136                | W-86a               | 0            | 5          | 21           | 32           | 16000         | 910          | 5600         | 140          | <2.0         | 190          | 16            | 440          | 16           |
| IWL1-b             | 137                | W-86b               | 5            | 15         | 21           | 27           | 16000         | 950          | 5400         | 160          | <2.0         | 190          | 15            | 400          | 24           |
| IWL1-c             | 138                | W-86c               | 15           | 30         | 26           | 18           | 16000         | 1300         | 5200         | 170          | <2.0         | 280          | 15            | 520          | <10          |
| IWL1-d             | 139                | W-86d               | 30           | 60         | 24           | 19           | 15000         | 1400         | 4800         | 170          | <2.0         | 260          | 15            | 500          | <10          |
| IWL1-e             | 140                | W-86e               | 60           | 100        | 29           | 20           | 20000         | 1400         | 6400         | 220          | <2.0         | 280          | 18            | 550          | <10          |
| IWL2-a             | 46                 | W-87a               | 0            | 5          | 22           | 43           | 28000         | 700          | 18000        | 870          | <2.0         | 180          | 23            | 750          | 28           |
| IWL2-b             | 47                 | W-87b               | 5            | 15         | 33           | 40           | 28000         | 1300         | 19000        | 690          | <2.0         | 220          | 24            | 420          | 29           |
| IWL2-c             | 48                 | W-87c               | 15           | 30         | 36           | 25           | 22000         | 2200         | 9100         | 350          | <2.0         | 410          | 22            | 560          | <10          |
| IWL2-d             | 49                 | W-87d               | 30           | 60         | 37           | 23           | 20000         | 2300         | 7600         | 280          | <2.0         | 440          | 22            | 590          | <10          |
| IWL2-e             | 50                 | W-87e               | 60           | 100        | 46           | 27           | 24000         | 2900         | 8700         | 340          | <2.0         | 530          | 27            | 600          | <10          |
| IIWL2-a            | 131                | W-88a               | 0            | 5          | <20          | 31           | 6600          | 730          | 3200         | 190          | 2.3          | 130          | 10            | 910          | 49           |
| IIWL2-b            | 132                | W-88b               | 5            | 15         | <20          | 19           | 5400          | 400          | 3000         | 290          | 2            | 200          | 6.5           | 610          | 12           |
| IIWL2-c            | 133                | W-88c               | 15           | 30         | 37           | 18           | 24000         | 2400         | 8000         | 250          | <2.0         | 300          | 22            | 370          | <10          |
| IIWL2-d            | 134                | W-88d               | 30           | 60         | 45           | 23           | 30000         | 3500         | 9900         | 370          | <2.0         | 470          | 27            | 420          | 12           |
| IIWL2-e            | 135                | W-88e               | 60           | 100        | 50           | 29           | 34000         | 4700         | 12000        | 390          | <2.0         | 680          | 29            | 520          | 15           |
| IIIWL1-c           | 93                 | W-89c               | 15           | 30         | 45           | 340          | 46000         | 2000         | 13000        | 400          | <2.0         | 350          | 61            | 630          | 360          |
| IIIWL1-d           | 94                 | W-89d               | 30           | 60         | 41           | 27           | 29000         | 3300         | 8900         | 300          | <2.0         | 410          | 25            | 460          | 17           |
| IIIWL1-e           | 95                 | W-89e               | 60           | 100        | 43           | 29           | 30000         | 3700         | 9900         | 360          | <2.0         | 560          | 27            | 520          | 17           |
| IIIWL1-a           | 118                | W-89a               | 0            | 5          | 40           | 160          | 34000         | 1600         | 9800         | 320          | <2.0         | 500          | 55            | 680          | 110          |
| IIIWL1-b           | 119                | W-89b               | 5            | 15         | 44           | 280          | 38000         | 1700         | 12000        | 350          | <2.0         | 430          | 80            | 570          | 130          |
| IVWL1-a            | 12                 | W-90a               | 0            | 5          | 47           | 900          | 26000         | 3000         | 9000         | 240          | <2.0         | 500          | 73            | 610          | 36           |
| IVWL1-b            | 13                 | W-90b               | 5            | 15         | 47           | 360          | 26000         | 3100         | 9500         | 280          | <2.0         | 490          | 41            | 500          | 15           |
| IVWL1-c            | 14                 | W-90c               | 15           | 30         | 51           | 42           | 28000         | 3700         | 10000        | 320          | <2.0         | 580          | 35            | 480          | 13           |
| IVWL1-d            | 15                 | W-90d               | 30           | 60         | 50           | 45           | 28000         | 3800         | 11000        | 410          | <2.0         | 680          | 34            | 520          | 13           |
| IVWL1-e            | 16                 | W-90e               | 60           | 100        | 48           | 54           | 28000         | 3800         | 10000        | 390          | <2.0         | 670          | 35            | 520          | 13           |
| IVWL2-a            | 7                  | W-91a               | 0            | 5          | 39           | 34           | 21000         | 2600         | 8200         | 330          | <2.0         | 450          | 26            | 570          | 25           |
| IVWL2-b            | 8                  | W-91b               | 5            | 15         | 48           | 380          | 30000         | 3000         | 12000        | 440          | <2.0         | 430          | 56            | 540          | 100          |
| IVWL2-c            | 9                  | W-91c               | 15           | 30         | 52           | 380          | 47000         | 1800         | 22000        | 810          | <2.0         | 250          | 65            | 440          | 370          |
| IVWL2-d            | 10                 | W-91d               | 30           | 60         | 44           | 140          | 57000         | 920          | 21000        | 880          | <2.0         | 180          | 72            | 350          | 420          |
| IVWL2-e            | 11                 | W-91e               | 60           | 100        | 48           | 240          | 47000         | 1000         | 21000        | 840          | <2.0         | 180          | 59            | 350          | 370          |
| IVWL3-a            | 96                 | W-92a               | 0            | 5          | 25           | 18           | 15000         | 820          | 4700         | 550          | <2.0         | 170          | 13            | 430          | <10          |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| IVWL3-b            | 97                 | W-92b               | 5            | 15         | 28           | 17           | 16000         | 940          | 5000         | 280          | <2.0         | 200          | 15            | 460          | 10           |
| IVWL3-c            | 98                 | W-92c               | 15           | 30         | 31           | 18           | 18000         | 1400         | 5600         | 410          | <2.0         | 230          | 18            | 490          | <10          |
| IVWL3-d            | 99                 | W-92d               | 30           | 60         | 40           | 22           | 23000         | 2100         | 7500         | 530          | <2.0         | 280          | 22            | 410          | <10          |
| IVWL3-e            | 100                | W-92e               | 60           | 100        | 39           | 26           | 23000         | 2500         | 7700         | 340          | <2.0         | 350          | 24            | 550          | <10          |
| IVWL4-a            | 149                | W-93a               | 0            | 5          | 26           | 16           | 17000         | 1900         | 5900         | 210          | <2.0         | 290          | 18            | 440          | <10          |
| IVWL4-b            | 150                | W-93b               | 5            | 15         | 36           | 21           | 22000         | 2500         | 7400         | 240          | <2.0         | 370          | 22            | 480          | 12           |
| IVWL4-c            | 151                | W-93c               | 15           | 30         | 34           | 20           | 22000         | 2500         | 6900         | 220          | <2.0         | 350          | 21            | 430          | 11           |
| IVWL4-d            | 152                | W-93d               | 30           | 60         | 35           | 22           | 22000         | 2600         | 7100         | 250          | <2.0         | 370          | 22            | 490          | 12           |
| IVWL4-e            | 153                | W-93e               | 60           | 100        | 40           | 23           | 30000         | 3500         | 8600         | 290          | <2.0         | 510          | 25            | 490          | 13           |
| IVWL5-a            | 339                | W-94a               | 0            | 5          | 26           | 12           | 15000         | 1500         | 5400         | 600          | <2.0         | 210          | 14            | 410          | <10          |
| IVWL5-b            | 340                | W-94b               | 5            | 15         | 28           | 13           | 15000         | 1600         | 5900         | 260          | <2.0         | 230          | 15            | 400          | <10          |
| IVWL5-c            | 341                | W-94c               | 15           | 30         | 31           | 12           | 18000         | 1800         | 6400         | 240          | <2.0         | 240          | 16            | 440          | <10          |
| IVWL5-d            | 342                | W-94d               | 30           | 60         | 42           | 26           | 23000         | 2900         | 9000         | 310          | <2.0         | 470          | 25            | 410          | <10          |
| IVWL5-e            | 343                | W-94e               | 60           | 100        | 35           | 20           | 20000         | 2300         | 7700         | 260          | <2.0         | 360          | 21            | 350          | <10          |
| IXWL1-a            | 32                 | W-95a               | 0            | 5          | 53           | 210          | 31000         | 4500         | 12000        | 380          | <2.0         | 630          | 65            | 570          | 15           |
| IXWL1-b            | 33                 | W-95b               | 5            | 15         | 53           | 73           | 33000         | 4800         | 12000        | 380          | <2.0         | 700          | 42            | 570          | 14           |
| IXWL1-c            | 34                 | W-95c               | 15           | 30         | 59           | 48           | 33000         | 4600         | 13000        | 410          | <2.0         | 670          | 39            | 610          | 13           |
| IXWL1-d            | 35                 | W-95d               | 30           | 60         | 49           | 32           | 29000         | 5300         | 12000        | 420          | <2.0         | 700          | 32            | 490          | 14           |
| IXWL1-e            | 36                 | W-95e               | 60           | 100        | 56           | 37           | 33000         | 4900         | 13000        | 470          | <2.0         | 760          | 35            | 530          | 14           |
| IXWL2-a            | 41                 | W-96a               | 0            | 5          | 52           | 34           | 32000         | 4800         | 11000        | 430          | <2.0         | 710          | 36            | 620          | 26           |
| IXWL2-b            | 42                 | W-96b               | 5            | 15         | 57           | 30           | 35000         | 5400         | 12000        | 450          | <2.0         | 730          | 36            | 570          | 16           |
| IXWL2-c            | 43                 | W-96c               | 15           | 30         | 53           | 28           | 33000         | 5100         | 11000        | 440          | <2.0         | 700          | 34            | 540          | 16           |
| IXWL2-d            | 44                 | W-96d               | 30           | 60         | 55           | 30           | 36000         | 5400         | 12000        | 620          | <2.0         | 730          | 36            | 610          | 16           |
| IXWL2-e            | 45                 | W-96e               | 60           | 100        | 52           | 28           | 34000         | 5500         | 12000        | 530          | <2.0         | 740          | 34            | 590          | 17           |
| VWL1-a             | 163                | W-97a               | 0            | 5          | <20          | 39           | 12000         | 250          | 3200         | 97           | <2.0         | 280          | 12            | 560          | 86           |
| VWL1-b             | 164                | W-97b               | 5            | 15         | <20          | 11           | 7200          | 140          | 1400         | 53           | 3.2          | 220          | <5.0          | 520          | 24           |
| VWL1-c             | 165                | W-97c               | 15           | 30         | <20          | 11           | 4800          | 250          | 1300         | 50           | 2.9          | 240          | <5.0          | 530          | <10          |
| VWL1-d             | 166                | W-97d               | 30           | 60         | <20          | 12           | 5600          | 430          | 2000         | 68           | 2.8          | 210          | 6.2           | 370          | <10          |
| VWL1-e             | 167                | W-97e               | 60           | 80         | <20          | 19           | 8700          | 1000         | 3500         | 98           | 2.8          | 260          | 12            | 400          | <10          |
| VWL2-c             | 154                | W-98c               | 20           | 40         | <20          | 20           | 7800          | 760          | 2700         | 110          | <2.0         | 230          | 10            | 420          | <10          |
| VWL2-d             | 155                | W-98d               | 40           | 70         | <20          | 16           | 9900          | 750          | 2700         | 170          | 2.3          | 260          | 8.5           | 490          | <10          |
| VWL2-e             | 156                | W-98e               | 70           | 100        | 43           | 25           | 33000         | 4400         | 10000        | 320          | <2.0         | 670          | 28            | 540          | 14           |
| VWL2-a             | 168                | W-98a               | 0            | 5          | <20          | 19           | 7600          | 770          | 2600         | 100          | 2.0          | 230          | 10            | 490          | <10          |
| VWL2-b             | 169                | W-98b               | 5            | 20         | 54           | 56           | 59000         | 490          | 8200         | 720          | <2.0         | 400          | 28            | 420          | 53           |
| VWL3-a             | 157                | W-99a               | 0            | 10         | 22           | 13           | 13000         | 1500         | 4300         | 190          | 3.4          | 220          | 13            | 410          | <10          |
| VWL3-b             | 158                | W-99b               | 10           | 50         | 22           | 13           | 13000         | 1400         | 4400         | 180          | 3.3          | 230          | 14            | 420          | <10          |
| VWL3-c             | 159                | W-99c               | 50           | 80         | 24           | 11           | 13000         | 1100         | 4100         | 130          | <2.0         | 180          | 13            | 390          | <10          |
| VWL3-d             | 160                | W-99d               | 80           | 100        | 31           | 19           | 18000         | 2000         | 5400         | 190          | <2.0         | 270          | 16            | 370          | <10          |
| VIWL1A-a           | 195                | W-100a              | 0            | 5          | 76           | 190          | 54000         | 460          | 23000        | 990          | <2.0         | 190          | 57            | 730          | 51           |
| VIWL1A-b           | 196                | W-100b              | 5            | 10         | 78           | 140          | 60000         | 160          | 27000        | 1100         | <2.0         | 89           | 69            | 360          | 420          |
| VIWL1B-a           | 197                | W-101a              | 0            | 5          | 58           | 57           | 39000         | 570          | 17000        | 820          | <2.0         | 260          | 48            | 630          | 36           |
| VIWL1B-b           | 198                | W-101b              | 5            | 10         | 65           | 80           | 51000         | 430          | 22000        | 800          | <2.0         | 140          | 57            | 490          | 30           |
| VIWL1B-c           | 199                | W-101c              | 10           | 30         | 62           | 54           | 35000         | 620          | 14000        | 520          | 2.4          | 160          | 47            | 450          | 25           |
| VIWL1B-d           | 200                | W-101d              | 30           | 60         | 40           | 43           | 22000         | 1200         | 7400         | 250          | 2.9          | 280          | 32            | 420          | 13           |
| VIWL1B-e           | 201                | W-101e              | 60           | 80         | 38           | 31           | 18000         | 1500         | 6400         | 230          | 2.4          | 290          | 28            | 430          | <10          |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | Cr<br>(µg/g) | Cu<br>(µg/g) | Fe (µg/<br>g) | K (μg/<br>g) | Mg<br>(µg/g) | Mn<br>(µg/g) | Mo<br>(µg/g) | Na<br>(µg/g) | Ni (µg/<br>g) | Ρ (μg/<br>g) | Pb<br>(µg/g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| VIIWL1-a           | 238                | W-102a              | 0            | 10         | <20          | 21           | 5000          | 600          | 2100         | 93           | <2.0         | 190          | 11            | 580          | <10          |
| VIIWL1-b           | 239                | W-102b              | 10           | 30         | <20          | 24           | 3300          | 350          | 1400         | 78           | <2.0         | 160          | 11            | 410          | <10          |
| VIIWL1-c           | 240                | W-102c              | 30           | 55         | <20          | 18           | 6200          | 350          | 1300         | 74           | <2.0         | 130          | 9.8           | 280          | <10          |
| VIIWL1-d           | 241                | W-102d              | 55           | 100        | 24           | 23           | 20000         | 1600         | 4300         | 180          | <2.0         | 280          | 20            | 330          | <10          |
| VIIIWL1-a          | 309                | W-103a              | 0            | 5          | <20          | 17           | 8700          | 750          | 4500         | 790          | <2.0         | 500          | 13            | 610          | 12           |
| VIIIWL1-b          | 310                | W-103b              | 5            | 15         | <20          | 15           | 2500          | 360          | 2900         | 490          | <2.0         | 860          | 7.6           | 610          | <10          |
| VIIIWL1-c          | 311                | W-103c              | 15           | 30         | <20          | 12           | 3700          | 320          | 2300         | 130          | <2.0         | 710          | 5.6           | 390          | <10          |
| VIIIWL1-d          | 312                | W-103d              | 30           | 60         | <20          | 22           | 6000          | 490          | 2200         | 88           | <2.0         | 790          | 8.7           | 330          | <10          |
| VIIIWL1-e          | 313                | W-103e              | 60           | 100        | 49           | 28           | 34000         | 4600         | 11000        | 360          | <2.0         | 700          | 32            | 560          | 16           |
| VIIIWL2-d          | 306                | W-104d              | 30           | 60         | 57           | 31           | 35000         | 4500         | 12000        | 570          | <2.0         | 700          | 35            | 510          | 15           |
| VIIIWL2-e          | 307                | W-104e              | 60           | 100        | 64           | 35           | 38000         | 5400         | 14000        | 530          | <2.0         | 870          | 40            | 540          | 16           |
| VIIIWL2-a          | 314                | W-104a              | 0            | 5          | 31           | 34           | 20000         | 2500         | 6300         | 240          | <2.0         | 330          | 22            | 600          | 12           |
| VIIIWL2-b          | 315                | W-104b              | 5            | 15         | 46           | 28           | 27000         | 3000         | 8700         | 280          | <2.0         | 410          | 26            | 480          | 12           |
| VIIIWL2-c          | 316                | W-104c              | 15           | 30         | 53           | 27           | 33000         | 3500         | 10000        | 300          | <2.0         | 440          | 32            | 480          | 13           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (μg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (µg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| IOC1-a             | 141                | O-1a                | 0            | 5          | 760          | 48            | <10           | <2.0          | 7.9           | 620           | <1.0          | <10          | 130          | 76            |
| IOC1-b             | 142                | O-1b                | 5            | 15         | 560          | 14            | <10           | <2.0          | <5.0          | 560           | <1.0          | <10          | 180          | 82            |
| IOC2-a             | 91                 | O-2a                | 2            | 7          | 1100         | 70            | <10           | <2.0          | 8.1           | 610           | <1.0          | <10          | 110          | 290           |
| IOC3-a             | 92                 | O-3a                | 2            | 5          | 1100         | 57            | <10           | <2.0          | 8.5           | 1000          | <1.0          | <10          | 110          | 230           |
| llOC1-a            | 61                 | O-4a                | 0            | 5          | 1300         | 120           | <10           | <2.0          | 21            | 350           | <1.0          | <10          | 34           | 98            |
| IIOC1-b            | 62                 | O-4b                | 5            | 10         | 510          | 12            | <10           | <2.0          | 9.9           | 1900          | <1.0          | <10          | 120          | 200           |
| llOC10-a           | 83                 | O-5a                | 0            | 5          | 2000         | 260           | <10           | <2.0          | 15            | 830           | <1.0          | <10          | 90           | 120           |
| IIOC10-b           | 84                 | O-5b                | 5            | 8          | 820          | 52            | <10           | <2.0          | 9.2           | 2400          | <1.0          | <10          | 130          | 120           |
| llOC11-a           | 85                 | O-6a                | 0            | 5          | 920          | 220           | <10           | <2.0          | 8.8           | 1200          | <1.0          | <10          | 110          | 120           |
| llOC11-b           | 86                 | O-6b                | 5            | 10         | 920          | 120           | <10           | <2.0          | 7.5           | 1500          | <1.0          | <10          | 120          | 100           |
| IIOC2-a            | 63                 | 0-7a                | 0            | 3          | 1300         | 60            | <10           | <2.0          | 49            | 450           | 2.7           | <10          | 52           | 240           |
| IIOC2-b            | 64                 | O-7b                | 3            | 10         | 440          | 18            | <10           | <2.0          | 23            | 920           | <1.0          | <10          | 110          | 120           |
| IIOC3-a            | 65                 | O-8a                | 0            | 5          | 810          | 76            | <10           | <2.0          | 38            | 660           | 1.8           | <10          | 59           | 410           |
| IIOC3-b            | 66                 | O-8b                | 5            | 10         | 250          | 17            | <10           | <2.0          | 25            | 1200          | <1.0          | <10          | 120          | 360           |
| llOC4-a            | 67                 | O-9a                | 0            | 5          | 510          | 73            | <10           | <2.0          | 17            | 270           | <1.0          | <10          | 44           | 110           |
| IIOC4-b            | 68                 | O-9b                | 5            | 15         | <200         | 11            | <10           | <2.0          | 5.4           | 560           | <1.0          | <10          | 58           | 34            |
| IIOC4-c            | 69                 | O-9c                | 15           | 20         | <200         | 9.0           | <10           | <2.0          | 7.9           | 770           | <1.0          | <10          | 60           | 38            |
| IIOC5-a            | 70                 | O-10a               | 0            | 3          | 1200         | 900           | <10           | <2.0          | 15            | 180           | <1.0          | <10          | 38           | 180           |
| IIOC5-b            | 71                 | O-10b               | 3            | 10         | 210          | 47            | <10           | <2.0          | <5.0          | 550           | <1.0          | <10          | 34           | 24            |
| IIOC5-c            | 72                 | O-10c               | 10           | 20         | 220          | 25            | <10           | <2.0          | 5.3           | 960           | <1.0          | <10          | 62           | 41            |
| IIOC6-a            | 73                 | O-11a               | 0            | 5          | 920          | 320           | <10           | <2.0          | 24            | 590           | <1.0          | <10          | 62           | 200           |
| IIOC6-b            | 74                 | O-11b               | 5            | 15         | 180          | 35            | <10           | <2.0          | 19            | 1400          | <1.0          | <10          | 130          | 72            |
| IIOC6-c            | 75                 | O-11c               | 15           | 20         | 180          | 45            | <10           | <2.0          | 19            | 1600          | <1.0          | <10          | 160          | 61            |
| llOC7-a            | 76                 | O-12a               | 0            | 10         | 2900         | 33            | <10           | <2.0          | 30            | 260           | <1.0          | <10          | 32           | 150           |
| IIOC7-b            | 77                 | O-12b               | 10           | 16         | 720          | 6.0           | <10           | <2.0          | 11            | 760           | <1.0          | <10          | 65           | 140           |
| IIOC8-a            | 78                 | O-13a               | 0            | 12         | 1300         | 16            | <10           | <2.0          | 12            | 160           | <1.0          | <10          | 37           | 26            |
| IIOC8-b            | 79                 | O-13b               | 12           | 15         | 820          | 8.4           | <10           | <2.0          | 13            | 410           | <1.0          | <10          | 48           | 26            |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (μg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| IIOC9-a            | 80                 | O-14a               | 0            | 3          | 1100         | 120           | <10           | <2.0          | 13            | 370           | <1.0          | <10          | 52           | 110           |
| IIOC9-b            | 81                 | O-14b               | 3            | 10         | 420          | 35            | <10           | <2.0          | 14            | 1000          | <1.0          | <10          | 99           | 120           |
| IIOC9-c            | 82                 | O-14c               | 10           | 15         | 600          | 33            | <10           | <2.0          | 13            | 970           | <1.0          | <10          | 99           | 110           |
| IIIOC1-a           | 120                | O-15a               | 0            | 5          | 810          | 90            | <10           | <2.0          | 21            | 360           | <1.0          | <10          | 92           | 210           |
| IIIOC1-b           | 121                | O-15b               | 5            | 15         | 1000         | 31            | <10           | <2.0          | 24            | 640           | <1.0          | <10          | 110          | 190           |
| IIIOC2-a           | 122                | O-16a               | 0            | 8          | 570          | 170           | <10           | <2.0          | 16            | 440           | 2.1           | <10          | 48           | 230           |
| IIIOC2-b           | 123                | O-16b               | 8            | 15         | 210          | 23            | <10           | <2.0          | 8.8           | 710           | <1.0          | <10          | 56           | 100           |
| IIIOC3-a           | 107                | O-17a               | 0            | 5          | 760          | 34            | <10           | <2.0          | 21            | 470           | 5.6           | <10          | 100          | 800           |
| IIIOC3-b           | 108                | O-17b               | 5            | 9          | 560          | 23            | <10           | <2.0          | 11            | 600           | 2.5           | <10          | 120          | 550           |
| IIIOC5-a           | 124                | O-18a               | 0            | 5          | 350          | 45            | <10           | <2.0          | 11            | 1000          | <1.0          | <10          | 170          | 74            |
| IIIOC5-b           | 125                | O-18b               | 5            | 10         | 610          | 74            | <10           | <2.0          | 10            | 890           | <1.0          | <10          | 120          | 62            |
| IIIOC6-a           | 109                | O-19a               | 0            | 5          | 14000        | 19            | <10           | <2.0          | 54            | 220           | <1.0          | <10          | 18           | 42            |
| IIIOC6-b           | 110                | O-19b               | 5            | 9          | 220          | 41            | <10           | <2.0          | <5.0          | 1300          | <1.0          | <10          | 210          | 88            |
| IIIOC7-a           | 111                | O-20a               | 0            | 5          | 560          | 21            | <10           | <2.0          | 11            | 930           | <1.0          | <10          | 83           | 100           |
| IIIOC7-b           | 112                | O-20b               | 5            | 10         | 1600         | 5.1           | <10           | <2.0          | 6.6           | 980           | <1.0          | <10          | 87           | 170           |
| IIIOC8-a           | 354                | O-21a               | 0            | 5          | 500          | 19            | <10           | <2.0          | 12            | 720           | <1.0          | <10          | 83           | 180           |
| IIIOC8-b           | 355                | O-21b               | 5            | 15         | 600          | 12            | <10           | <2.0          | 8.9           | 410           | <1.0          | <10          | 79           | 150           |
| IVOC1-a            | 17                 | O-22a               | 0            | 5          | 400          | 160           | <10           | <2.0          | 12            | 630           | <1.0          | <10          | 56           | 130           |
| IVOC1-b            | 18                 | O-22b               | 5            | 10         | 620          | 73            | <10           | <2.0          | 9.9           | 780           | <1.0          | <10          | 63           | 130           |
| IVOC2-a            | 143                | O-23a               | 0            | 5          | 1400         | 42            | <10           | <2.0          | 12            | 200           | <1.0          | <10          | 30           | 160           |
| IVOC2-b            | 144                | O-23b               | 5            | 10         | 870          | 13            | <10           | <2.0          | 8.6           | 280           | <1.0          | <10          | 27           | 96            |
| IVOC3-a            | 145                | O-24a               | 0            | 5          | 970          | 150           | <10           | <2.0          | 12            | 750           | <1.0          | <10          | 42           | 36            |
| IVOC3-b            | 146                | O-24b               | 5            | 15         | 210          | 21            | <10           | <2.0          | 7.7           | 990           | <1.0          | <10          | 59           | 28            |
| IVOC4-a            | 147                | O-25a               | 0            | 5          | 1300         | 130           | <10           | <2.0          | 20            | 450           | <1.0          | <10          | 68           | 76            |
| IVOC4-b            | 148                | O-25b               | 5            | 12         | 580          | 24            | <10           | <2.0          | 17            | 1100          | <1.0          | <10          | 140          | 87            |
| IXOC1-a            | 317                | O-26a               | 0            | 5          | 1000         | 73            | <10           | <2.0          | 14            | 750           | <1.0          | <10          | 63           | 140           |
| IXOC1-b            | 318                | O-26b               | 5            | 15         | 85           | 6.0           | <10           | <2.0          | 7.1           | 1000          | <1.0          | <10          | 63           | 49            |
| IXOC2-a            | 319                | O-27a               | 0            | 3          | 2100         | 330           | <10           | <2.0          | 27            | 320           | <1.0          | <10          | 41           | 210           |
| IXOC2-b            | 320                | O-27b               | 3            | 10         | 140          | 18            | <10           | <2.0          | 6.6           | 910           | <1.0          | <10          | 62           | 58            |
| IXOC2-c            | 321                | O-27c               | 10           | 25         | 160          | 12            | <10           | <2.0          | 9.2           | 900           | <1.0          | <10          | 59           | 52            |
| IXOC3-a            | 322                | O-28a               | 0            | 5          | 1700         | 280           | <10           | <2.0          | 19            | 340           | 3.9           | <10          | 120          | 180           |
| IXOC3-b            | 323                | O-28b               | 5            | 10         | 1000         | 180           | <10           | <2.0          | 16            | 550           | 4.1           | <10          | 170          | 140           |
| IXOC4-a            | 324                | O-29a               | 0            | 6          | 1500         | 190           | <10           | <2.0          | 41            | 230           | <1.0          | <10          | 23           | 160           |
| IXOC4-b            | 325                | O-29b               | 6            | 15         | 460          | 15            | <10           | <2.0          | 13            | 590           | <1.0          | <10          | 58           | 39            |
| IXOC4-c            | 326                | O-29c               | 15           | 20         | 200          | 14            | <10           | <2.0          | 9.8           | 710           | <1.0          | <10          | 70           | 49            |
| IXOC5-a            | 327                | O-30a               | 0            | 7          | 1600         | 140           | <10           | <2.0          | 31            | 430           | <1.0          | <10          | 34           | 200           |
| IXOC5-b            | 328                | O-30b               | 7            | 15         | 560          | 16            | <10           | <2.0          | 15            | 1500          | <1.0          | <10          | 94           | 400           |
| VOC1-a             | 179                | O-31a               | 0            | 5          | <200         | 25            | <10           | <2.0          | 9.5           | 1200          | <1.0          | <10          | 78           | 200           |
| VOC1-b             | 180                | O-31b               | 5            | 15         | <200         | 13            | <10           | <2.0          | 8.4           | 1400          | <1.0          | <10          | 85           | 85            |
| VOC2-a             | 181                | O-32a               | 0            | 5          | 450          | 110           | <10           | <2.0          | 6.4           | 290           | <1.0          | <10          | 39           | 36            |
| VOC2-b             | 182                | O-32b               | 5            | 15         | 220          | <1.0          | <10           | <2.0          | <5.0          | 550           | <1.0          | <10          | 26           | 21            |
| VOC2-c             | 183                | O-32c               | 15           | 25         | <200         | 8.4           | <10           | <2.0          | <5.0          | 430           | <1.0          | <10          | 30           | 19            |
| VOC2-d             | 184                | O-32d               | 25           | 35         | <200         | 2.2           | <10           | <2.0          | 5.1           | 580           | <1.0          | <10          | 30           | 20            |
| VOC3-a             | 185                | O-33a               | 0            | 5          | 800          | 16            | <10           | <2.0          | 11            | 1200          | <1.0          | <10          | 68           | 70            |
| VOC3-b             | 186                | O-33b               | 5            | 15         | 530          | 11            | <10           | <2.0          | 9.4           | 1800          | <1.0          | <10          | 78           | 68            |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (µg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (μg/<br>g) | Zn (µg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| VOC3-c             | 187                | O-33c               | 15           | 25         | 570          | 10            | <10           | <2.0          | 8.2           | 1400          | <1.0          | <10          | 74           | 63            |
| VOC4-a             | 188                | O-34a               | 0            | 5          | 520          | 17            | <10           | <2.0          | 13            | 1800          | <1.0          | <10          | 44           | 32            |
| VOC4-b             | 189                | O-34b               | 5            | 15         | 600          | 11            | <10           | <2.0          | 14            | 2400          | <1.0          | <10          | 78           | 35            |
| VOC4-c             | 190                | O-34c               | 15           | 30         | 1200         | 7.5           | <10           | <2.0          | 14            | 3300          | <1.0          | <10          | 100          | 51            |
| VOC5-a             | 191                | O-35a               | 0            | 5          | 240          | 20            | <10           | <2.0          | 11            | 600           | <1.0          | <10          | 43           | 56            |
| VOC5-b             | 192                | O-35b               | 5            | 10         | <200         | 11            | <10           | <2.0          | 5.4           | 800           | <1.0          | <10          | 60           | 52            |
| VOC6-a             | 193                | O-36a               | 0            | 5          | 1000         | 8.2           | <10           | <2.0          | 7.8           | 950           | <1.0          | <10          | 71           | 82            |
| VOC6-b             | 194                | O-36b               | 5            | 15         | 800          | 3.9           | <10           | <2.0          | 8.2           | 1500          | <1.0          | <10          | 100          | 94            |
| VIOC1-a            | 209                | O-37a               | 0            | 5          | 1700         | 120           | <10           | <2.0          | 12            | 1100          | <1.0          | <10          | 60           | 140           |
| VIOC1-b            | 210                | O-37b               | 5            | 15         | 540          | 16            | <10           | <2.0          | 12            | 3600          | <1.0          | <10          | 120          | 150           |
| VIOC2-a            | 211                | O-38a               | 0            | 5          | 740          | 14            | <10           | <2.0          | 13            | 210           | <1.0          | <10          | 75           | 100           |
| VIOC2-b            | 212                | O-38b               | 5            | 10         | 840          | 7.4           | <10           | <2.0          | 11            | 260           | <1.0          | <10          | 76           | 91            |
| VIOC3-a            | 231                | O-39a               | 0            | 5          | 1300         | 54            | <10           | <2.0          | 35            | 540           | <1.0          | <10          | 36           | 120           |
| VIOC3-b            | 232                | O-39b               | 5            | 10         | 380          | 8.8           | <10           | <2.0          | 13            | 1400          | <1.0          | <10          | 81           | 180           |
| VIOC4-a            | 202                | O-40a               | 0            | 5          | 1300         | 36            | <10           | <2.0          | 17            | 280           | 3.0           | <10          | 58           | 160           |
| VIOC4-b            | 203                | O-40b               | 5            | 10         | 840          | 20            | <10           | <2.0          | 14            | 740           | 1.7           | <10          | 100          | 210           |
| VIOC5-a            | 233                | O-41a               | 0            | 5          | 660          | 30            | <10           | <2.0          | 29            | 1200          | <1.0          | <10          | 160          | 190           |
| VIOC5-b            | 234                | O-41b               | 5            | 10         | 540          | 13            | <10           | <2.0          | 28            | 1300          | <1.0          | <10          | 170          | 170           |
| VIOC5-c            | 235                | O-41c               | 10           | 20         | 620          | 6.4           | <10           | <2.0          | 37            | 1100          | <1.0          | <10          | 160          | 170           |
| VIIOC1-a           | 242                | O-42a               | 0            | 5          | 860          | 34            | <10           | <2.0          | 30            | 640           | 1.6           | <10          | 60           | 250           |
| VIIOC1-b           | 243                | O-42b               | 5            | 10         | 280          | 11            | <10           | <2.0          | 16            | 2300          | <1.0          | <10          | 140          | 210           |
| VIIOC1-c           | 244                | O-42c               | 10           | 35         | 220          | 7.7           | <10           | <2.0          | 12            | 2600          | <1.0          | <10          | 140          | 110           |
| VIIOC2-a           | 254                | O-43a               | 0            | 5          | 1600         | 10            | <10           | <2.0          | 12            | 240           | <1.0          | <10          | 51           | 100           |
| VIIOC2-b           | 255                | O-43b               | 5            | 15         | 1000         | 3.4           | <10           | <2.0          | 10            | 1900          | <1.0          | <10          | 100          | 58            |
| VIIOC3-a           | 256                | O-44a               | 0            | 5          | 2400         | 18            | <10           | <2.0          | 29            | 160           | <1.0          | <10          | 15           | 360           |
| VIIOC3-b           | 257                | O-44b               | 5            | 15         | 1500         | 15            | <10           | <2.0          | 21            | 1300          | 1.9           | <10          | 94           | 2300          |
| VIIOC4-a           | 258                | O-45a               | 0            | 5          | 600          | 19            | <10           | <2.0          | 23            | 1300          | <1.0          | <10          | 120          | 460           |
| VIIOC4-b           | 259                | O-45b               | 5            | 10         | 500          | 10            | <10           | <2.0          | 14            | 1700          | <1.0          | <10          | 120          | 460           |
| VIIOC5-a           | 260                | O-46a               | 0            | 5          | 1300         | 13            | <10           | <2.0          | 9.3           | 1100          | <1.0          | <10          | 120          | 220           |
| VIIOC6-a           | 261                | O-47a               | 0            | 5          | 1500         | 9.9           | <10           | <2.0          | 14            | 190           | <1.0          | <10          | 11           | 33            |
| VIIOC6-b           | 262                | O-47b               | 5            | 10         | 1000         | 7.1           | <10           | <2.0          | 8.9           | 330           | <1.0          | <10          | 29           | 58            |
| VIIOC7-a           | 263                | O-48a               | 0            | 5          | 1400         | 10            | <10           | <2.0          | 13            | 500           | <1.0          | <10          | 57           | 170           |
| VIIOC7-b           | 264                | O-48b               | 5            | 10         | 700          | 2.9           | <10           | <2.0          | 12            | 1700          | <1.0          | <10          | 100          | 240           |
| VIIOC8-a           | 265                | O-49a               | 0            | 5          | 2100         | 17            | <10           | <2.0          | 17            | 140           | <1.0          | <10          | <10          | 43            |
| VIIOC8-b           | 266                | O-49b               | 5            | 15         | 1000         | 3.3           | <10           | <2.0          | 13            | 1100          | <1.0          | <10          | 59           | 110           |
| VIIOC8-c           | 267                | O-49c               | 15           | 25         | 1100         | 5.1           | <10           | <2.0          | 15            | 1200          | <1.0          | <10          | 69           | 160           |
| VIIOC9-a           | 268                | O-50a               | 0            | 5          | 2600         | 5.6           | <10           | <2.0          | 10            | 240           | <1.0          | <10          | 23           | 52            |
| VIIOC9-b           | 269                | O-50b               | 5            | 15         | 1900         | 3.1           | <10           | <2.0          | 9.7           | 1000          | <1.0          | <10          | 50           | 110           |
| VIIOC9-c           | 270                | O-50c               | 15           | 30         | 1600         | 3.2           | <10           | <2.0          | 13            | 1500          | <1.0          | <10          | 55           | 140           |
| VIIIOC1-a          | 288                | O-51a               | 0            | 5          | 400          | 5.3           | <10           | <2.0          | 19            | 1000          | <1.0          | <10          | 63           | 150           |
| VIIIOC1-b          | 289                | O-51b               | 5            | 10         | 300          | 1.9           | <10           | <2.0          | 8.3           | 1300          | <1.0          | <10          | 100          | 160           |
| VIIIOC2-a          | 290                | O-52a               | 0            | 5          | 600          | 7.6           | <10           | <2.0          | 8.1           | 1600          | <1.0          | <10          | 140          | 80            |
| VIIIOC2-b          | 291                | O-52b               | 5            | 10         | 940          | 3.5           | <10           | <2.0          | 10            | 1500          | <1.0          | <10          | 120          | 120           |
| VIIIOC2-c          | 292                | O-52c               | 10           | 20         | 1200         | 3.9           | <10           | <2.0          | 11            | 1500          | <1.0          | <10          | 120          | 140           |
| VIIIOC3-a          | 293                | O-53a               | 0            | 5          | 1500         | 33            | <10           | <2.0          | 19            | 490           | <1.0          | <10          | 61           | 130           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm)       | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (μg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| VIIIOC3-b          | 294                | O-53b               | 5            | 10               | 640          | 7.3           | <10           | <2.0          | 13            | 2600          | <1.0          | <10          | 160          | 140           |
| VIIIOC4-a          | 295                | O-54a               | 0            | 5                | 1000         | 59            | <10           | <2.0          | 14            | 520           | 1.7           | <10          | 40           | 100           |
| VIIIOC4-b          | 296                | O-54b               | 5            | 20               | 280          | 12            | <10           | <2.0          | 10            | 2000          | <1.0          | <10          | 100          | 240           |
| VIIIOC5-a          | 279                | O-55a               | 0            | 10               | 1000         | 49            | <10           | <2.0          | 19            | 470           | <1.0          | <10          | 47           | 120           |
| VIIIOC5-b          | 280                | O-55b               | 10           | 15               | 1000         | 14            | <10           | <2.0          | 19            | 520           | <1.0          | <10          | 57           | 66            |
| VIIIOC6-a          | 281                | O-56a               | 0            | 5                | 740          | 16            | <10           | <2.0          | 23            | 840           | <1.0          | <10          | 45           | 81            |
| VIIIOC6-b          | 282                | O-56b               | 5            | 10               | 500          | 6.5           | <10           | <2.0          | 13            | 1400          | <1.0          | <10          | 57           | 68            |
| Stockpile 1-a      | 349                | S-57a               |              | -<br>-<br>-<br>- | 6900         | 1.4           | <10           | <2.0          | 7.7           | 530           | <1.0          | <10          | 25           | 40            |
| Stockpile 2-b      | 350                | S-57b               |              | 1<br>1<br>1      | 9900         | 4.2           | <10           | <2.0          | 10            | 840           | <1.0          | <10          | 39           | 39            |
| Stockpile 3-c      | 351                | S-57c               |              | 1                | 9800         | 1.0           | <10           | <2.0          | 13            | 790           | <1.0          | <10          | 35           | 39            |
| Stockpile 4-d      | 352                | S-57d               |              | 1                | 9000         | 1.3           | <10           | <2.0          | 10            | 810           | <1.0          | <10          | 36           | 51            |
| Stockpile 5-e      | 353                | S-57e               |              | 1                | 2400         | 2.9           | <10           | <2.0          | 7.9           | 530           | <1.0          | <10          | 23           | 88            |
| IF1-a              | 126                | F-58a               | 0            | 5                | 2000         | 55            | <10           | <2.0          | 60            | 74            | <1.0          | <10          | 16           | 34            |
| IF1-b              | 127                | F-58b               | 5            | 15               | 1800         | 20            | <10           | <2.0          | 83            | 140           | <1.0          | <10          | 16           | 29            |
| IF1-c              | 128                | F-58c               | 15           | 30               | 450          | 3.3           | <10           | <2.0          | 49            | 610           | <1.0          | <10          | 34           | 35            |
| IF1-d              | 129                | F-58d               | 30           | 60               | <200         | 1.8           | <10           | <2.0          | 42            | 1200          | <1.0          | <10          | 53           | 51            |
| IF1-e              | 130                | F-58e               | 60           | 100              | <200         | 2.0           | <10           | <2.0          | 53            | 1600          | <1.0          | <10          | 63           | 71            |
| IF2-a              | 102                | F-59a               | 0            | 5                | 3500         | 74            | <10           | <2.0          | 35            | 120           | <1.0          | <10          | 18           | 51            |
| IF2-b              | 103                | F-59b               | 5            | 15               | 2600         | 78            | <10           | <2.0          | 40            | 120           | <1.0          | <10          | 13           | 41            |
| IF2-c              | 104                | F-59c               | 15           | 30               | 1400         | 12            | <10           | <2.0          | 42            | 500           | <1.0          | <10          | 30           | 32            |
| IF2-d              | 105                | F-59d               | 30           | 60               | <200         | 2.2           | <10           | <2.0          | 33            | 1100          | <1.0          | <10          | 57           | 66            |
| IF2-e              | 106                | F-59e               | 60           | 100              | <200         | 2.1           | <10           | <2.0          | 30            | 1200          | <1.0          | <10          | 63           | 72            |
| llF1-a             | 334                | F-60a               | 0            | 5                | 860          | 11            | <10           | <2.0          | 54            | 1000          | <1.0          | <10          | 58           | 77            |
| llF1-b             | 335                | F-60b               | 5            | 15               | 480          | 5.3           | <10           | <2.0          | 52            | 1100          | <1.0          | <10          | 56           | 74            |
| IIF1-c             | 336                | F-60c               | 15           | 30               | 280          | 1.5           | <10           | <2.0          | 54            | 1200          | <1.0          | <10          | 62           | 79            |
| llF1-d             | 337                | F-60d               | 30           | 60               | <200         | <1.0          | <10           | <2.0          | 38            | 1200          | <1.0          | <10          | 46           | 39            |
| IIF1-e             | 338                | F-60e               | 60           | 100              | <200         | <1.0          | <10           | <2.0          | 61            | 1300          | <1.0          | <10          | 54           | 50            |
| IIF2-a             | 56                 | F-61a               | 0            | 5                | 600          | 25            | <10           | <2.0          | 50            | 1000          | <1.0          | <10          | 54           | 82            |
| IIF2-b             | 57                 | F-61b               | 5            | 15               | 440          | 20            | <10           | <2.0          | 51            | 1200          | <1.0          | <10          | 63           | 79            |
| IIF2-c             | 58                 | F-61c               | 15           | 30               | 300          | 12            | <10           | <2.0          | 57            | 1300          | <1.0          | <10          | 62           | 76            |
| IIF2-d             | 59                 | F-61d               | 30           | 60               | <200         | 5.5           | <10           | <2.0          | 69            | 1300          | <1.0          | <10          | 58           | 73            |
| IIF2-e             | 60                 | F-61e               | 60           | 100              | 260          | 2.8           | <10           | <2.0          | 79            | 1400          | <1.0          | <10          | 64           | 77            |
| IIF3-a             | 51                 | F-62a               | 0            | 5                | <200         | 11.0          | <10           | <2.0          | 12            | 670           | <1.0          | <10          | 35           | 37            |
| IIF3-b             | 52                 | F-62b               | 5            | 15               | <200         | 1.3           | <10           | <2.0          | 8.2           | 520           | <1.0          | <10          | 22           | 20            |
| IIF3-c             | 53                 | F-62c               | 15           | 30               | <200         | 1.2           | <10           | <2.0          | 7.7           | 470           | <1.0          | <10          | 20           | 19            |
| IIF3-d             | 54                 | F-62d               | 30           | 60               | <200         | <1.0          | <10           | <2.0          | 12            | 590           | <1.0          | <10          | 26           | 24            |
| IIF3-e             | 55                 | F-62e               | 60           | 90               | <200         | <1.0          | <10           | <2.0          | 16            | 660           | <1.0          | <10          | 30           | 31            |
| IIIF1-a            | 356                | F-63a               | 0            | 5                | 810          | 2.2           | <10           | <2.0          | 30            | 680           | <1.0          | <10          | 51           | 63            |
| IIIOC8-b           | 357                | F-63b               | 5            | 15               | <200         | 1.8           | <10           | <2.0          | 18            | 1000          | <1.0          | <10          | 58           | 44            |
| IIIOC8-c           | 358                | F-63c               | 15           | 30               | <200         | 1.2           | <10           | <2.0          | 15            | 1000          | <1.0          | <10          | 58           | 39            |
| IIIOC8-d           | 359                | F-63d               | 30           | 70               | <200         | 1.1           | <10           | <2.0          | 13            | 790           | <1.0          | <10          | 63           | 43            |
| IIIF2-a            | 27                 | F-64a               | 0            | 5                | 510          | 93            | <10           | <2.0          | 30            | 650           | <1.0          | <10          | 42           | 71            |
| IIIF2-b            | 28                 | F-64b               | 5            | 15               | 370          | 17            | <10           | <2.0          | 28            | 670           | <1.0          | <10          | 40           | 44            |
| IIIF2-c            | 29                 | F-64c               | 15           | 30               | 260          | 4.4           | <10           | <2.0          | 34            | 900           | <1.0          | <10          | 48           | 47            |
| IIIF2-d            | 30                 | F-64d               | 30           | 55               | <200         | 3.0           | <10           | <2.0          | 38            | 930           | <1.0          | <10          | 50           | 51            |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (µg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (μg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| IIIF2-e            | 31                 | F-64e               | 55           | 100        | <200         | 1.2           | <10           | <2.0          | 15            | 510           | <1.0          | <10          | 26           | 25            |
| IVF1-b             | 87                 | F-65b               | 5            | 15         | <200         | 6.8           | <10           | <2.0          | 15            | 460           | <1.0          | <10          | 23           | 23            |
| IVF1-c             | 88                 | F-65c               | 15           | 30         | <200         | 1.3           | <10           | <2.0          | 10            | 510           | <1.0          | <10          | 25           | 22            |
| IVF1-d             | 89                 | F-65d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 32            | 820           | <1.0          | <10          | 40           | 44            |
| IVF1-e             | 90                 | F-65e               | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 49            | 1100          | <1.0          | <10          | 53           | 64            |
| IVF1-a             | 101                | F-65a               | 0            | 5          | 1800         | 100           | <10           | <2.0          | 57            | 120           | <1.0          | <10          | <10          | 33            |
| IVF2-a             | 344                | F-66a               | 0            | 5          | 1200         | 270           | <10           | <2.0          | 16            | 120           | <1.0          | <10          | 11           | 41            |
| IVF2-b             | 345                | F-66b               | 5            | 20         | 1700         | 93            | <10           | <2.0          | 14            | 79            | <1.0          | <10          | <10          | 34            |
| IVF2-c             | 346                | F-66c               | 20           | 30         | 1000         | 2.4           | <10           | <2.0          | 25            | 880           | <1.0          | <10          | 42           | 33            |
| IVF2-d             | 347                | F-66d               | 30           | 60         | 560          | 1.2           | <10           | <2.0          | 25            | 970           | <1.0          | <10          | 42           | 39            |
| IVF2-e             | 348                | F-66e               | 60           | 100        | 480          | 1.5           | <10           | <2.0          | 28            | 1000          | <1.0          | <10          | 46           | 44            |
| IVF3A-a            | 19                 | F-67a               | 0            | 5          | 3100         | 210           | <10           | <2.0          | 45            | 140           | <1.0          | <10          | 22           | 130           |
| IVF3A-b            | 20                 | F-67b               | 5            | 15         | 2200         | 230           | <10           | <2.0          | 54            | 150           | <1.0          | <10          | 18           | 87            |
| IVF3A-c            | 21                 | F-67c               | 15           | 35         | 960          | 26            | <10           | <2.0          | 43            | 540           | <1.0          | <10          | 36           | 74            |
| IVF3B-a            | 22                 | F-68a               | 0            | 5          | 1300         | 93            | <10           | <2.0          | 19            | 170           | <1.0          | <10          | 14           | 62            |
| IVF3B-b            | 23                 | F-68b               | 5            | 15         | 1600         | 22            | <10           | <2.0          | 24            | 100           | <1.0          | <10          | 11           | 19            |
| IVF3B-c            | 24                 | F-68c               | 15           | 30         | 1600         | 14            | <10           | <2.0          | 28            | 300           | <1.0          | <10          | 21           | 30            |
| IVF3B-d            | 25                 | F-68d               | 30           | 60         | 200          | 2.1           | <10           | <2.0          | 31            | 1300          | <1.0          | <10          | 64           | 72            |
| IVF3B-e            | 26                 | F-68e               | 60           | 100        | <200         | 1.3           | <10           | <2.0          | 19            | 910           | <1.0          | <10          | 45           | 49            |
| IXF1-a             | 113                | F-69a               | 0            | 5          | 2000         | 190           | <10           | <2.0          | 67            | 180           | <1.0          | <10          | 18           | 56            |
| IXF1-b             | 114                | F-69b               | 5            | 15         | 1600         | 32            | <10           | <2.0          | 94            | 140           | <1.0          | 15           | 12           | 17            |
| IXF1-c             | 115                | F-69c               | 15           | 30         | 1800         | 9.4           | <10           | <2.0          | 160           | 180           | <1.0          | 50           | 18           | 18            |
| IXF1-d             | 116                | F-69d               | 30           | 55         | 2400         | 4.4           | <10           | <2.0          | 170           | 140           | <1.0          | 72           | 17           | <15           |
| IXF1-e             | 117                | F-69e               | 55           | 100        | 670          | 1.6           | <10           | <2.0          | 67            | 720           | <1.0          | <10          | 38           | 42            |
| IXF2-a             | 37                 | F-70a               | 0            | 5          | 2200         | 120           | <10           | <2.0          | 22            | 450           | <1.0          | <10          | 62           | 100           |
| IXF2-b             | 38                 | F-70b               | 5            | 15         | 1500         | 140           | <10           | <2.0          | 33            | 250           | <1.0          | <10          | 30           | 64            |
| IXF2-c             | 39                 | F-70c               | 15           | 30         | 1600         | 25            | <10           | <2.0          | 51            | 180           | <1.0          | <10          | 17           | 25            |
| IXF2-d             | 40                 | F-70d               | 30           | 45         | 410          | 5.0           | <10           | <2.0          | 25            | 560           | <1.0          | <10          | 34           | 34            |
| IXF3-a             | 329                | F-71a               | 0            | 5          | 2200         | 60            | <10           | <2.0          | 36            | 520           | <1.0          | <10          | 44           | 110           |
| IXF3-b             | 330                | F-71b               | 5            | 15         | <200         | 3.1           | <10           | <2.0          | 13            | 700           | <1.0          | <10          | 30           | 34            |
| IXF3-c             | 331                | F-71c               | 15           | 30         | <200         | 3.2           | <10           | <2.0          | 17            | 940           | <1.0          | <10          | 44           | 47            |
| IXF3-d             | 332                | F-71d               | 30           | 60         | 400          | 1.3           | <10           | <2.0          | 22            | 1300          | <1.0          | <10          | 58           | 67            |
| IXF3-e             | 333                | F-71e               | 60           | 100        | 220          | <1.0          | <10           | <2.0          | 13            | 830           | <1.0          | <10          | 36           | 42            |
| IXF4-a             | 1                  | F-72a               | 0            | 5          | 1900         | 49            | <10           | <2.0          | 69            | 110           | <1.0          | <10          | 19           | 580           |
| IXF4-b             | 2                  | F-72b               | 5            | 15         | 3900         | 570           | <10           | <2.0          | 37            | 220           | <1.0          | <10          | 60           | 380           |
| IXF4-c             | 3                  | F-72c               | 15           | 30         | 1100         | 86            | <10           | <2.0          | 36            | 860           | <1.0          | <10          | 49           | 110           |
| IXF4-d             | 4                  | F-72d               | 30           | 60         | 700          | 26            | <10           | <2.0          | 36            | 1300          | <1.0          | <10          | 59           | 81            |
| IXF4-e             | 5                  | F-72e               | 60           | 85         | <200         | 9.3           | <10           | <2.0          | 31            | 1300          | <1.0          | <10          | 55           | 64            |
| IXF4-f             | 6                  | F-72f               | 85           | 100        | <200         | 2.6           | <10           | <2.0          | 19            | 1100          | <1.0          | <10          | 41           | 43            |
| VF1-a              | 170                | F-73a               | 0            | 5          | 2700         | 39            | <10           | <2.0          | 70            | 220           | <1.0          | <10          | 18           | 17            |
| VF1-b              | 171                | F-73b               | 5            | 15         | 550          | 4.8           | <10           | <2.0          | 46            | 590           | <1.0          | <10          | 32           | 30            |
| VF1-c              | 172                | F-73c               | 15           | 30         | 460          | 1.2           | <10           | <2.0          | 52            | 660           | <1.0          | <10          | 36           | 30            |
| VF1-d              | 173                | F-73d               | 30           | 50         | <200         | <1.0          | <10           | <2.0          | 50            | 870           | <1.0          | <10          | 42           | 38            |
| VF1-e              | 174                | F-73e               | 50           | 100        | <200         | <1.0          | <10           | <2.0          | 48            | 1200          | <1.0          | <10          | 57           | 60            |
| VF2-e              | 161                | F-74e               | 80           | 90         | <200         | <1.0          | <10           | <2.0          | 18            | 750           | <1.0          | <10          | 37           | 40            |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (µg/<br>g) | Sr (µg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| VF2-f              | 162                | F-74f               | 100          | 110        | <200         | <1.0          | <10           | <2.0          | 9.0           | 620           | <1.0          | <10          | 31           | 33            |
| VF2-a              | 175                | F-74a               | 0            | 10         | 1500         | 14            | <10           | <2.0          | 23            | 190           | <1.0          | <10          | 13           | 42            |
| VF2-b              | 176                | F-74b               | 10           | 20         | <200         | 1.4           | <10           | <2.0          | 11            | 490           | <1.0          | <10          | 26           | 23            |
| VF2-c              | 177                | F-74c               | 20           | 50         | <200         | <1.0          | <10           | <2.0          | 9.5           | 470           | <1.0          | <10          | 22           | 20            |
| VF2-d              | 178                | F-74d               | 50           | 80         | <200         | <1.0          | <10           | <2.0          | 9.1           | 550           | <1.0          | <10          | 27           | 30            |
| VIF1-a             | 222                | F-75a               | 0            | 5          | 2400         | 15            | <10           | <2.0          | 78            | 140           | <1.0          | <10          | 18           | 22            |
| VIF1-b             | 223                | F-75b               | 5            | 20         | 840          | 4.9           | <10           | <2.0          | 71            | 680           | <1.0          | <10          | 41           | 35            |
| VIF1-c             | 224                | F-75c               | 20           | 30         | <200         | <1.0          | <10           | <2.0          | 38            | 980           | <1.0          | <10          | 45           | 42            |
| VIF1-d             | 225                | F-75d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 36            | 960           | <1.0          | <10          | 43           | 46            |
| VIF1-e             | 226                | F-75e               | 60           | 90         | <200         | <1.0          | <10           | <2.0          | 40            | 1200          | <1.0          | <10          | 48           | 54            |
| VIF2-e             | 213                | F-76e               | 50           | 60         | 1000         | <1.0          | <10           | <2.0          | 21            | 290           | <1.0          | <10          | 28           | 18            |
| VIF2-f             | 214                | F-76f               | 60           | 80         | <200         | <1.0          | <10           | <2.0          | 5.8           | 440           | <1.0          | <10          | 34           | 26            |
| VIF2-g             | 215                | F-76g               | 80           | 85         | <200         | <1.0          | <10           | <2.0          | 25            | 660           | <1.0          | <10          | 39           | 41            |
| VIF2-a             | 227                | F-76a               | 0            | 5          | 1500         | 78            | <10           | <2.0          | 36            | 140           | <1.0          | <10          | 12           | 30            |
| VIF2-b             | 228                | F-76b               | 5            | 10         | 1100         | 7.4           | <10           | <2.0          | 45            | 200           | <1.0          | <10          | 24           | 15            |
| VIF2-c             | 229                | F-76c               | 10           | 30         | <200         | <1.0          | <10           | <2.0          | 6.9           | 440           | <1.0          | <10          | 21           | <15           |
| VIF2-d             | 230                | F-76d               | 30           | 50         | <200         | <1.0          | <10           | <2.0          | 8.0           | 390           | <1.0          | <10          | 22           | <15           |
| VIF3-a             | 216                | F-77a               | 0            | 5          | 400          | 14            | <10           | <2.0          | 16            | 500           | 4.6           | <10          | 54           | 67            |
| VIF3-b             | 217                | F-77b               | 5            | 15         | <200         | 2.4           | <10           | <2.0          | 5.2           | 430           | <1.0          | <10          | 34           | 22            |
| VIF3-c             | 218                | F-77c               | 15           | 25         | <200         | <1.0          | <10           | <2.0          | <5.0          | 530           | <1.0          | <10          | 29           | 18            |
| VIF3-d             | 219                | F-77d               | 25           | 45         | <200         | 1.1           | <10           | <2.0          | 6.2           | 520           | <1.0          | <10          | 30           | 20            |
| VIF3-e             | 220                | F-77e               | 45           | 55         | <200         | <1.0          | <10           | <2.0          | 6.7           | 360           | <1.0          | <10          | 24           | 18            |
| VIF3-f             | 221                | F-77f               | 55           | 80         | <200         | <1.0          | <10           | <2.0          | 9.4           | 390           | <1.0          | <10          | 27           | 21            |
| VIF4-a             | 204                | F-78a               | 0            | 5          | 2300         | 85            | <10           | <2.0          | 68            | 32            | <1.0          | <10          | <10          | 48            |
| VIF4-b             | 205                | F-78b               | 5            | 10         | 1700         | 35            | <10           | <2.0          | 71            | 64            | <1.0          | <10          | <10          | 42            |
| VIF4-c             | 206                | F-78c               | 10           | 30         | <200         | <1.0          | <10           | <2.0          | 6.7           | 280           | <1.0          | <10          | 18           | 16            |
| VIF4-d             | 207                | F-78d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 6.6           | 380           | <1.0          | <10          | 24           | 20            |
| VIF4-e             | 208                | F-78e               | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 6.5           | 350           | <1.0          | <10          | 21           | 23            |
| VIIF1-a            | 245                | F-79a               | 0            | 5          | 2300         | 11            | <10           | <2.0          | 76            | 130           | <1.0          | <10          | 13           | 50            |
| VIIF1-b            | 246                | F-79b               | 5            | 20         | 1500         | 2.9           | <10           | <2.0          | 44            | 360           | <1.0          | <10          | 25           | 21            |
| VIIF1-c            | 247                | F-79c               | 20           | 30         | 440          | 1.3           | <10           | <2.0          | 39            | 980           | <1.0          | <10          | 50           | 52            |
| VIIF1-d            | 248                | F-79d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 45            | 1100          | <1.0          | <10          | 55           | 61            |
| VIIF1-e            | 249                | F-79e               | 60           | 100        | 400          | <1.0          | <10           | <2.0          | 35            | 1300          | <1.0          | <10          | 60           | 73            |
| VIIF2-e            | 236                | F-80e               | 60           | 70         | <200         | <1.0          | <10           | <2.0          | 21            | 810           | <1.0          | <10          | 43           | 45            |
| VIIF2-f            | 237                | F-80f               | 70           | 100        | <200         | <1.0          | <10           | <2.0          | 19            | 890           | <1.0          | <10          | 44           | 52            |
| VIIF2-a            | 250                | F-80a               | 0            | 5          | 1000         | 5.8           | <10           | <2.0          | 26            | 560           | <1.0          | <10          | 33           | 41            |
| VIIF2-b            | 251                | F-80b               | 5            | 15         | 280          | 1.3           | <10           | <2.0          | 19            | 660           | <1.0          | <10          | 32           | 30            |
| VIIF2-c            | 252                | F-80c               | 15           | 30         | 220          | 1.5           | <10           | <2.0          | 21            | 810           | <1.0          | <10          | 40           | 46            |
| VIIF2-d            | 253                | F-80d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 30            | 960           | <1.0          | <10          | 45           | 55            |
| VIIIF1-a           | 283                | F-81a               | 0            | 5          | 2000         | 17            | <10           | <2.0          | 28            | 85            | <1.0          | <10          | <10          | 40            |
| VIIIF1-b           | 284                | F-81b               | 5            | 15         | 4200         | 10            | <10           | <2.0          | 52            | 160           | <1.0          | <10          | 10           | 26            |
| VIIIF1-c           | 285                | F-81c               | 15           | 30         | 2500         | 6.2           | <10           | <2.0          | 60            | 530           | <1.0          | <10          | 27           | 33            |
| VIIIF1-d           | 286                | F-81d               | 30           | 60         | 1900         | 3.2           | <10           | <2.0          | 67            | 830           | <1.0          | <10          | 40           | 45            |
| VIIIF1-e           | 287                | F-81e               | 60           | 70         | 2600         | 4.0           | <10           | <2.0          | 74            | 830           | <1.0          | <10          | 40           | 44            |
| VIIIF2-a           | 271                | F-82a               | 0            | 5          | 1300         | 76            | <10           | <2.0          | 19            | 220           | <1.0          | <10          | 20           | 80            |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (μg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (µg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| VIIIF2-b           | 272                | F-82b               | 5            | 15         | 1400         | 12            | <10           | <2.0          | 45            | 200           | <1.0          | <10          | 15           | 38            |
| VIIIF2-c           | 273                | F-82c               | 15           | 30         | 1100         | 5.1           | <10           | <2.0          | 70            | 550           | <1.0          | <10          | 32           | 35            |
| VIIIF2-d           | 274                | F-82d               | 30           | 60         | 300          | <1.0          | <10           | <2.0          | 59            | 1200          | <1.0          | <10          | 58           | 66            |
| VIIIF3-a           | 275                | F-83a               | 0            | 5          | 560          | 31            | <10           | <2.0          | 35            | 1200          | <1.0          | <10          | 60           | 100           |
| VIIIF3-b           | 276                | F-83b               | 5            | 15         | 240          | 16            | <10           | <2.0          | 40            | 1500          | <1.0          | <10          | 69           | 88            |
| VIIIF3-c           | 277                | F-83c               | 15           | 30         | <200         | <1.0          | <10           | <2.0          | 26            | 1400          | <1.0          | <10          | 57           | 65            |
| VIIIF3-d           | 278                | F-83d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 19            | 1100          | <1.0          | <10          | 50           | 58            |
| VIIIF4-a           | 297                | F-84a               | 0            | 5          | 2100         | 20            | <10           | <2.0          | 50            | 130           | <1.0          | <10          | 18           | 34            |
| VIIIF4-b           | 298                | F-84b               | 5            | 15         | 2800         | 16            | <10           | <2.0          | 73            | 330           | <1.0          | <10          | 22           | 50            |
| VIIIF4-c           | 299                | F-84c               | 15           | 30         | 1200         | 7.4           | <10           | <2.0          | 62            | 860           | <1.0          | <10          | 43           | 55            |
| VIIIF4-d           | 300                | F-84d               | 30           | 60         | 360          | 2.0           | <10           | <2.0          | 59            | 1200          | <1.0          | <10          | 55           | 63            |
| VIIIF4-e           | 301                | F-84e               | 60           | 90         | 760          | 1.5           | <10           | <2.0          | 61            | 1100          | <1.0          | <10          | 57           | 68            |
| VIIIF5-a           | 302                | F-85a               | 0            | 5          | 280          | 5.2           | <10           | <2.0          | 35            | 1200          | <1.0          | <10          | 61           | 64            |
| VIIIF5-b           | 303                | F-85b               | 5            | 15         | <200         | 2.3           | <10           | <2.0          | 37            | 1400          | <1.0          | <10          | 68           | 72            |
| VIIIF5-c           | 304                | F-85c               | 15           | 30         | <200         | <1.0          | <10           | <2.0          | 32            | 1200          | <1.0          | <10          | 60           | 63            |
| VIIIF5-d           | 305                | F-85d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 39            | 1400          | <1.0          | <10          | 66           | 71            |
| VIIIF5-e           | 308                | F-85e               | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 29            | 1300          | <1.0          | <10          | 80           | 60            |
| IWL1-a             | 136                | W-86a               | 0            | 5          | 1400         | 16.0          | <10           | <2.0          | 14            | 380           | <1.0          | <10          | 26           | 48            |
| IWL1-b             | 137                | W-86b               | 5            | 15         | 470          | 8.9           | <10           | <2.0          | 9.7           | 460           | <1.0          | <10          | 27           | 42            |
| IWL1-c             | 138                | W-86c               | 15           | 30         | 330          | 1.6           | <10           | <2.0          | 11            | 680           | <1.0          | <10          | 28           | 31            |
| IWL1-d             | 139                | W-86d               | 30           | 60         | <200         | 1.0           | <10           | <2.0          | 9.3           | 640           | <1.0          | <10          | 26           | 28            |
| IWL1-e             | 140                | W-86e               | 60           | 100        | 200          | 1.2           | <10           | <2.0          | 10            | 780           | <1.0          | <10          | 33           | 36            |
| IWL2-a             | 46                 | W-87a               | 0            | 5          | 1700         | 16            | <10           | <2.0          | 43            | 160           | <1.0          | <10          | 28           | 110           |
| IWL2-b             | 47                 | W-87b               | 5            | 15         | 1100         | 39            | <10           | <2.0          | 20            | 440           | <1.0          | <10          | 41           | 86            |
| IWL2-c             | 48                 | W-87c               | 15           | 30         | 260          | 5.0           | <10           | <2.0          | 17            | 930           | <1.0          | <10          | 42           | 42            |
| IWL2-d             | 49                 | W-87d               | 30           | 60         | <200         | 1.3           | <10           | <2.0          | 17            | 980           | <1.0          | <10          | 38           | 40            |
| IWL2-e             | 50                 | W-87e               | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 21            | 1200          | <1.0          | <10          | 45           | 48            |
| IIWL2-a            | 131                | W-88a               | 0            | 5          | 6200         | 210           | <10           | <2.0          | 37            | 69            | <1.0          | <10          | 15           | 110           |
| IIWL2-b            | 132                | W-88b               | 5            | 15         | 3500         | 56            | <10           | <2.0          | 56            | 66            | <1.0          | <10          | 13           | 47            |
| IIWL2-c            | 133                | W-88c               | 15           | 30         | 260          | 1.6           | <10           | <2.0          | 32            | 780           | <1.0          | <10          | 43           | 42            |
| IIWL2-d            | 134                | W-88d               | 30           | 60         | <200         | 1.0           | <10           | <2.0          | 39            | 990           | <1.0          | <10          | 52           | 53            |
| IIWL2-e            | 135                | W-88e               | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 62            | 1200          | <1.0          | <10          | 58           | 66            |
| IIIWL1-c           | 93                 | W-89c               | 15           | 30         | 3900         | 470           | <10           | <2.0          | 39            | 540           | <1.0          | <10          | 51           | 620           |
| IIIWL1-d           | 94                 | W-89d               | 30           | 60         | 260          | 11.0          | <10           | <2.0          | 44            | 1000          | <1.0          | <10          | 51           | 65            |
| IIIWL1-e           | 95                 | W-89e               | 60           | 100        | 200          | 9.0           | <10           | <2.0          | 50            | 1100          | <1.0          | <10          | 53           | 71            |
| IIIWL1-a           | 118                | W-89a               | 0            | 5          | 1500         | 160           | <10           | <2.0          | 45            | 580           | <1.0          | <10          | 44           | 240           |
| IIIWL1-b           | 119                | W-89b               | 5            | 15         | 1300         | 200           | <10           | <2.0          | 37            | 640           | <1.0          | <10          | 52           | 280           |
| IVWL1-a            | 12                 | W-90a               | 0            | 5          | 420          | 150           | <10           | <2.0          | 48            | 970           | <1.0          | <10          | 50           | 280           |
| IVWL1-b            | 13                 | W-90b               | 5            | 15         | <200         | 38            | <10           | <2.0          | 38            | 1200          | <1.0          | <10          | 50           | 160           |
| IVWL1-c            | 14                 | W-90c               | 15           | 30         | <200         | 8.3           | <10           | <2.0          | 48            | 1300          | <1.0          | <10          | 56           | 94            |
| IVWL1-d            | 15                 | W-90d               | 30           | 60         | <200         | 10.0          | <10           | <2.0          | 46            | 1300          | <1.0          | <10          | 54           | 96            |
| IVWL1-e            | 16                 | W-90e               | 60           | 100        | <200         | 4.4           | <10           | <2.0          | 43            | 1200          | <1.0          | <10          | 53           | 63            |
| IVWL2-a            | 7                  | W-91a               | 0            | 5          | <200         | 84            | <10           | <2.0          | 24            | 860           | <1.0          | <10          | 39           | 71            |
| IVWL2-b            | 8                  | W-91b               | 5            | 15         | 560          | 270           | <10           | <2.0          | 28            | 780           | <1.0          | <10          | 49           | 230           |
| IVWL2-c            | 9                  | W-91c               | 15           | 30         | 2100         | 800           | <10           | <2.0          | 28            | 250           | <1.0          | <10          | 58           | 520           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (μg/<br>g) | Ti (μg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (μg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| IVWL2-d            | 10                 | W-91d               | 30           | 60         | 4000         | 1100          | <10           | <2.0          | 26            | 140           | <1.0          | <10          | 48           | 610           |
| IVWL2-e            | 11                 | W-91e               | 60           | 100        | <200         | 1100          | <10           | <2.0          | 26            | 170           | <1.0          | <10          | 51           | 590           |
| IVWL3-a            | 96                 | W-92a               | 0            | 5          | 1300         | 4.8           | <10           | <2.0          | 31            | 400           | <1.0          | <10          | 23           | 27            |
| IVWL3-b            | 97                 | W-92b               | 5            | 15         | 760          | <1.0          | <10           | <2.0          | 25            | 470           | <1.0          | <10          | 27           | 30            |
| IVWL3-c            | 98                 | W-92c               | 15           | 30         | 660          | 8.3           | <10           | <2.0          | 24            | 530           | <1.0          | <10          | 30           | 36            |
| IVWL3-d            | 99                 | W-92d               | 30           | 60         | <200         | 2.0           | <10           | <2.0          | 20            | 740           | <1.0          | <10          | 38           | 38            |
| IVWL3-e            | 100                | W-92e               | 60           | 100        | <200         | 1.0           | <10           | <2.0          | 20            | 830           | <1.0          | <10          | 40           | 42            |
| IVWL4-a            | 149                | W-93a               | 0            | 5          | 1400         | 14.0          | <10           | <2.0          | 41            | 530           | <1.0          | <10          | 28           | 35            |
| IVWL4-b            | 150                | W-93b               | 5            | 15         | 870          | 10            | <10           | <2.0          | 46            | 760           | <1.0          | <10          | 40           | 44            |
| IVWL4-c            | 151                | W-93c               | 15           | 30         | 490          | 10.0          | <10           | <2.0          | 40            | 750           | <1.0          | <10          | 41           | 42            |
| IVWL4-d            | 152                | W-93d               | 30           | 60         | 670          | 13            | <10           | <2.0          | 48            | 720           | <1.0          | <10          | 41           | 45            |
| IVWL4-e            | 153                | W-93e               | 60           | 100        | 340          | 5.7           | <10           | <2.0          | 59            | 1000          | <1.0          | <10          | 49           | 54            |
| IVWL5-a            | 339                | W-94a               | 0            | 5          | 420          | 4.3           | <10           | <2.0          | 23            | 560           | <1.0          | <10          | 28           | 31            |
| IVWL5-b            | 340                | W-94b               | 5            | 15         | 470          | 4.6           | <10           | <2.0          | 24            | 620           | <1.0          | <10          | 30           | 33            |
| IVWL5-c            | 341                | W-94c               | 15           | 30         | 380          | 4.8           | <10           | <2.0          | 26            | 750           | <1.0          | <10          | 34           | 38            |
| IVWL5-d            | 342                | W-94d               | 30           | 60         | 300          | <1.0          | <10           | <2.0          | 32            | 1100          | <1.0          | <10          | 49           | 46            |
| IVWL5-e            | 343                | W-94e               | 60           | 100        | 380          | <1.0          | <10           | <2.0          | 28            | 940           | <1.0          | <10          | 44           | 40            |
| IXWL1-a            | 32                 | W-95a               | 0            | 5          | 4100         | 120           | <10           | <2.0          | 49            | 1100          | <1.0          | <10          | 56           | 74            |
| IXWL1-b            | 33                 | W-95b               | 5            | 15         | 1700         | 64            | <10           | <2.0          | 54            | 1200          | <1.0          | <10          | 58           | 74            |
| IXWL1-c            | 34                 | W-95c               | 15           | 30         | 480          | 33            | <10           | <2.0          | 43            | 1300          | <1.0          | <10          | 60           | 73            |
| IXWL1-d            | 35                 | W-95d               | 30           | 60         | <200         | 14            | <10           | <2.0          | 46            | 1200          | <1.0          | <10          | 54           | 68            |
| IXWL1-e            | 36                 | W-95e               | 60           | 100        | <200         | 12            | <10           | <2.0          | 50            | 1400          | <1.0          | <10          | 60           | 76            |
| IXWL2-a            | 41                 | W-96a               | 0            | 5          | 1300         | 27            | <10           | <2.0          | 59            | 1100          | <1.0          | <10          | 61           | 75            |
| IXWL2-b            | 42                 | W-96b               | 5            | 15         | 250          | 6.5           | <10           | <2.0          | 66            | 1300          | <1.0          | <10          | 66           | 78            |
| IXWL2-c            | 43                 | W-96c               | 15           | 30         | <200         | 3.0           | <10           | <2.0          | 66            | 1200          | <1.0          | <10          | 62           | 71            |
| IXWL2-d            | 44                 | W-96d               | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 74            | 1300          | <1.0          | <10          | 66           | 77            |
| IXWL2-e            | 45                 | W-96e               | 60           | 100        | <200         | 1.1           | <10           | <2.0          | 80            | 1300          | <1.0          | <10          | 64           | 80            |
| VWL1-a             | 163                | W-97a               | 0            | 5          | 2600         | 160           | <10           | <2.0          | 63            | 140           | <1.0          | <10          | 15           | 52            |
| VWL1-b             | 164                | W-97b               | 5            | 15         | 4200         | 26            | <10           | <2.0          | 84            | 58            | <1.0          | <10          | <10          | 18            |
| VWL1-c             | 165                | W-97c               | 15           | 30         | 5200         | 7.7           | <10           | <2.0          | 80            | 100           | <1.0          | <10          | <10          | <15           |
| VWL1-d             | 166                | W-97d               | 30           | 60         | 5400         | 2.9           | <10           | <2.0          | 71            | 160           | <1.0          | <10          | 12           | 15            |
| VWL1-e             | 167                | W-97e               | 60           | 80         | 4400         | 2.7           | <10           | <2.0          | 62            | 370           | <1.0          | <10          | 22           | 32            |
| VWL2-c             | 154                | W-98c               | 20           | 40         | 11000        | 14            | <10           | <2.0          | 57            | 210           | <1.0          | <10          | 16           | 40            |
| VWL2-d             | 155                | W-98d               | 40           | 70         | 9000         | 10.0          | <10           | <2.0          | 69            | 190           | <1.0          | <10          | 13           | 35            |
| VWL2-e             | 156                | W-98e               | 70           | 100        | 220          | <1.0          | <10           | <2.0          | 65            | 1200          | <1.0          | <10          | 55           | 64            |
| VWL2-a             | 168                | W-98a               | 0            | 5          | 12000        | 15            | <10           | <2.0          | 51            | 200           | <1.0          | <10          | 17           | 53            |
| VWL2-b             | 169                | W-98b               | 5            | 20         | 1300         | 33            | <10           | <2.0          | 6.8           | 1300          | <1.0          | <10          | 160          | 95            |
| VWL3-a             | 157                | W-99a               | 0            | 10         | 1100         | 9.1           | <10           | <2.0          | 26            | 430           | <1.0          | <10          | 23           | 26            |
| VWL3-b             | 158                | W-99b               | 10           | 50         | 1100         | 3.8           | <10           | <2.0          | 27            | 450           | <1.0          | <10          | 23           | 24            |
| VWL3-c             | 159                | W-99c               | 50           | 80         | <200         | <1.0          | <10           | <2.0          | 14            | 560           | <1.0          | <10          | 24           | 23            |
| VWL3-d             | 160                | W-99d               | 80           | 100        | <200         | <1.0          | <10           | <2.0          | 24            | 730           | <1.0          | <10          | 34           | 31            |
| VIWL1A-a           | 195                | W-100a              | 0            | 5          | 4300         | 23            | <10           | <2.0          | 58            | 1100          | <1.0          | <10          | 110          | 110           |
| VIWL1A-b           | 196                | W-100b              | 5            | 10         | 2600         | 26            | <10           | <2.0          | 28            | 3000          | <1.0          | <10          | 140          | 100           |
| VIWL1B-a           | 197                | W-101a              | 0            | 5          | 6000         | 25            | <10           | <2.0          | 64            | 820           | <1.0          | <10          | 87           | 87            |
| VIWL1B-b           | 198                | W-101b              | 5            | 10         | 6200         | 27            | <10           | <2.0          | 33            | 1200          | <1.0          | <10          | 110          | 120           |

| Sample<br>(Golder) | Sam-<br>ple<br>ASU | Sample<br>(Queen's) | from<br>(cm) | to<br>(cm) | S (μg/<br>g) | Sb (µg/<br>g) | Se (µg/<br>g) | Sn (μg/<br>g) | Sr (µg/<br>g) | Ti (µg/<br>g) | TI (μg/<br>g) | U (µg/<br>g) | V (μg/<br>g) | Zn (μg/<br>g) |
|--------------------|--------------------|---------------------|--------------|------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|---------------|
| VIWL1B-c           | 199                | W-101c              | 10           | 30         | 4500         | 24            | <10           | <2.0          | 30            | 830           | <1.0          | <10          | 78           | 130           |
| VIWL1B-d           | 200                | W-101d              | 30           | 60         | 2000         | 8.4           | <10           | <2.0          | 32            | 640           | <1.0          | <10          | 48           | 51            |
| VIWL1B-e           | 201                | W-101e              | 60           | 80         | 1400         | 3.2           | <10           | <2.0          | 31            | 640           | <1.0          | <10          | 42           | 54            |
| VIIWL1-a           | 238                | W-102a              | 0            | 10         | 9700         | 11            | <10           | <2.0          | 32            | 110           | <1.0          | <10          | <10          | 65            |
| VIIWL1-b           | 239                | W-102b              | 10           | 30         | 11000        | 6.4           | <10           | <2.0          | 30            | 69            | <1.0          | <10          | <10          | 45            |
| VIIWL1-c           | 240                | W-102c              | 30           | 55         | 9700         | 2.9           | <10           | <2.0          | 26            | 76            | <1.0          | <10          | <10          | 38            |
| VIIWL1-d           | 241                | W-102d              | 55           | 100        | 16000        | 2.0           | <10           | <2.0          | 35            | 400           | <1.0          | <10          | 24           | 63            |
| VIIIWL1-a          | 309                | W-103a              | 0            | 5          | 2000         | 11            | <10           | <2.0          | 42            | 230           | <1.0          | <10          | 16           | 34            |
| VIIIWL1-b          | 310                | W-103b              | 5            | 15         | 3200         | 3.2           | <10           | <2.0          | 77            | 58            | <1.0          | <10          | <10          | <15           |
| VIIIWL1-c          | 311                | W-103c              | 15           | 30         | 3600         | 1.2           | <10           | <2.0          | 71            | 75            | <1.0          | <10          | <10          | <15           |
| VIIIWL1-d          | 312                | W-103d              | 30           | 60         | 5600         | 1.0           | <10           | <2.0          | 62            | 120           | <1.0          | <10          | 13           | <15           |
| VIIIWL1-e          | 313                | W-103e              | 60           | 100        | 200          | <1.0          | <10           | <2.0          | 77            | 1300          | <1.0          | <10          | 61           | 75            |
| VIIIWL2-d          | 306                | W-104d              | 30           | 60         | <200         | <1.0          | <10           | <2.0          | 55            | 1300          | <1.0          | <10          | 62           | 72            |
| VIIIWL2-e          | 307                | W-104e              | 60           | 100        | <200         | <1.0          | <10           | <2.0          | 52            | 1500          | <1.0          | <10          | 68           | 83            |
| VIIIWL2-a          | 314                | W-104a              | 0            | 5          | 2500         | 10            | <10           | <2.0          | 54            | 670           | <1.0          | <10          | 38           | 52            |
| VIIIWL2-b          | 315                | W-104b              | 5            | 15         | 760          | 2.0           | <10           | <2.0          | 52            | 960           | <1.0          | <10          | 50           | 54            |
| VIIIWL2-c          | 316                | W-104c              | 15           | 30         | 400          | <1.0          | <10           | <2.0          | 45            | 1000          | <1.0          | <10          | 61           | 59            |

## Appendix III: 30-element analysis QA/QC

All units are  $\mu$ g/g. Standards and blanks:

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 19000           | 18000           | 20000                   |
| As     | <1.0  | 1.9   | 23              | 22              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ва     | <5.0  | <5.0  | 340             | 320             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 13              | 12              | 12                      |
| Cr     | <20   | <20   | 33              | 31              | 36                      |
| Cu     | <5.0  | <5.0  | 32              | 29              | 31                      |
| Fe     | <50   | <50   | 36000           | 34000           | 35000                   |
| к      | <20   | <20   | 4600            | 4400            | 4900                    |
| Mg     | <20   | <20   | 14000           | 14000           | 13000                   |
| Mn     | <1.0  | <1.0  | 340             | 320             | 300                     |
| Мо     | <2.0  | <2.0  | 2.4             | 2.0             | 2.1                     |
| Na     | <75   | <75   | 12000           | 12000           | 11000                   |
| Ni     | <5.0  | <5.0  | 39              | 37              | 37                      |
| Р      | <20   | <20   | 1000            | 1000            | 1000                    |
| Pb     | <10   | <10   | 21              | 20              | 19                      |
| S      | <200  | <200  | 1700            | 1700            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.2             | 1.2             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 66              | 62              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| TI     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 83              | 77              | 84                      |
| Zn     | <15   | <15   | 140             | 140             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 17000           | 18000           | 20000                   |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 18000           | 19000           | 20000                   |
| As     | <1.0  | <1.0  | 19              | 20              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 340             | 350             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 14000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 14              | 14              | 12                      |
| Cr     | <20   | <20   | 32              | 35              | 36                      |
| Cu     | <5.0  | <5.0  | 32              | 33              | 31                      |
| Fe     | <50   | <50   | 35000           | 36000           | 35000                   |
| к      | <20   | <20   | 4400            | 4700            | 4900                    |
| Mg     | <20   | <20   | 13000           | 14000           | 13000                   |
| Mn     | <1.0  | <1.0  | 340             | 350             | 300                     |
| Mo     | <2.0  | <2.0  | 2.2             | 2.3             | 2.1                     |
| Na     | <75   | <75   | 12000           | 12000           | 11000                   |
| Ni     | <5.0  | <5.0  | 38              | 40              | 37                      |
| Р      | <20   | <20   | 1100            | 1100            | 1000                    |
| Pb     | <10   | <10   | 22              | 22              | 19                      |
| S      | <200  | <200  | 1700            | 1700            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.2             | 1.1             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 66              | 68              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 82              | 86              | 84                      |
| Zn     | <15   | <15   | 140             | 140             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 16000           | 18000           | 20000                   |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| As     | <1.0  | <1.0  | 18              | 20              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ва     | <5.0  | <5.0  | 320             | 340             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 12000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 13              | 12                      |
| Cr     | <20   | <20   | 29              | 31              | 36                      |
| Cu     | <5.0  | <5.0  | 29              | 32              | 31                      |
| Fe     | <50   | <50   | 31000           | 34000           | 35000                   |
| к      | <20   | <20   | 4200            | 4100            | 4900                    |
| Mg     | <20   | <20   | 13000           | 14000           | 13000                   |
| Mn     | <1.0  | <1.0  | 280             | 300             | 300                     |
| Мо     | <2.0  | <2.0  | <2.0            | 2.1             | 2.1                     |
| Na     | <75   | <75   | 10000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 34              | 36              | 37                      |
| Р      | <20   | <20   | 940             | 1000            | 1000                    |
| Pb     | <10   | <10   | 20              | 21              | 19                      |
| S      | <200  | <200  | 1500            | 1600            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.3             | 1.3             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 58              | 62              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| TI     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 74              | 78              | 84                      |
| Zn     | <15   | <15   | 120             | 130             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 17000           | 19000           | 20000                   |
| As     | <1.0  | <1.0  | 18              | 16              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 330             | 370             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 13              | 12              | 12                      |
| Cr     | <20   | <20   | 29              | 28              | 36                      |
| Cu     | <5.0  | <5.0  | 29              | 33              | 31                      |
| Fe     | <50   | <50   | 36000           | 33000           | 35000                   |
| К      | <20   | <20   | 4000            | 4100            | 4900                    |

| Sample | Blank | Blank | MESS-3 | MESS-3 | MESS-3        |
|--------|-------|-------|--------|--------|---------------|
|        |       |       | Found  | Found  | Ex-<br>pected |
| As     | <1.0  | <1.0  | 19     | 20     | 18            |
| В      | <20   | <20   | -      | -      | -             |
| Ba     | <5.0  | <5.0  | 310    | 330    | 350           |
| Be     | <4.0  | <4.0  | <4.0   | <4.0   | <4.0          |
| Ca     | <100  | <100  | 13000  | 14000  | 14000         |
| Cd     | <1.0  | <1.0  | <1.0   | <1.0   | <1.0          |
| Co     | <5.0  | <5.0  | 12     | 13     | 12            |
| Cr     | <20   | <20   | 28     | 31     | 36            |
| Cu     | <5.0  | <5.0  | 30     | 33     | 31            |
| Fe     | <50   | <50   | 34000  | 36000  | 35000         |
| к      | <20   | <20   | 4000   | 4100   | 4900          |
| Mg     | <20   | <20   | 13000  | 14000  | 13000         |
| Mn     | <1.0  | <1.0  | 310    | 330    | 300           |
| Мо     | <2.0  | <2.0  | 2.1    | 2.2    | 2.1           |
| Na     | <75   | <75   | 10000  | 11000  | 11000         |
| Ni     | <5.0  | <5.0  | 34     | 37     | 37            |
| Р      | <20   | <20   | 1000   | 1100   | 1000          |
| Pb     | <10   | <10   | 21     | 20     | 19            |
| S      | <200  | <200  | 1600   | 1700   | 1700          |
| Sb     | <1.0  | <1.0  | 1.2    | 1.1    | -             |
| Se     | <10   | <10   | <10    | <10    | <10           |
| Sn     | <2.0  | <2.0  | <2.0   | <2.0   | <2.0          |
| Sr     | <5.0  | <5.0  | 59     | 64     | 64            |
| Ti     | <10   | <10   | -      | -      | -             |
| ТІ     | <1.0  | <1.0  | <1.0   | <1.0   | <1.0          |
| U      | <10   | <10   | <10    | <10    | <10           |
| V      | <10   | <10   | 71     | 78     | 84            |
| Zn     | <15   | <15   | 130    | 140    | 130           |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 18000           | 18000           | 20000                   |
| As     | <1.0  | <1.0  | 18              | 18              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 350             | 350             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 12              | 12                      |
| Cr     | <20   | <20   | 30              | 30              | 36                      |
| Cu     | <5.0  | <5.0  | 31              | 31              | 31                      |
| Fe     | <50   | <50   | 36000           | 35000           | 35000                   |
| к      | <20   | <20   | 4200            | 4300            | 4900                    |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Mg     | <20   | <20   | 14000           | 14000           | 13000                   |
| Mn     | <1.0  | <1.0  | 290             | 280             | 300                     |
| Мо     | <2.0  | <2.0  | 2.2             | 2.0             | 2.1                     |
| Na     | <75   | <75   | 11000           | 10000           | 11000                   |
| Ni     | <5.0  | <5.0  | 41              | 31              | 37                      |
| Р      | <20   | <20   | 1100            | 940             | 1000                    |
| Pb     | <10   | <10   | 22              | 19              | 19                      |
| S      | <200  | <200  | 1800            | 1500            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.2             | 1.0             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 60              | 56              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 75              | 76              | 84                      |
| Zn     | <15   | <15   | 130             | 110             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 14000           | 17000           | 20000                   |
| As     | <1.0  | <1.0  | 16              | 16              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 300             | 310             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 13000           | 14000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 11              | 12              | 12                      |
| Cr     | <20   | <20   | 26              | 30              | 36                      |
| Cu     | <5.0  | <5.0  | 28              | 29              | 31                      |
| Fe     | <50   | <50   | 34000           | 35000           | 35000                   |
| К      | <20   | <20   | 3700            | 4000            | 4900                    |
| Mg     | <20   | <20   | 12000           | 12000           | 13000                   |
| Mn     | <1.0  | <1.0  | 270             | 270             | 300                     |
| Мо     | <2.0  | <2.0  | <2.0            | <2.0            | 2.1                     |
| Na     | <75   | <75   | 10000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 32              | 33              | 37                      |
| Р      | <20   | <20   | 900             | 930             | 1000                    |
| Pb     | <10   | <10   | 20              | 20              | 19                      |
| S      | <200  | <200  | 1500            | 1500            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.1             | 1.0             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Mg     | <20   | <20   | 13000           | 13000           | 13000                   |
| Mn     | <1.0  | <1.0  | 290             | 280             | 300                     |
| Mo     | <2.0  | <2.0  | 2.1             | 2.0             | 2.1                     |
| Na     | <75   | <75   | 11000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 33              | 33              | 37                      |
| Р      | <20   | <20   | 980             | 970             | 1000                    |
| Pb     | <10   | <10   | 21              | 21              | 19                      |
| S      | <200  | <200  | 1500            | 1400            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.2             | 1.1             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 60              | 60              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 76              | 75              | 84                      |
| Zn     | <15   | <15   | 130             | 120             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 17000           | 18000           | 20000                   |
| As     | <1.0  | <1.0  | 18              | 18              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 330             | 330             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 12000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 12              | 12                      |
| Cr     | <20   | <20   | 30              | 30              | 36                      |
| Cu     | <5.0  | <5.0  | 30              | 31              | 31                      |
| Fe     | <50   | <50   | 31000           | 32000           | 35000                   |
| к      | <20   | <20   | 3900            | 3800            | 4900                    |
| Mg     | <20   | <20   | 12000           | 12000           | 13000                   |
| Mn     | <1.0  | <1.0  | 270             | 280             | 300                     |
| Мо     | <2.0  | <2.0  | <2.0            | <2.0            | 2.1                     |
| Na     | <75   | <75   | 9700            | 10000           | 11000                   |
| Ni     | <5.0  | <5.0  | 33              | 35              | 37                      |
| Р      | <20   | <20   | 910             | 960             | 1000                    |
| Pb     | <10   | <10   | 22              | 23              | 19                      |
| S      | <200  | <200  | 1500            | 1600            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.1             | 1.2             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Sr     | <5.0  | <5.0  | 56              | 58              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| TI     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 67              | 76              | 84                      |
| Zn     | <15   | <15   | 120             | 120             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 16000           | 17000           | 20000                   |
| As     | <1.0  | 1.2   | 19              | 20              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ва     | <5.0  | <5.0  | 320             | 360             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 12000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 12              | 12                      |
| Cr     | <20   | <20   | 30              | 33              | 36                      |
| Cu     | <5.0  | <5.0  | 30              | 33              | 31                      |
| Fe     | <50   | <50   | 31000           | 33000           | 35000                   |
| к      | <20   | <20   | 3800            | 4000            | 4900                    |
| Mg     | <20   | <20   | 12000           | 13000           | 13000                   |
| Mn     | <1.0  | <1.0  | 310             | 330             | 300                     |
| Мо     | <2.0  | <2.0  | <2.0            | 2.0             | 2.1                     |
| Na     | <75   | <75   | 10000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 37              | 40              | 37                      |
| Р      | <20   | <20   | 940             | 990             | 1000                    |
| Pb     | <10   | <10   | 21              | 22              | 19                      |
| S      | <200  | <200  | 1500            | 1600            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.0             | 1.1             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 64              | 69              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 74              | 81              | 84                      |
| Zn     | <15   | <15   | 130             | 140             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 15000           | 18000           | 20000                   |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Sr     | <5.0  | <5.0  | 58              | 60              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 73              | 75              | 84                      |
| Zn     | <15   | <15   | 120             | 130             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 19000           | 18000           | 20000                   |
| As     | <1.0  | <1.0  | 20              | 18              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 340             | 330             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 12              | 12                      |
| Cr     | <20   | <20   | 32              | 31              | 36                      |
| Cu     | <5.0  | <5.0  | 34              | 32              | 31                      |
| Fe     | <50   | <50   | 38000           | 36000           | 35000                   |
| к      | <20   | <20   | 4300            | 4100            | 4900                    |
| Mg     | <20   | <20   | 14000           | 13000           | 13000                   |
| Mn     | <1.0  | <1.0  | 330             | 320             | 300                     |
| Mo     | <2.0  | <2.0  | 2.2             | 2.1             | 2.1                     |
| Na     | <75   | <75   | 12000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 38              | 35              | 37                      |
| Р      | <20   | <20   | 1100            | 1000            | 1000                    |
| Pb     | <10   | <10   | 22              | 20              | 19                      |
| S      | <200  | <200  | 1800            | 1600            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.1             | 1.1             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 65              | 63              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 80              | 79              | 84                      |
| Zn     | <15   | <15   | 140             | 130             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 19000           | 16000           | 20000                   |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |  |  |  |  |
|--------|-------|-------|-----------------|-----------------|-------------------------|--|--|--|--|
| As     | <1.0  | <1.0  | 18              | 18              | 18                      |  |  |  |  |
| В      | <20   | <20   | -               | -               | -                       |  |  |  |  |
| Ва     | <5.0  | <5.0  | 300             | 320             | 350                     |  |  |  |  |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |  |  |  |  |
| Ca     | <100  | <100  | 13000           | 13000           | 14000                   |  |  |  |  |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |  |  |  |  |
| Co     | <5.0  | <5.0  | 13              | 13              | 12                      |  |  |  |  |
| Cr     | <20   | <20   | 28              | 31              | 36                      |  |  |  |  |
| Cu     | <5.0  | <5.0  | 30              | 30              | 31                      |  |  |  |  |
| Fe     | <50   | <50   | 33000           | 34000           | 35000                   |  |  |  |  |
| к      | <20   | <20   | 3800            | 4100            | 4900                    |  |  |  |  |
| Mg     | <20   | <20   | 13000           | 13000           | 13000                   |  |  |  |  |
| Mn     | <1.0  | <1.0  | 290             | 290             | 300                     |  |  |  |  |
| Мо     | <2.0  | <2.0  | 2.1             | 2.1             | 2.1                     |  |  |  |  |
| Na     | <75   | <75   | 11000           | 10000           | 11000                   |  |  |  |  |
| Ni     | <5.0  | <5.0  | 36              | 36              | 37                      |  |  |  |  |
| Р      | <20   | <20   | 1000            | 1000            | 1000                    |  |  |  |  |
| Pb     | <10   | <10   | 21              | 21              | 19                      |  |  |  |  |
| S      | <200  | <200  | 1700            | 1600            | 1700                    |  |  |  |  |
| Sb     | <1.0  | <1.0  | 1.1             | 1.1             | -                       |  |  |  |  |
| Se     | <10   | <10   | <10             | <10             | <10                     |  |  |  |  |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |  |  |  |  |
| Sr     | <5.0  | <5.0  | 61              | 63              | 64                      |  |  |  |  |
| Ti     | <10   | <10   | -               | -               | -                       |  |  |  |  |
| TI     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |  |  |  |  |
| U      | <10   | <10   | <10             | <10             | <10                     |  |  |  |  |
| V      | <10   | <10   | 71              | 78              | 84                      |  |  |  |  |
| Zn     | <15   | <15   | 140             | 140             | 130                     |  |  |  |  |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 18000           | 17000           | 20000                   |
| As     | <1.0  | <1.0  | 20              | 20              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 330             | 320             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 14000           | 14000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 13              | 13              | 12                      |
| Cr     | <20   | <20   | 32              | 31              | 36                      |
| Cu     | <5.0  | <5.0  | 32              | 31              | 31                      |
| Fe     | <50   | <50   | 35000           | 36000           | 35000                   |
| К      | <20   | <20   | 4400            | 4200            | 4900                    |

| Sample | Blank | Blank | MESS-3 | MESS-3 | MESS-3        |  |  |  |  |
|--------|-------|-------|--------|--------|---------------|--|--|--|--|
|        |       |       | Found  | Found  | Ex-<br>pected |  |  |  |  |
| As     | <1.0  | <1.0  | 19     | 20     | 18            |  |  |  |  |
| В      | <20   | <20   | -      | -      | -             |  |  |  |  |
| Ba     | <5.0  | <5.0  | 380    | 350    | 350           |  |  |  |  |
| Be     | <4.0  | <4.0  | <4.0   | <4.0   | <4.0          |  |  |  |  |
| Ca     | <100  | <100  | 14000  | 14000  | 14000         |  |  |  |  |
| Cd     | <1.0  | <1.0  | <1.0   | <1.0   | <1.0          |  |  |  |  |
| Co     | <5.0  | <5.0  | 13     | 13     | 12            |  |  |  |  |
| Cr     | <20   | <20   | 34     | 30     | 36            |  |  |  |  |
| Cu     | <5.0  | <5.0  | 33     | 32     | 31            |  |  |  |  |
| Fe     | 58    | <50   | 36000  | 36000  | 35000         |  |  |  |  |
| к      | <20   | <20   | 4500   | 4200   | 4900          |  |  |  |  |
| Mg     | <20   | <20   | 13000  | 13000  | 13000         |  |  |  |  |
| Mn     | 2.5   | <1.0  | 310    | 310    | 300           |  |  |  |  |
| Мо     | <2.0  | <2.0  | <2.0   | <2.0   | 2.1           |  |  |  |  |
| Na     | <75   | <75   | 11000  | 11000  | 11000         |  |  |  |  |
| Ni     | <5.0  | <5.0  | 38     | 37     | 37            |  |  |  |  |
| Р      | <20   | <20   | 1000   | 1000   | 1000          |  |  |  |  |
| Pb     | <10   | <10   | 21     | 22     | 19            |  |  |  |  |
| S      | <200  | <200  | 1600   | 1600   | 1700          |  |  |  |  |
| Sb     | <1.0  | <1.0  | 1.3    | 1.1    | -             |  |  |  |  |
| Se     | <10   | <10   | <10    | <10    | <10           |  |  |  |  |
| Sn     | <2.0  | <2.0  | <2.0   | <2.0   | <2.0          |  |  |  |  |
| Sr     | <5.0  | <5.0  | 67     | 62     | 64            |  |  |  |  |
| Ti     | <10   | <10   | -      | -      | -             |  |  |  |  |
| ТІ     | <1.0  | <1.0  | <1.0   | <1.0   | <1.0          |  |  |  |  |
| U      | <10   | <10   | <10    | <10    | <10           |  |  |  |  |
| V      | <10   | <10   | 84     | 74     | 84            |  |  |  |  |
| Zn     | <15   | <15   | 140    | 140    | 130           |  |  |  |  |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Ag     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| AI     | <50   | <50   | 19000           | 18000           | 20000                   |
| As     | 1.9   | <1.0  | 18              | 19              | 18                      |
| В      | <20   | <20   | -               | -               | -                       |
| Ba     | <5.0  | <5.0  | 370             | 370             | 350                     |
| Be     | <4.0  | <4.0  | <4.0            | <4.0            | <4.0                    |
| Ca     | <100  | <100  | 13000           | 13000           | 14000                   |
| Cd     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| Co     | <5.0  | <5.0  | 12              | 13              | 12                      |
| Cr     | <20   | <20   | 30              | 30              | 36                      |
| Cu     | <5.0  | <5.0  | 34              | 34              | 31                      |
| Fe     | <50   | <50   | 33000           | 34000           | 35000                   |
| к      | <20   | <20   | 3900            | 3900            | 4900                    |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Mg     | <20   | <20   | 13000           | 13000           | 13000                   |
| Mn     | <1.0  | <1.0  | 300             | 310             | 300                     |
| Мо     | <2.0  | <2.0  | <2.0            | <2.0            | 2.1                     |
| Na     | <75   | <75   | 11000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 36              | 37              | 37                      |
| Р      | <20   | <20   | 970             | 990             | 1000                    |
| Pb     | <10   | <10   | 22              | 22              | 19                      |
| S      | <200  | <200  | 1600            | 1600            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.2             | <1.0            | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 65              | 65              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| TI     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 81              | 79              | 84                      |
| Zn     | <15   | <15   | 140             | 140             | 130                     |

| Sample | Blank | Blank | MESS-3<br>Found | MESS-3<br>Found | MESS-3<br>Ex-<br>pected |
|--------|-------|-------|-----------------|-----------------|-------------------------|
| Mg     | <20   | <20   | 14000           | 14000           | 13000                   |
| Mn     | <1.0  | <1.0  | 310             | 320             | 300                     |
| Мо     | <2.0  | <2.0  | 2.2             | 2.1             | 2.1                     |
| Na     | <75   | <75   | 11000           | 11000           | 11000                   |
| Ni     | <5.0  | <5.0  | 36              | 36              | 37                      |
| Р      | <20   | <20   | 890             | 940             | 1000                    |
| Pb     | <10   | <10   | 17              | 18              | 19                      |
| S      | <200  | <200  | 1400            | 1400            | 1700                    |
| Sb     | <1.0  | <1.0  | 1.1             | 1.0             | -                       |
| Se     | <10   | <10   | <10             | <10             | <10                     |
| Sn     | <2.0  | <2.0  | <2.0            | <2.0            | <2.0                    |
| Sr     | <5.0  | <5.0  | 61              | 62              | 64                      |
| Ti     | <10   | <10   | -               | -               | -                       |
| ТІ     | <1.0  | <1.0  | <1.0            | <1.0            | <1.0                    |
| U      | <10   | <10   | <10             | <10             | <10                     |
| V      | <10   | <10   | 82              | 81              | 84                      |
| Zn     | <15   | <15   | 110             | 120             | 130                     |

Duplicates:

| ASU<br>Sam<br>ple | Ag   | AI   | As   | As<br>%CV | в   | Ва  | Ве   | Ca   | Cd   | Co   | Cr  | Cu  | Fe   | к    | Mg   | Mn   | Мо   | Na  | Ni   | Р    | Pb  | s    | Sb   | Se  | Sn   | Sr   | Ti   | ті   | U   | v   | Zn  |
|-------------------|------|------|------|-----------|-----|-----|------|------|------|------|-----|-----|------|------|------|------|------|-----|------|------|-----|------|------|-----|------|------|------|------|-----|-----|-----|
| 4                 | <2.0 | 2300 | 190  | 3.8       | <20 | 210 | <4.0 | 7100 | <1.0 | 16   | 58  | 34  | 3100 | 4100 | 1300 | 470  | <2.0 | 670 | 36   | 490  | 26  | 760  | 27   | <10 | <2.0 | 35   | 1200 | <1.0 | <10 | 59  | 80  |
| 4                 | <2.0 | 2400 | 180  |           | <20 | 210 | <4.0 | 6300 | <1.0 | 16   | 58  | 34  | 3100 | 4200 | 1300 | 470  | <2.0 | 710 | 36   | 490  | 27  | 660  | 25   | <10 | <2.0 | 36   | 1300 | <1.0 | <10 | 59  | 82  |
| 20                | <2.0 | 6000 | 2500 | 2.9       | 23  | 88  | <4.0 | 2900 | <1.0 | 5.4  | <20 | 45  | 9700 | 610  | 5500 | 250  | 15   | 540 | 16   | 770  | 39  | 2200 | 230  | <10 | <2.0 | 54   | 150  | <1.0 | <10 | 18  | 88  |
| 20                | <2.0 | 5700 | 2400 |           | 23  | 85  | <4.0 | 2900 | <1.0 | 5.2  | <20 | 44  | 9500 | 640  | 5300 | 240  | 15   | 540 | 15   | 750  | 39  | 2200 | 220  | <10 | <2.0 | 53   | 140  | <1.0 | <10 | 18  | 87  |
| 30                | <2.0 | 2000 | 260  | 5.7       | <20 | 180 | <4.0 | 5500 | <1.0 | 13   | 44  | 22  | 2600 | 3400 | 8600 | 350  | <2.0 | 330 | 26   | 430  | 11  | <200 | 3.0  | <10 | <2.0 | 39   | 970  | <1.0 | <10 | 51  | 53  |
| 30                | <2.0 | 1900 | 240  |           | <20 | 180 | <4.0 | 5200 | <1.0 | 12   | 42  | 21  | 2500 | 3300 | 8100 | 320  | <2.0 | 310 | 24   | 400  | 12  | <200 | 2.9  | <10 | <2.0 | 37   | 900  | <1.0 | <10 | 48  | 50  |
| 32                | <2.0 | 2300 | 1500 | 4.6       | <20 | 200 | <4.0 | 1600 | <1.0 | 20   | 52  | 210 | 3100 | 4500 | 1200 | 370  | <2.0 | 620 | 64   | 560  | 15  | 4000 | 120  | <10 | <2.0 | 48   | 1100 | <1.0 | <10 | 55  | 72  |
| 32                | <2.0 | 2400 | 1600 |           | <20 | 200 | <4.0 | 1700 | <1.0 | 21   | 54  | 210 | 3200 | 4500 | 1200 | 390  | <2.0 | 640 | 67   | 580  | 15  | 4200 | 120  | <10 | <2.0 | 50   | 1100 | <1.0 | <10 | 56  | 75  |
| 55                | <2.0 | 1200 | 16   | 4.6       | <20 | 90  | <4.0 | 2800 | <1.0 | 9.3  | 33  | 24  | 1800 | 2100 | 6300 | 220  | <2.0 | 340 | 22   | 420  | <10 | <200 | 1.0  | <10 | <2.0 | 16   | 700  | <1.0 | <10 | 32  | 32  |
| 55                | <2.0 | 1100 | 15   |           | <20 | 86  | <4.0 | 2500 | <1.0 | 8.6  | 30  | 23  | 1600 | 2000 | 5500 | 210  | <2.0 | 300 | 20   | 370  | <10 | <200 | <1.0 | <10 | <2.0 | 15   | 620  | <1.0 | <10 | 29  | 30  |
| 64                | <2.0 | 2900 | 1400 | 0         | <20 | 200 | <4.0 | 9400 | <1.0 | 57   | 72  | 46  | 4500 | 450  | 1100 | 1600 | <2.0 | 140 | 46   | 480  | 18  | 370  | 18   | <10 | <2.0 | 24   | 930  | <1.0 | <10 | 110 | 120 |
| 64                | <2.0 | 2800 | 1400 |           | <20 | 200 | <4.0 | 9100 | <1.0 | 55   | 70  | 45  | 4400 | 390  | 1100 | 1600 | <2.0 | 120 | 45   | 430  | 18  | 510  | 18   | <10 | <2.0 | 23   | 920  | <1.0 | <10 | 100 | 120 |
| 71                | <2.0 | 1100 | 1400 | 5.2       | <20 | 33  | <4.0 | 870  | <1.0 | 5.7  | 37  | 12  | 1300 | 460  | 3800 | 96   | <2.0 | 120 | 12   | 190  | 16  | 200  | 46   | <10 | <2.0 | <5.0 | 520  | <1.0 | <10 | 34  | 23  |
| 71                | <2.0 | 1100 | 1300 |           | <20 | 34  | <4.0 | 910  | <1.0 | 5.9  | 37  | 12  | 1300 | 460  | 3900 | 100  | <2.0 | 120 | 12   | 200  | 16  | 220  | 47   | <10 | <2.0 | <5.0 | 570  | <1.0 | <10 | 35  | 25  |
| 92                | <2.0 | 2500 | 1600 | 4.3       | <20 | 110 | <4.0 | 2500 | 2.8  | 40   | 130 | 130 | 4800 | 350  | 1000 | 2500 | <2.0 | 76  | 44   | 1800 | 37  | 1100 | 56   | <10 | <2.0 | 8.4  | 1000 | <1.0 | <10 | 110 | 220 |
| 92                | <2.0 | 2600 | 1700 |           | <20 | 110 | <4.0 | 2500 | 2.8  | 41   | 130 | 130 | 4900 | 370  | 1100 | 2600 | <2.0 | 78  | 45   | 1900 | 37  | 1200 | 58   | <10 | <2.0 | 8.6  | 1000 | <1.0 | <10 | 110 | 230 |
| 105               | <2.0 | 2300 | 180  | 0         | <20 | 210 | <4.0 | 6800 | <1.0 | 16   | 53  | 30  | 3300 | 4300 | 1200 | 440  | <2.0 | 590 | 32   | 610  | 13  | 200  | 2.3  | <10 | <2.0 | 34   | 1100 | <1.0 | <10 | 58  | 66  |
| 105               | <2.0 | 2200 | 180  |           | <20 | 210 | <4.0 | 6700 | <1.0 | 15   | 53  | 29  | 3300 | 4200 | 1200 | 420  | <2.0 | 570 | 31   | 600  | 13  | <200 | 2.1  | <10 | <2.0 | 33   | 1100 | <1.0 | <10 | 57  | 66  |
| 118               | 2.6  | 1600 | 1000 | 0.7       | <20 | 81  | <4.0 | 6900 | 1.0  | 30   | 41  | 170 | 3500 | 1600 | 1000 | 330  | <2.0 | 510 | 55   | 690  | 120 | 1600 | 160  | <10 | <2.0 | 46   | 600  | <1.0 | <10 | 45  | 240 |
| 118               | 2.4  | 1600 | 990  |           | <20 | 76  | <4.0 | 6700 | 1.0  | 30   | 40  | 160 | 3400 | 1600 | 9700 | 310  | <2.0 | 490 | 55   | 670  | 110 | 1500 | 160  | <10 | <2.0 | 44   | 560  | <1.0 | <10 | 43  | 240 |
| 135               | <2.0 | 2700 | 23   | 9.9       | 22  | 260 | <4.0 | 7100 | <1.0 | 15   | 50  | 29  | 3500 | 4800 | 1200 | 390  | <2.0 | 700 | 30   | 530  | 15  | <200 | <1.0 | <10 | <2.0 | 63   | 1200 | <1.0 | <10 | 58  | 68  |
| 135               | <2.0 | 2600 | 20   |           | 21  | 260 | <4.0 | 8500 | <1.0 | 14   | 49  | 28  | 3400 | 4700 | 1200 | 380  | <2.0 | 670 | 29   | 510  | 14  | <200 | <1.0 | <10 | <2.0 | 61   | 1100 | <1.0 | <10 | 57  | 65  |
| 148               | <2.0 | 2900 | 4600 | 14        | <20 | 84  | <4.0 | 3900 | <1.0 | 32   | 24  | 49  | 5100 | 430  | 5400 | 450  | <2.0 | 150 | 38   | 520  | 14  | 520  | 20   | <10 | <2.0 | 14   | 890  | <1.0 | <10 | 130 | 78  |
| 148               | <2.0 | 3600 | 5600 |           | <20 | 100 | <4.0 | 5000 | <1.0 | 39   | 30  | 61  | 6300 | 480  | 6300 | 550  | <2.0 | 190 | 46   | 660  | 16  | 620  | 27   | <10 | <2.0 | 19   | 1200 | <1.0 | <10 | 150 | 96  |
| 152               | <2.0 | 1600 | 180  | 0         | <20 | 160 | <4.0 | 8100 | <1.0 | 10   | 35  | 22  | 2200 | 2600 | 7000 | 250  | <2.0 | 360 | 22   | 480  | 12  | 670  | 12   | <10 | <2.0 | 48   | 720  | <1.0 | <10 | 40  | 45  |
| 152               | <2.0 | 1600 | 180  |           | <20 | 160 | <4.0 | 8400 | <1.0 | 10   | 35  | 22  | 2300 | 2600 | 7200 | 250  | <2.0 | 370 | 22   | 490  | 12  | 670  | 13   | <10 | <2.0 | 49   | 720  | <1.0 | <10 | 41  | 45  |
| 165               | <2.0 | 3300 | 120  | 0         | <20 | 72  | <4.0 | 1900 | <1.0 | <5.0 | <20 | 11  | 4900 | 250  | 1300 | 50   | 2.9  | 240 | <5.0 | 530  | <10 | 5200 | 7.5  | <10 | <2.0 | 79   | 100  | <1.0 | <10 | <10 | <15 |

| ASU<br>Sam<br>ple | Ag   | AI   | As  | As<br>%CV | в   | Ва  | Ве   | Ca   | Cd   | Co   | Cr  | Cu  | Fe   | к    | Mg   | Mn   | Мо   | Na  | Ni   | Р    | Pb  | s    | Sb   | Se  | Sn   | Sr  | ті   | ті   | U   | v   | Zn  |
|-------------------|------|------|-----|-----------|-----|-----|------|------|------|------|-----|-----|------|------|------|------|------|-----|------|------|-----|------|------|-----|------|-----|------|------|-----|-----|-----|
| 165               | <2.0 | 3300 | 120 |           | <20 | 72  | <4.0 | 1900 | <1.0 | <5.0 | <20 | 11  | 4800 | 250  | 1300 | 50   | 2.9  | 240 | <5.0 | 520  | <10 | 5200 | 7.8  | <10 | <2.0 | 80  | 100  | <1.0 | <10 | <10 | <15 |
| 178               | <2.0 | 9700 | 22  | 3.3       | <20 | 68  | <4.0 | 2400 | <1.0 | 8.1  | 32  | 21  | 1500 | 1600 | 5100 | 170  | <2.0 | 210 | 20   | 430  | <10 | <200 | <1.0 | <10 | <2.0 | 9.0 | 540  | <1.0 | <10 | 27  | 31  |
| 178               | <2.0 | 9600 | 21  |           | <20 | 67  | <4.0 | 2300 | <1.0 | 7.9  | 32  | 20  | 1400 | 1600 | 4900 | 170  | <2.0 | 200 | 19   | 410  | <10 | <200 | <1.0 | <10 | <2.0 | 9.2 | 550  | <1.0 | <10 | 27  | 30  |
| 191               | <2.0 | 1300 | 530 | 8.8       | <20 | 110 | <4.0 | 1900 | <1.0 | 9.6  | 34  | 17  | 1900 | 440  | 4900 | 230  | <2.0 | 92  | 20   | 590  | 15  | <200 | 18   | <10 | <2.0 | 9.8 | 590  | <1.0 | <10 | 43  | 55  |
| 191               | <2.0 | 1300 | 600 |           | <20 | 130 | <4.0 | 2200 | <1.0 | 10   | 36  | 19  | 1800 | 460  | 4200 | 250  | <2.0 | 110 | 20   | 680  | 17  | 300  | 22   | <10 | <2.0 | 12  | 600  | <1.0 | <10 | 42  | 58  |
| 204               | <2.0 | 1800 | 67  | 1.1       | <20 | 73  | <4.0 | 3500 | <1.0 | <5.0 | <20 | 17  | 2800 | 770  | 3800 | 1000 | <2.0 | 120 | 6.1  | 740  | 13  | 2200 | 84   | <10 | <2.0 | 67  | 31   | <1.0 | <10 | <10 | 48  |
| 204               | <2.0 | 1900 | 68  |           | <20 | 74  | <4.0 | 3600 | <1.0 | <5.0 | <20 | 17  | 2800 | 760  | 3900 | 1100 | <2.0 | 120 | 6.3  | 740  | 13  | 2300 | 86   | <10 | <2.0 | 68  | 33   | <1.0 | <10 | <10 | 48  |
| 209               | <2.0 | 1100 | 730 | 5         | <20 | 150 | <4.0 | 7200 | 1.3  | 14   | 31  | 56  | 2300 | 360  | 4700 | 360  | <2.0 | <75 | 28   | 1000 | 48  | 1700 | 120  | <10 | <2.0 | 13  | 940  | <1.0 | <10 | 53  | 130 |
| 209               | <2.0 | 1400 | 680 |           | <20 | 150 | <4.0 | 7200 | 1.4  | 17   | 42  | 52  | 3000 | 350  | 6800 | 480  | <2.0 | <75 | 31   | 990  | 45  | 1600 | 120  | <10 | <2.0 | 12  | 1300 | <1.0 | <10 | 67  | 140 |
| 216               | <2.0 | 1300 | 610 | 8.6       | <20 | 300 | <4.0 | 6400 | <1.0 | 45   | 40  | 51  | 2200 | 670  | 3700 | 6300 | <2.0 | 130 | 23   | 1300 | 19  | 420  | 15   | <10 | <2.0 | 16  | 520  | 5.0  | <10 | 56  | 69  |
| 216               | <2.0 | 1300 | 540 |           | <20 | 270 | <4.0 | 5600 | <1.0 | 40   | 41  | 46  | 2200 | 600  | 4200 | 5600 | <2.0 | 120 | 24   | 1200 | 18  | 380  | 14   | <10 | <2.0 | 15  | 480  | 4.2  | <10 | 53  | 65  |
| 222               | <2.0 | 3800 | 220 | 0         | <20 | 100 | <4.0 | 2400 | <1.0 | 7.8  | <20 | 19  | 5400 | 860  | 3700 | 600  | <2.0 | 180 | 12   | 780  | <10 | 2300 | 14   | <10 | <2.0 | 75  | 130  | <1.0 | <10 | 18  | 22  |
| 222               | <2.0 | 4000 | 220 |           | <20 | 100 | <4.0 | 2600 | <1.0 | 7.8  | <20 | 20  | 5500 | 900  | 3900 | 620  | 2.2  | 200 | 13   | 850  | <10 | 2400 | 16   | <10 | <2.0 | 81  | 140  | <1.0 | <10 | 19  | 23  |
| 228               | <2.0 | 9100 | 390 | 7.6       | <20 | 250 | <4.0 | 1400 | <1.0 | 15   | 22  | 32  | 1300 | 420  | 2500 | 460  | <2.0 | 130 | 14   | 820  | <10 | 1200 | 8.0  | <10 | <2.0 | 47  | 180  | <1.0 | <10 | 20  | 17  |
| 228               | <2.0 | 8800 | 350 |           | <20 | 220 | <4.0 | 1300 | <1.0 | 11   | 22  | 30  | 1300 | 410  | 2600 | 320  | <2.0 | 120 | 14   | 780  | <10 | 1100 | 6.8  | <10 | <2.0 | 43  | 230  | <1.0 | <10 | 28  | <15 |
| 233               | <2.0 | 2800 | 730 | 2.9       | <20 | 100 | <4.0 | 4800 | 2.1  | 31   | 21  | 200 | 7000 | 290  | 9500 | 1600 | <2.0 | 140 | 27   | 1300 | 26  | 660  | 29   | <10 | <2.0 | 30  | 1300 | <1.0 | <10 | 160 | 180 |
| 233               | <2.0 | 2800 | 760 |           | <20 | 110 | <4.0 | 4400 | 2.1  | 32   | 21  | 200 | 7200 | 300  | 9900 | 1600 | <2.0 | 120 | 28   | 1400 | 28  | 660  | 30   | <10 | <2.0 | 28  | 1100 | <1.0 | <10 | 160 | 190 |
| 240               | <2.0 | 2800 | 47  | 6.3       | <20 | 56  | <4.0 | 1100 | <1.0 | <5.0 | <20 | 18  | 6200 | 350  | 1300 | 74   | <2.0 | 130 | 9.8  | 280  | <10 | 9700 | 2.9  | <10 | <2.0 | 26  | 76   | <1.0 | <10 | <10 | 38  |
| 240               | <2.0 | 2800 | 43  |           | <20 | 56  | <4.0 | 1100 | <1.0 | <5.0 | <20 | 18  | 6300 | 350  | 1300 | 74   | <2.0 | 130 | 9.8  | 280  | <10 | 9700 | 2.9  | <10 | <2.0 | 26  | 76   | <1.0 | <10 | <10 | 38  |
| 246               | <2.0 | 8000 | 41  | 8.1       | <20 | 98  | <4.0 | 2500 | <1.0 | 6.4  | 21  | 25  | 1300 | 720  | 4700 | 850  | <2.0 | 180 | 17   | 490  | <10 | 1600 | 3.1  | <10 | <2.0 | 45  | 330  | <1.0 | <10 | 23  | 20  |
| 246               | <2.0 | 8700 | 46  |           | <20 | 96  | <4.0 | 2400 | <1.0 | 7.4  | 23  | 26  | 1500 | 740  | 5200 | 910  | <2.0 | 180 | 18   | 490  | <10 | 1500 | 2.6  | <10 | <2.0 | 43  | 390  | <1.0 | <10 | 26  | 22  |
| 252               | <2.0 | 1400 | 26  | 2.7       | <20 | 97  | <4.0 | 4100 | <1.0 | 12   | 43  | 33  | 2100 | 2500 | 6900 | 260  | <2.0 | 350 | 30   | 560  | <10 | 240  | 1.4  | <10 | <2.0 | 20  | 810  | <1.0 | <10 | 39  | 45  |
| 252               | <2.0 | 1500 | 27  |           | <20 | 100 | <4.0 | 4200 | <1.0 | 13   | 44  | 34  | 2100 | 2600 | 7000 | 270  | <2.0 | 350 | 30   | 570  | <10 | 220  | 1.5  | <10 | <2.0 | 21  | 820  | <1.0 | <10 | 40  | 46  |
| 265               | <2.0 | 4100 | 50  | 2.8       | <20 | 100 | <4.0 | 1400 | 1.4  | <5.0 | <20 | 30  | 6000 | 330  | 860  | 120  | <2.0 | <75 | 14   | 1400 | <10 | 2000 | 17   | <10 | <2.0 | 17  | 140  | <1.0 | <10 | <10 | 44  |
| 265               | <2.0 | 4300 | 52  |           | <20 | 97  | <4.0 | 1400 | 1.3  | <5.0 | <20 | 33  | 6400 | 340  | 910  | 120  | <2.0 | <75 | 15   | 1300 | <10 | 2100 | 17   | <10 | <2.0 | 18  | 140  | <1.0 | <10 | <10 | 43  |
| 278               | <2.0 | 1700 | 14  | 0         | <20 | 150 | <4.0 | 3800 | <1.0 | 14   | 55  | 31  | 2800 | 3500 | 9700 | 330  | <2.0 | 420 | 34   | 550  | 11  | <200 | <1.0 | <10 | <2.0 | 19  | 1100 | <1.0 | <10 | 50  | 58  |
| 278               | <2.0 | 1800 | 14  |           | <20 | 150 | <4.0 | 3900 | <1.0 | 14   | 55  | 31  | 2800 | 3500 | 1000 | 340  | <2.0 | 450 | 34   | 540  | 11  | <200 | <1.0 | <10 | <2.0 | 20  | 1100 | <1.0 | <10 | 50  | 59  |
| 291               | <2.0 | 3400 | 51  | 1.4       | <20 | 54  | <4.0 | 3300 | <1.0 | 24   | 130 | 86  | 4400 | 320  | 2200 | 530  | <2.0 | 76  | 70   | 1100 | 11  | 940  | 3.3  | <10 | <2.0 | 10  | 1500 | <1.0 | <10 | 120 | 120 |
| 291               | <2.0 | 3400 | 52  |           | <20 | 54  | <4.0 | 3300 | <1.0 | 25   | 130 | 86  | 4500 | 310  | 2200 | 540  | <2.0 | <75 | 70   | 1100 | 12  | 940  | 3.7  | <10 | <2.0 | 10  | 1600 | <1.0 | <10 | 120 | 120 |
| 304               | <2.0 | 2200 | 11  | 26        | <20 | 230 | <4.0 | 1400 | <1.0 | 16   | 55  | 35  | 3400 | 4300 | 1400 | 510  | <2.0 | 700 | 34   | 460  | 13  | <200 | <1.0 | <10 | <2.0 | 32  | 1200 | <1.0 | <10 | 60  | 63  |
| 304               | <2.0 | 2200 | 16  |           | <20 | 230 | <4.0 | 1700 | <1.0 | 17   | 55  | 35  | 3500 | 4300 | 1500 | 610  | <2.0 | 690 | 34   | 480  | 13  | <200 | <1.0 | <10 | <2.0 | 32  | 1200 | <1.0 | <10 | 61  | 64  |
| 327               | <2.0 | 9500 | 940 | 2.3       | <20 | 200 | <4.0 | 1900 | 1.3  | 19   | 34  | 54  | 2100 | 760  | 6600 | 1400 | <2.0 | 130 | 34   | 830  | 62  | 1700 | 140  | <10 | <2.0 | 33  | 440  | <1.0 | <10 | 35  | 200 |
| 327               | <2.0 | 9200 | 910 |           | <20 | 180 | <4.0 | 1800 | 1.3  | 18   | 32  | 51  | 2000 | 720  | 6300 | 1300 | <2.0 | 120 | 32   | 780  | 60  | 1600 | 130  | <10 | <2.0 | 30  | 420  | <1.0 | <10 | 33  | 200 |
| 340               | <2.0 | 1300 | 210 | 0         | <20 | 94  | <4.0 | 5000 | <1.0 | 6.8  | 28  | 13  | 1500 | 1600 | 5800 | 260  | <2.0 | 230 | 15   | 390  | <10 | 460  | 4.4  | <10 | <2.0 | 24  | 620  | <1.0 | <10 | 30  | 32  |
| 340               | <2.0 | 1300 | 210 |           | <20 | 94  | <4.0 | 5200 | <1.0 | 7.1  | 28  | 13  | 1500 | 1600 | 5900 | 260  | <2.0 | 230 | 15   | 420  | <10 | 480  | 4.8  | <10 | <2.0 | 24  | 620  | <1.0 | <10 | 30  | 34  |
| 359               | <2.0 | 2000 | 76  | 0         | <20 | 86  | <4.0 | 5400 | <1.0 | 17   | 57  | 40  | 3200 | 1100 | 1400 | 510  | <2.0 | 250 | 36   | 370  | <10 | <200 | 1.0  | <10 | <2.0 | 12  | 770  | <1.0 | <10 | 61  | 44  |
| 359               | <2.0 | 1900 | 76  |           | <20 | 85  | <4.0 | 6000 | <1.0 | 16   | 58  | 40  | 3200 | 1100 | 1400 | 500  | <2.0 | 250 | 35   | 360  | <10 | <200 | 1.1  | <10 | <2.0 | 13  | 800  | <1.0 | <10 | 64  | 43  |
# Appendix IV: Au ICP-MS QA/QC

All units are  $\mu g/g.$ 

Duplicates:

| Sample (ASU) | Au    | Mean  | Standard Deviation | %CV   |
|--------------|-------|-------|--------------------|-------|
| Sample 4     | 0.28  | 0.2   | 0.11               | 56.57 |
| Sample 4     | 0.12  | -     | -                  | -     |
| Sample 20    | 0.94  | 0.92  | 0.03               | 3.07  |
| Sample 20    | 0.90  | -     | -                  | -     |
| Sample 32    | 0.74  | 0.74  | 0.01               | 0.96  |
| Sample 32    | 0.73  | -     | -                  | -     |
| Sample 55    | <0.01 | <0.01 | 0                  | 0     |
| Sample 55    | <0.01 | -     | -                  | -     |
| Sample 64    | 0.036 | 0.03  | 0.01               | 37.22 |
| Sample 64    | 0.021 | -     | -                  | -     |
| Sample 71    | 0.18  | 0.15  | 0.04               | 28.28 |
| Sample 71    | 0.12  | -     | -                  | -     |
| Sample 92    | 0.18  | 0.18  | 0                  | 0     |
| Sample 92    | 0.18  | -     | -                  | -     |
| Sample 105   | <0.01 | <0.01 | 0                  | 0     |
| Sample 105   | <0.01 | -     | -                  | -     |
| Sample 118   | 2.5   | 2.35  | 0.21               | 9.03  |
| Sample 118   | 2.2   | -     | -                  | -     |
| Sample 135   | <0.01 | <0.01 | 0                  | 0     |
| Sample 135   | <0.01 | -     | -                  | -     |
| Sample 148   | 0.041 | 0.05  | 0.01               | 15.37 |
| Sample 148   | 0.051 | -     | -                  | -     |
| Sample 152   | 0.083 | 0.07  | 0.01               | 16.14 |
| Sample 152   | 0.066 | -     | -                  | -     |
| Sample 165   | 0.035 | 0.04  | 0.01               | 17.68 |
| Sample 165   | 0.045 | -     | -                  | -     |
| Sample 178   | 0.014 | 0.01  | 0                  | 5.24  |
| Sample 178   | 0.013 | -     | -                  | -     |
| Sample 191   | 0.081 | 0.1   | 0.03               | 27.44 |
| Sample 191   | 0.12  | -     | -                  | -     |
| Sample 204   | 0.25  | 0.27  | 0.03               | 10.48 |
| Sample 204   | 0.29  | -     | -                  | -     |
| Sample 209   | 0.39  | 0.39  | 0.01               | 1.84  |
| Sample 209   | 0.38  | -     | -                  | -     |
| Sample 216   | 0.064 | 0.06  | 0                  | 6.96  |
| Sample 216   | 0.058 | -     | -                  | -     |
| Sample 222   | 0.11  | 0.11  | 0.01               | 6.73  |

| Sample (ASU) | Au    | Mean  | Standard Deviation | %CV   |
|--------------|-------|-------|--------------------|-------|
| Sample 222   | 0.10  | -     | -                  | -     |
| Sample 228   | 0.016 | 0.01  | 0                  | 14.63 |
| Sample 228   | 0.013 | -     | -                  | -     |
| Sample 233   | 0.052 | 0.06  | 0                  | 7.71  |
| Sample 233   | 0.058 | -     | -                  | -     |
| Sample 240   | <0.01 | <0.01 | 0                  | 0     |
| Sample 240   | <0.01 | -     | -                  | -     |
| Sample 246   | <0.01 | <0.01 | 0                  | 0     |
| Sample 246   | <0.01 | -     | -                  | -     |
| Sample 252   | <0.01 | <0.01 | 0                  | 0     |
| Sample 252   | <0.01 | -     | -                  | -     |
| Sample 265   | 0.046 | 0.04  | 0                  | 8.13  |
| Sample 265   | 0.041 | -     | -                  | -     |
| Sample 278   | <0.01 | <0.01 | 0                  | 0     |
| Sample 278   | <0.01 | -     | -                  | -     |
| Sample 291   | <0.01 | <0.01 | 0                  | 0     |
| Sample 291   | <0.01 | -     | -                  | -     |
| Sample 304   | <0.01 | <0.01 | 0                  | 0     |
| Sample 304   | <0.01 | -     | -                  | -     |
| Sample 327   | 0.64  | 0.69  | 0.07               | 10.25 |
| Sample 327   | 0.74  | -     | -                  | -     |
| Sample 340   | 0.028 | 0.03  | 0                  | 7.19  |
| Sample 340   | 0.031 | -     | -                  | -     |
| Sample 359   | 0.031 | 0.03  | 0                  | 2.32  |
| Sample 359   | 0.030 | -     | -                  | -     |

Standards and blanks:

| Sample | Au    |
|--------|-------|
| Blank  | <0.01 |

| Sample      | Au    |
|-------------|-------|
| Control 2   | 0.023 |
| Control 2   | 0.025 |
| Control 2   | 0.025 |
| Control 2   | 0.025 |
| Control 2   | 0.024 |
| Control 2   | 0.025 |
| Control 2   | 0.026 |
| Control 2   | 0.025 |
| Control 2   | 0.025 |
| Control 2   | 0.026 |
| Control 2   | 0.025 |
| Control 2   | 0.026 |
| Control 2   | 0.027 |
| Control 2   | 0.021 |
| Control 2   | 0.027 |
|             |       |
| DS-1 Target | 28    |

| Sample           | Au    |
|------------------|-------|
| Blank            | <0.01 |
|                  |       |
| Control Target 1 | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
| Control 1        | 0     |
|                  |       |
| Control Target 2 | 0.03  |
| Control 2        | 0.026 |
| Control 2        | 0.027 |
| Control 2        | 0.028 |
| Control 2        | 0.027 |
| Control 2        | 0.027 |
| Control 2        | 0.027 |
| Control 2        | 0.025 |
| Control 2        | 0.024 |
| Control 2        | 0.024 |
| Control 2        | 0.024 |

| Sample | Au |
|--------|----|
| DS-1   | 32 |
| DS-1   | 33 |
| DS-1   | 28 |
| DS-1   | 29 |
| DS-1   | 26 |
| DS-1   | 24 |
| DS-1   | 24 |
| DS-1   | 24 |
| DS-1   | 31 |
| DS-1   | 29 |
| DS-1   | 30 |
| DS-1   | 29 |
| DS-1   | 31 |
| DS-1   | 29 |
| DS-1   | 30 |
| DS-1   | 31 |
| DS-1   | 20 |
|        | 23 |
| D3-1   | 32 |
| DS-1   | 32 |
| DS-1   | 32 |
| DS-1   | 23 |
| DS-1   | 24 |
| DS-1   | 23 |
| DS-1   | 29 |
| DS-1   | 28 |
| DS-1   | 29 |
| DS-1   | 28 |
| DS-1   | 33 |
| DS-1   | 32 |
| DS-1   | 29 |
| DS-1   | 29 |
|        |    |

## Appendix V: Carbon QA/QC

All units are percentages.

Duplicates:

| Sample (ASU) | Carbon % | Carbon % | Carbon % | Carbon % | Standard<br>Deviation | Mean  | %CV    |
|--------------|----------|----------|----------|----------|-----------------------|-------|--------|
| Sample 7*    | <1.0     | <1.0     |          |          | 0                     | <1.0  | 0      |
| Sample 23*   | 26.6     | 26.3     |          |          | 0.21                  | 26.45 | 0.8    |
| Sample 24*   | 21.5     | 22.3     |          |          | 0.57                  | 21.9  | 2.58   |
| Sample 25*   | 1.6      | 1.9      |          |          | 0.21                  | 1.75  | 12.12  |
| Sample 26*   | <1.0     | <1.0     |          |          | 0                     | <1.0  | 0      |
| Sample 27*   | 6.6      | 6.8      |          |          | 0.14                  | 6.7   | 2.11   |
| Sample 28*   | 4.7      | 5.0      |          |          | 0.21                  | 4.85  | 4.37   |
| Sample 29*   | 2.5      | 2.6      |          |          | 0.07                  | 2.55  | 2.77   |
| Sample 34*   | <1.0     | <1.0     |          |          | 0                     | <1.0  | 0      |
| Sample 38*   | 31.6     | 29.6     |          |          | 1.41                  | 30.6  | 4.62   |
| Sample 39*   | 33.8     | 30.3     |          |          | 2.47                  | 32.05 | 7.72   |
| Sample 40*   | 7.8      | 8.2      |          |          | 0.28                  | 8     | 3.54   |
| Sample 59*   | <1.0     | <1.0     |          |          | 0                     | <1.0  | 0      |
| Sample 61*   | 30.1     | 29.3     |          |          | 0.57                  | 29.7  | 1.9    |
| Sample 62*   | 5.3      | 5.7      | 8.8      | 9.0      | 1.97                  | 7.2   | 27.38  |
| Sample 67*   | 14.0     | 14.8     |          |          | 0.57                  | 14.4  | 3.93   |
| Sample 72*   | 2.2      | 2.2      | 2.1      |          | 0.06                  | 2.17  | 2.66   |
| Sample 73*   | 23.6     | 3.0      |          |          | 14.57                 | 13.3  | 109.52 |
| Sample 97*   | 5.3      | 5.3      |          |          | 0                     | 5.3   | 0      |
| Sample 103*  | 40.8     | 41.6     |          |          | 0.57                  | 41.2  | 1.37   |
| Sample 108*  | 9.7      | 10.7     |          |          | 0.71                  | 10.2  | 6.93   |
| Sample 115*  | 32.7     | 32.6     |          |          | 0.07                  | 32.65 | 0.22   |
| Sample 119*  | 3.5      | 3.6      |          |          | 0.07                  | 3.55  | 1.99   |
| Sample 123*  | 1.9      | 2.1      |          |          | 0.14                  | 2     | 7.07   |
| Sample 143*  | 15.8     | 15.1     |          |          | 0.49                  | 15.45 | 3.2    |
| Sample 149*  | 5.7      | 5.2      |          |          | 0.35                  | 5.45  | 6.49   |
| Sample 168*  | 34.0     | 35.6     |          |          | 1.13                  | 34.8  | 3.25   |
| Sample 169*  | 6.6      | 7.6      |          |          | 0.71                  | 7.1   | 9.96   |
| Sample 192*  | 2.2      | 2.6      |          |          | 0.28                  | 2.4   | 11.79  |
| Sample 197*  | 12.7     | 11.3     |          |          | 0.99                  | 12    | 8.25   |
| Sample 201*  | 4.7      | 5.1      |          |          | 0.28                  | 4.9   | 5.77   |
| Sample 210*  | 9.8      | 10.3     |          |          | 0.35                  | 10.05 | 3.52   |
| Sample 223*  | 15.7     | 16.8     |          |          | 0.78                  | 16.25 | 4.79   |
| Sample 239*  | 40.2     | 40.0     |          |          | 0.14                  | 40.1  | 0.35   |
| Sample 245*  | 33.2     | 4.0      |          |          | 20.65                 | 18.6  | 111.01 |
| Sample 247*  | 3.4      | 3.8      |          |          | 0.28                  | 3.6   | 7.86   |
| Sample 254*  | 27.6     | 27.7     |          |          | 0.07                  | 27.65 | 0.26   |

| Sample (ASU) | Carbon % | Carbon % | Carbon % | Carbon % | Standard<br>Deviation | Mean | %CV  |
|--------------|----------|----------|----------|----------|-----------------------|------|------|
| Sample 274*  | 3.1      | 3.2      |          |          | 0.07                  | 3.15 | 2.24 |
| Sample 280*  | 14.5     | 15.7     |          |          | 0.85                  | 15.1 | 5.62 |
| Sample 288*  | 8.7      | 9.1      |          |          | 0.28                  | 8.9  | 3.18 |
| Sample 303*  | <1.0     | <1.0     |          |          | 0                     | <1.0 | 0    |
| Sample 308*  | <1.0     | <1.0     |          |          | 0                     | <1.0 | 0    |
| Sample 319*  | 18.1     | 18.1     |          |          | 0                     | 18.1 | 0    |
| Sample 323*  | 15.7     | 16.1     |          |          | 0.28                  | 15.9 | 1.78 |
| Sample 330*  | <1.0     | <1.0     |          |          | 0                     | <1.0 | 0    |
| Sample 335*  | 3.5      | 3.3      |          |          | 0.14                  | 3.4  | 4.16 |
| Sample 348*  | <1.0     | <1.0     |          |          | 0                     | <1.0 | 0    |
| Sample 356*  | 8.4      | 7.9      |          |          | 0.35                  | 8.15 | 4.34 |
| Sample 359*  | <1.0     | <1.0     |          |          | 0                     | <1.0 | 0    |

Standards and blanks:

| Sample             | Carbon % |
|--------------------|----------|
| Blank              | <1.0     |
|                    |          |
| Soil Control       | 12.9     |
| Soil Control       | 12.4     |
| Soil Control       | 12.7     |
| Soil Control       | 12.3     |
| Soil Control       | 12.4     |
| Soil Control       | 12.00    |
| Soil Control       | 11.6     |
| Soil Control       | 13.4     |
| Soil Control       | 12.7     |
| Soil Control       | 12.6     |
| Soil Control       | 12.5     |
| Soil Control       | 12.3     |
| Soil Control       | 12.3     |
| Mean               | 12.5     |
| Standard Deviation | 0.4      |
| %CV                | 3.5      |

| Sample                        | Carbon % |
|-------------------------------|----------|
| Soil Control Target           | 12.3     |
|                               |          |
|                               |          |
| Orchard Leaves Control        | 54.2     |
| Orchard Leaves Control        | 58.1     |
| Orchard Leaves Control        | 51.5     |
| Orchard Leaves Control        | 52.4     |
| Orchard Leaves Control        | 49.6     |
| Orchard Leaves Control        | 50.6     |
| Orchard Leaves Control        | 52.6     |
| Orchard Leaves Control        | 52.5     |
| Orchard Leaves Control        | 50.6     |
| Orchard Leaves Control        | 57.9     |
| Orchard Leaves Control        | 53.8     |
| Orchard Leaves Control        | 52.4     |
| Orchard Leaves Control        | 51.8     |
| Mean                          | 53.98    |
| Standard Deviation            | 2.75     |
| %CV                           | 5.09     |
| Orchard Leaves Control Target | 51.4     |

#### Appendix VI: MLA Sample Information

Samples colored in grey were not chosen for MLA analysis. They are included here to provide context to those that were chosen.

|   | Site     | Note                                                                                                         | Golder_ho-<br>rizon | Queen's<br>name | ASU sam-<br>ple | from_cm | to_cm | Au_µg/g | As    | S    |
|---|----------|--------------------------------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|---------|-------|---------|-------|------|
|   |          |                                                                                                              | IIIF2-a             | F-64a           | Sample 27       | 0       | 5     | 0.53    | 1500  | 510  |
|   |          |                                                                                                              | IIIF2-b             | F-64b           | Sample 28       | 5       | 15    | 0.065   | 840   | 370  |
|   | III-F-2  |                                                                                                              | IIIF2-c             | F-64c           | Sample 29       | 15      | 30    | 0.013   | 280   | 260  |
|   |          |                                                                                                              | IIIF2-d             | F-64d           | Sample 30       | 30      | 55    | <0.01   | 250   | <200 |
|   |          |                                                                                                              | IIIF2-e             | F-64e           | Sample 31       | 55      | 100   | <0.01   | 40    | <200 |
| F |          |                                                                                                              | IVF2-a              | F-66a           | Sample<br>344   | 0       | 5     | 0.96    | 1700  | 1200 |
| 0 |          |                                                                                                              | IVF2-b              | F-66b           | Sample<br>345   | 5       | 20    | 0.25    | 1300  | 1700 |
| R | IV-F-2   | public<br>access-<br>road                                                                                    | IVF2-c              | F-66c           | Sample<br>346   | 20      | 30    | 0.010   | 80    | 1000 |
| E |          |                                                                                                              | IVF2-d              | F-66d           | Sample<br>347   | 30      | 60    | <0.01   | 17    | 560  |
| S |          |                                                                                                              | IVF2-e              | F-66e           | Sample<br>348   | 60      | 100   | 0.012   | 14    | 480  |
| Т |          |                                                                                                              | IXF4-a              | F-72a           | Sample 1        | 0       | 5     | 0.22    | 240   | 1900 |
|   | IX-F-4   | Disturbed<br>area.<br>Anomalous<br>Au                                                                        | IXF4-b              | F-72b           | Sample 2        | 5       | 15    | 48      | 3600  | 3900 |
|   |          |                                                                                                              | IXF4-c              | F-72c           | Sample 3        | 15      | 30    | 0.86    | 600   | 1100 |
|   |          |                                                                                                              | IXF4-d              | F-72d           | Sample 4        | 30      | 60    | 0.20    | 180   | 700  |
|   |          |                                                                                                              | IXF4-e              | F-72e           | Sample 5        | 60      | 85    | 0.17    | 48    | <200 |
|   |          |                                                                                                              | IXF4-f              | F-72f           | Sample 6        | 85      | 100   | 0.027   | 22    | <200 |
|   |          | II-OC-5<br>Highest As<br>sites. Best<br>shot for<br>statistical<br>signifi-<br>cance of<br>MLA re-<br>sults. | IIOC5-a             | O-10a           | Sample 70       | 0       | 3     | 3.1     | 17000 | 1200 |
|   |          |                                                                                                              | IIOC5-b             | O-10b           | Sample 71       | 3       | 10    | 0.15    | 1300  | 210  |
|   | II-OC-5  |                                                                                                              | IIOC5-c             | O-10c           | Sample 72       | 10      | 20    | 0.036   | 2000  | 220  |
|   |          |                                                                                                              | llOC9-a             | O-14a           | Sample 80       | 0       | 3     | 0.35    | 1400  | 1100 |
|   | II-OC-9  |                                                                                                              | IIOC9-b             | O-14b           | Sample 81       | 3       | 10    | 0.019   | 2400  | 420  |
|   |          |                                                                                                              | IIOC9-c             | O-14c           | Sample 82       | 10      | 15    | 0.016   | 2400  | 600  |
|   | II-OC-10 |                                                                                                              | llOC10-a            | O-5a            | Sample 83       | 0       | 5     | 1.0     | 16000 | 2000 |
|   |          |                                                                                                              | IIOC10-b            | O-5b            | Sample 84       | 5       | 8     | 0.081   | 7200  | 820  |
|   | II-OC-11 |                                                                                                              | llOC11-a            | O-6a            | Sample 85       | 0       | 5     | 0.90    | 11000 | 920  |
|   |          |                                                                                                              | IIOC11-b            | O-6b            | Sample 86       | 5       | 10    | 0.37    | 7800  | 920  |
|   | III-OC-5 | Chose over                                                                                                   | IIIOC5-a            | O-18a           | Sample<br>124   | 0       | 5     | 0.11    | 3200  | 350  |
|   |          | III-OC-1                                                                                                     | IIIOC5-b            | O-18b           | Sample<br>125   | 5       | 10    | 0.059   | 4100  | 610  |

|        |                      | Chose over                                  | IIIOC2-a  | O-16a | Sample<br>122 | 0  | 8   | 0.73  | 3200 | 570  |
|--------|----------------------|---------------------------------------------|-----------|-------|---------------|----|-----|-------|------|------|
| 0      | III-OC-2             | III-OC-3                                    | IIIOC2-b  | O-16b | Sample<br>123 | 8  | 15  | 0.049 | 1300 | 210  |
|        | III-OC-8             | farthest                                    | IIIOC8-a  | O-21a | Sample<br>354 | 0  | 5   | 0.12  | 630  | 500  |
|        |                      | south                                       | IIIOC8-b  | O-21b | Sample<br>355 | 5  | 15  | 0.030 | 260  | 600  |
|        | 11/-00-1             | public                                      | IVOC1-a   | O-22a | Sample 17     | 0  | 5   | 0.76  | 7000 | 400  |
| U      | 10-00-1              | road                                        | IVOC1-b   | O-22b | Sample 18     | 5  | 10  | 0.14  | 5400 | 620  |
| Т      | IV-0C-4              | public                                      | IVOC4-a   | O-25a | Sample<br>147 | 0  | 5   | 0.56  | 4800 | 1300 |
| С      |                      | road                                        | IVOC4-b   | O-25b | Sample<br>148 | 5  | 12  | 0.046 | 5100 | 580  |
| R      |                      | Originally<br>chose over                    | VOC1-a    | O-31a | Sample<br>179 | 0  | 5   | 0.036 | 1400 | <200 |
| O<br>P | V-OC-1               | due to<br>proximity to<br>lease<br>boundary | VOC1-b    | O-31b | Sample<br>180 | 5  | 15  | 0.024 | 570  | <200 |
|        |                      |                                             | VOC2-a    | O-32a | Sample<br>181 | 0  | 5   | 0.15  | 3600 | 450  |
|        | V-0C-2               | (ended up<br>being able<br>to keep top      | VOC2-b    | O-32b | Sample<br>182 | 5  | 15  | <0.01 | 27   | 220  |
| _      | V-00-2               | sample,<br>see above)                       | VOC2-c    | O-32c | Sample<br>183 | 15 | 25  | 0.011 | 400  | <200 |
|        |                      |                                             | VOC2-d    | O-32d | Sample<br>184 | 25 | 35  | <0.01 | 44   | <200 |
|        | VI-OC-4<br>VIII-OC-4 | north end                                   | VIOC4-a   | O-40a | Sample<br>202 | 0  | 5   | 0.15  | 1200 | 1300 |
|        |                      |                                             | VIOC4-b   | O-40b | Sample<br>203 | 5  | 10  | 0.034 | 1300 | 840  |
|        |                      |                                             | VIIIOC4-a | O-54a | Sample<br>295 | 0  | 5   | 0.20  | 840  | 1000 |
|        |                      |                                             | VIIIOC4-b | O-54b | Sample<br>296 | 5  | 20  | 0.016 | 370  | 280  |
|        |                      | might not<br>need both<br>IX-OC-2<br>and 4  | IXOC2-a   | O-27a | Sample<br>319 | 0  | 3   | 1.8   | 5500 | 2100 |
|        | IX-OC-2              |                                             | IXOC2-b   | O-27b | Sample<br>320 | 3  | 10  | 0.061 | 910  | 140  |
|        |                      |                                             | IXOC2-c   | O-27c | Sample<br>321 | 10 | 25  | 0.037 | 480  | 160  |
|        |                      |                                             | IXOC4-a   | O-29a | Sample<br>324 | 0  | 6   | 0.61  | 5200 | 1500 |
|        | IX-OC-4              |                                             | IXOC4-b   | O-29b | Sample<br>325 | 6  | 15  | 0.051 | 1100 | 460  |
|        |                      |                                             | IXOC4-c   | O-29c | Sample<br>326 | 15 | 20  | 0.029 | 1200 | 200  |
|        |                      |                                             | IIIWL1-a  | W-89a | Sample<br>118 | 0  | 5   | 2.4   | 1000 | 1500 |
|        | III-WL-1             | disturbed                                   | IIIWL1-b  | W-89b | Sample<br>119 | 5  | 15  | 4.4   | 920  | 1300 |
|        |                      | area                                        | IIIWL1-c  | W-89c | Sample 93     | 15 | 30  | 4.0   | 2700 | 3900 |
|        |                      |                                             | IIIWL1-d  | W-89d | Sample 94     | 30 | 60  | 0.086 | 65   | 260  |
|        |                      |                                             | IIIWL1-e  | W-89e | Sample 95     | 60 | 100 | 0.058 | 62   | 200  |
|        |                      |                                             | IVWL2-a   | W-91a | Sample 7      | 0  | 5   | 0.15  | 210  | <200 |
|        |                      | diature                                     | IVWL2-b   | W-91b | Sample 8      | 5  | 15  | 0.98  | 1000 | 560  |
|        | IV-WL-2              | area                                        | IVWL2-c   | W-91c | Sample 9      | 15 | 30  | 1.6   | 2800 | 2100 |

| 14/ |             |                              | IVWL2-d  | W-91d    | Sample 10     | 30            | 60  | 2.0   | 3400 | 4000  |      |
|-----|-------------|------------------------------|----------|----------|---------------|---------------|-----|-------|------|-------|------|
| VV  |             |                              | IVWL2-e  | W-91e    | Sample 11     | 60            | 100 | 0.22  | 1800 | <200  |      |
| Ε   |             |                              | VWL2-a   | W-98a    | Sample<br>168 | 0             | 5   | 0.045 | 240  | 12000 |      |
| Т   |             |                              | VWL2-b   | W-98b    | Sample<br>169 | 5             | 20  | 0.28  | 1100 | 1300  |      |
| L   | V-WL-2      | distrubed?                   | VWL2-c   | W-98c    | Sample<br>154 | 20            | 40  | 0.052 | 220  | 11000 |      |
| Α   |             |                              | VWL2-d   | W-98d    | Sample<br>155 | 40            | 70  | 0.029 | 190  | 9000  |      |
| Ν   |             |                              | VWL2-e   | W-98e    | Sample<br>156 | 70            | 100 | 0.036 | 8.2  | 220   |      |
| D   | \/L-\A/I1.A | same<br>location as<br>below | VIWL1A-a | W-100a   | Sample<br>195 | 0             | 5   | 0.31  | 1500 | 4300  |      |
|     | VI-WE-IX    |                              | VIWL1A-b | W-100b   | Sample<br>196 | 5             | 10  | 0.16  | 420  | 2600  |      |
|     |             | same<br>location as<br>above | VIWL1B-a | W-101a   | Sample<br>197 | 0             | 5   | 0.21  | 870  | 6000  |      |
|     |             |                              |          | VIWL1B-b | W-101b        | Sample<br>198 | 5   | 10    | 0.23 | 1200  | 6200 |
|     | VI-WL-1B    |                              | VIWL1B-c | W-101c   | Sample<br>199 | 10            | 30  | 0.33  | 790  | 4500  |      |
|     |             |                              | VIWL1B-d | W-101d   | Sample<br>200 | 30            | 60  | 0.039 | 170  | 2000  |      |
|     |             |                              | VIWL1B-e | W-101e   | Sample<br>201 | 60            | 80  | 0.014 | 88   | 1400  |      |

## Appendix VII: Sample Descriptions

Samples were roughly described before grinding. The Munsell Soil Color Charts (1994) were used for color descriptions. Soil colors were officially described with the Munsell chart after they had dried. Otherwise descriptions were after NRCS (2002).

| ASU<br>num<br>ber | Site    | fro<br>m<br>(c<br>m) | to<br>(c<br>m) | ho-<br>ri-<br>zon<br>type | munse | ell numl<br>color | per and    | grain size                                              | roots              | Basic description                                                                                                            | NOTE |
|-------------------|---------|----------------------|----------------|---------------------------|-------|-------------------|------------|---------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|------|
|                   |         |                      |                |                           | hue   | value             | chrom<br>a |                                                         |                    |                                                                                                                              |      |
| 1                 | IX-F-4  | 0                    | 5              | Oi                        | 7.5YR | 3                 | /2         | Silt (<<5%);<br>leaf litter<br>generally <1-<br>2cm     | 2,VF,T             | Basically dark brown leaf litter,<br>small pinecones, fir needles, etc.<br><<5% mineral soil. Incredibly<br>immature         |      |
| 2                 | IX-F-4  | 5                    | 15             | Ai                        | 7.5YR | 4                 | /2         | silt to clay<br>size                                    | 3,VF,T             | crumbly, micro rots throughout,<br>brownish grey with bits of poorly<br>decomp OM (~30%); regolith bits<br><10%              |      |
| 3                 | IX-F-4  | 15                   | 30             | Ai                        | 7.5YR | 4                 | /3         | mix of silt and<br>clay 40:60                           | 2-3,<br>VF-M,<br>T | brown to pale grey (OM to clay<br>basically), clay clumps, ~20%<br>OM? Roots and leaf litter partially<br>decomp             |      |
| 4                 | IX-F-4  | 30                   | 60             | At                        | 7.5YR | 5 or 6            | /3         | clay with silt<br>(30-40%),<br>fine roots<br>throughout | 2-3,<br>VF-M,<br>T | pale grey with brownish mottle<br>(OM to clay basically), clay<br>clumps, ~20% OM? Roots and<br>leaf litter partially decomp |      |
| 5                 | IX-F-4  | 60                   | 85             | В                         | 10YR  | 7                 | /2         | clay, minor<br>OM (unde-<br>comp)                       | 1,VF,T             | pale brownish grey clay with OM traces, moderately dry                                                                       |      |
| 6                 | IX-F-4  | 85                   | 100            | В                         | 10YR  | 8                 | /2         | clay, v minor<br>OM (unde-<br>comp)                     | 0-1, VF,<br>T      | very pale grayish white silicate<br>clay, small <2cm pinecone part                                                           |      |
| 7                 | IV-WL-2 | 0                    | 5              | Bt                        | 10YR  | 7                 | /3         | Clay                                                    | 1, VF-F,<br>T      | saturated medium tan brown clay                                                                                              |      |
| 8                 | IV-WL-2 | 5                    | 15             | Bt                        | 10YR  | 8                 | /2         | Clay                                                    | 0, VF,T            | saturated medium tan brown clay                                                                                              |      |
| 9                 | IV-WL-2 | 15                   | 30             | Bt                        | 10YR  | 8                 | /2         | Clay                                                    | 0                  | saturated medium tan brown clay                                                                                              |      |
| 10                | IV-WL-2 | 30                   | 60             | Bt                        | 7.5YR | 7                 | /1         | Clay                                                    | 0                  | Semi-saturated medium brown clay                                                                                             |      |
| 11                | IV-WL-2 | 60                   | 100            | O-Bt                      | 7.5YR | 7                 | /1         | Clay                                                    | 0                  | very saturated medium grey brown clay                                                                                        |      |
| 12                | IV-WL-1 | 0                    | 5              | Bi                        | 7.5YR | 6 &<br>5          | /3         | Clay, ~ 30%<br>or more OM,<br>possible silt             | 3,VF-<br>M,T       | dark brown to grey (mottled) clay<br>with significant OM/roots through-<br>out, semi-saturated. OM ~30-<br>40%?              |      |
| 13                | IV-WL-1 | 5                    | 15             | Bi,t                      | 7.5YR | 7                 | /3         | Clay, ~ 15%<br>or more OM,                              | 3,VF-<br>M,T       | medium/light brown to grey (mot-<br>tled) clay with significant OM/roots<br>throughout, semi-saturated. OM<br>~15-20%        |      |

| 14 | IV-WL-1 | 15 | 30  | Bt        | 7.5YR                | 7   | /3             | Clay, ~ 5% or<br>more OM,                                                       | 1-2,<br>VF-M,<br>T | tan/light brown to grey (mottled)<br>clay with OM/roots throughout<br>unevenly, semi-saturated. OM ~5-<br>10%         |  |
|----|---------|----|-----|-----------|----------------------|-----|----------------|---------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| 15 | IV-WL-1 | 30 | 60  | Bt        | 7.5YR                | 7   | /3             | Clay, ~ 3-5%<br>OM,                                                             | 2,VF-<br>M,T       | tan/light brown to grey clay with<br>OM/roots throughout unevenly,<br>semi-saturated. OM ~3-5%.<br>Mostly             |  |
| 16 | IV-WL-1 | 60 | 100 | Bt        | 7.5YR                | 7   | /3             | Clay, ~ 3-5%<br>OM,                                                             | 2,VF-<br>M,T       | tan/light brown to grey clay with<br>OM/roots throughout unevenly,<br>semi-saturated. OM ~3-5%.<br>Mostly             |  |
| 17 | IV-OC-1 | 0  | 5   | O-Bi      | 7.5YR                | 5   | /3             | Clay, possibly<br>silt <15%                                                     | 2,VF,T             | saturated (dark brown when wet, medium when dry) clay with OM, fine roots throughout, OM ${\sim}15\%$                 |  |
| 18 | IV-OC-1 | 5  | 10  | Ai-Bi     | 10YR                 | 4   | /4             | clay size to<br>silt size, very<br>fine with roots                              | 2, VF-F,<br>T      | saturated (dark brown when wet,<br>medium when dry) crumbly silty<br>clay with OM, fine roots thorught,<br>OM ~15-20% |  |
| 19 | IV-F-3A | 0  | 5   | Oe-i      |                      |     |                | clay to silt,<br>OM >40%                                                        | 3,F,T              | extremely wet, bits of moss, etc. OM ~40-50%                                                                          |  |
| 20 | IV-F-3A | 5  | 15  | Oi        |                      |     |                | clay to silt,<br>OM <40%                                                        | 3,F,T              | Very extremely wet, etc. OM ~40-<br>50%                                                                               |  |
| 21 | IV-F-3A | 15 | 35  | Bi        |                      |     |                | clay to silt,<br>OM <20%                                                        | 2,F,T              | saturated clay with OM fine roots mostly <20%                                                                         |  |
| 22 | IV-F-3B | 0  | 5   | Oa        | 7.5YR                | 3   | /2             | fine to very<br>fine,<br>OM>40%                                                 | 3,VF-<br>M,T       | reasonably well-decomposed OM<br>and roots, fairly dry, very clumpy<br>with micro root clusters. Medium<br>dark brown |  |
| 23 | IV-F-3B | 5  | 15  | Aa-e      | 7.5YR                | 3   | /4             | fine to very<br>fine,<br>OM<40%                                                 | 3,VfF-<br>F,T      | like about but less clumpy, slightly redder, hints of tan clay bits                                                   |  |
| 24 | IV-F-3B | 15 | 30  | Ae        | 7.5YR                | 3   | /3             | fine to very fine, OM 20%                                                       | 3,VfF-<br>F,T      | like above but more hints of tan clay bits                                                                            |  |
| 25 | IV-F-3B | 30 | 60  | Bi,t      | 7.5YR<br>and<br>10YR | 3&8 | /3 and<br>/2-3 | clay with<br><20% silt                                                          | 2,VF-<br>M,T       | Pale grey-tan Clay with <30% medium brown silt                                                                        |  |
| 26 | IV-F-3B | 60 | 100 | СВ        | 5YR                  | 6   | /3             | gravel with<br>clay/silt parti-<br>cles through-<br>out and coat-<br>ing. Till? | 0-1, VF,<br>T      | medium reddish tan color silt and<br>clay covering gravel, minor fine<br>roots                                        |  |
| 27 | III-F-2 | 0  | 5   | OA e      | 5YR                  | 4   | /2             | clumps of silt/<br>clay w/ OM<br>roots                                          | 3,VF-<br>C,T       | mix of medium brown silty/clay<br>size silt particles clumped with<br>roots and OM, some lighter clay<br>bits         |  |
| 28 | III-F-2 | 5  | 15  | Ae,t      | 5YR                  | 6   | /2             | clay with silty<br>clumps of<br>OM, unde-<br>comp OM                            | 3,VF-<br>C,T       | same as above but much more<br>clay content                                                                           |  |
| 29 | III-F-2 | 15 | 30  | AB<br>e,t | 5YR                  | 6   | /2             | clay with silty<br>clumps of<br>OM, unde-<br>comp OM                            | 3,VF-<br>C,T       | same as above but slightly more<br>clay content                                                                       |  |

| 30 | III-F-2 | 30 | 55  | Bt,i | 10YR  | 7 | /4 | Clay                         | 1,VF-<br>M,T  | clay clumps with roots                                                                                                                                        | Cooler full<br>of mud/<br>water                                      |
|----|---------|----|-----|------|-------|---|----|------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 31 | III-F-2 | 55 | 10( | B,t  | 7.5YR | 6 | /4 | Clay                         |               | reddish tan clay                                                                                                                                              | Cooler full<br>of mud/<br>water                                      |
| 32 | IX-WL-1 | 0  | 5   | AB   | 10YR  | 8 | /2 | Clay; minor<br>silt/sand     | 2-<br>3,VF,T  | saturated clay goop with silty sand fragments                                                                                                                 | Cooler full<br>of mud/<br>water.<br>Wet color<br>10YR/5/3            |
| 33 | IX-WL-1 | 5  | 15  | В    | 7.5YR | 7 | /3 | clay, minor<br>silt          | 1-<br>2,VF,T  | saturated clay goop with less silty sand fragments                                                                                                            | Cooler full<br>of mud/<br>water                                      |
| 34 | IX-WL-1 | 15 | 30  | Bt   | 7.5YR | 7 | /3 | Clay                         | 1,VF,T        | saturated clay with minor roots                                                                                                                               | Cooler full<br>of mud/<br>water                                      |
| 35 | IX-WL-1 | 30 | 60  | Bt   | 7.5YR | 7 | /3 | Clay                         | 0             | saturated clay                                                                                                                                                | Cooler full<br>of mud/<br>water                                      |
| 36 | IX-WL-1 | 60 | 10( | Bt   | 7.5YR | 7 | /3 | Clay                         | 0             | saturated clay                                                                                                                                                | Cooler full<br>of mud/<br>water                                      |
| 37 | IX-F-2  | 0  | 5   | Oi-e | 10YR  | 4 | /3 | clay to silt,<br>OM >30%     | 3,VF-<br>F,T  | clumps of micro roots holding<br>together medium brown OM silty<br>particles and lighter tan clay to silt<br>globs. Dominated by darker leaf<br>litter color. | Cooler full<br>of mud/<br>water.<br>Light grey<br>rocks              |
| 38 | IX-F-2  | 5  | 15  | OA   | 10YR  | 2 | /2 | Fine silt,<br>OM>30%         | 3,F-M,T       | rich organic soil, lots of small<br>roots, OM is slightly clumpy. Well-<br>developed                                                                          | Cooler full<br>of mud/<br>water                                      |
| 39 | IX-F-2  | 15 | 30  | OA   | 7.5YR | 3 | /3 | Fine silt,<br>OM>30%         | 2,F,T         | rich organic soil, lots of micro<br>roots, minor regolith. Well-<br>developed                                                                                 | Cooler full<br>of mud/<br>water.<br>Light grey<br>rocks              |
| 40 | IX-F-2  | 30 | 45  | Aa   | 10YR  | 3 | /3 | Fine silt,<br>OM>30%         | 2,F,T         | rich organic soil, lots of micro<br>roots, slight mix of tan clay parti-<br>cles with darker brown. Well-<br>developed                                        | Cooler full<br>of mud/<br>water.<br>Light grey<br>rocks, few<br>pink |
| 41 | IX-WL-2 | 0  | 5   | OB   | 7.5YR | 6 | /3 | fine silt/clay<br>with roots | 3,VF-<br>F,T  | clay with lots of roots, saturated                                                                                                                            | Cooler full<br>of mud/<br>water                                      |
| 42 | IX-WL-2 | 5  | 15  | В    | 7.5YR | 7 | /3 | clay with<br>roots           | 2, VF-F,<br>T | clay with roots, saturated                                                                                                                                    | Cooler full<br>of mud/<br>water                                      |
| 43 | IX-WL-2 | 15 | 30  | Bt   | 7.5YR | 7 | /3 | Clay                         | 1,F,T         | clay, minor roots, saturated                                                                                                                                  | Cooler full<br>of mud/<br>water                                      |
| 44 | IX-WL-2 | 30 | 60  | Bt   | 7.5YR | 7 | /3 | Clay                         | 0             | clay, semi-saturated                                                                                                                                          | Cooler full<br>of mud/<br>water                                      |

| 45 | IX-WL-2 | 60 | 10( | Bt   | 7.5YR              | 7    | /3           | Clay                                 | 0             | clay, minor roots, saturated                                                                                                            | Cooler full<br>of mud/<br>water |
|----|---------|----|-----|------|--------------------|------|--------------|--------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 46 | I-WL-2  | 0  | 5   | OB,i | 5YR                | 8    | /2           | clay, half<br>roots                  | 3,VF-<br>C,T  | Dark brown, OM>40% with clay, saturate                                                                                                  | Cooler full<br>of mud/<br>water |
| 47 | I-WL-2  | 5  | 15  | В    | 10YR               | 7    | /3           | clay, minor<br>roots                 | 2,VF-<br>F,T  | clay with lots of small roots, satu-<br>rated                                                                                           | Cooler full<br>of mud/<br>water |
| 48 | I-WL-2  | 15 | 30  | Bt   | 10YR               | 8    | /3 and<br>/2 | Clay                                 | 1,F,T         | clay, saturated, minor roots                                                                                                            | Cooler full<br>of mud/<br>water |
| 49 | I-WL-2  | 30 | 60  | Bt   | 7.5YR              | 8    | 3 and<br>/2  | Clay                                 | 1, VF-F,<br>T | mix of pale yellow casted tan and<br>slightly more red, darker tan.<br>Saturated. Clay.                                                 | Cooler full<br>of mud/<br>water |
| 50 | I-WL-2  | 60 | 10( | Bt   | 2.5YR<br>&<br>10YR | 6 &7 | /3 and<br>/2 | Clay                                 | 0             | mix of pale yellow casted tan and<br>slightly more red, darker tan.<br>Saturated. Clay.                                                 | Cooler full<br>of mud/<br>water |
| 51 | II-F-3  | 0  | 5   | AB e | 10YR               | 5    | /3           | clay to silt,<br>OM ~20%             | 3,VF-<br>F,T  | mix of tan clay and minor med brown silty OM                                                                                            | Cooler full<br>of mud/<br>water |
| 52 | II-F-3  | 5  | 15  | AB   | 10YR               | 7    | /4           | silty clay                           | 2, VF-F,<br>T | yellow cast tan fine silt (possible<br>clay)y, crumbly, minor hem<br>stained regolith bits <5mm, small<br>roots, small angular regolith | Cooler full<br>of mud/<br>water |
| 53 | II-F-3  | 15 | 30  | AB   | 10YR               | 7    | /4           | silty clay                           | 2, VF-F,<br>T | yellow cast tan fine silt (possible<br>clay), crumbly, small roots, small<br>round to angular regolith up to<br>2cm                     | Cooler full<br>of mud/<br>water |
| 54 | II-F-3  | 30 | 60  | AB   | 10YR               | 7    | /4           | silty clay                           | 1,VF,T        | yellow cast tan fine silt (possible<br>clay), crumbly, small roots, small<br>round to angular regolith up to<br>2cm                     | Cooler full<br>of mud/<br>water |
| 55 | II-F-3  | 60 | 90  | AB t | 10YR               | 7    | /4           | silty clay to<br>clay                | 0             | yellow cast tan silt to clay (actual<br>chunks present) crumbly, small<br>roots, small round to angular<br>regolith up to 2cm           | Cooler full<br>of mud/<br>water |
| 56 | II-F-2  | 0  | 5   | OB e | 10YR<br>&<br>7.5YR | 7&3  | /1 and<br>/2 | clay mixed<br>with OM litter<br>~50% | 3,VF-<br>M,T  | mix of semi-decomposed leaf litter<br>and roots (dark brown) with light<br>grey clay. More dark than light                              | Cooler full<br>of mud/<br>water |
| 57 | II-F-2  | 5  | 15  | Be   | 10YR<br>&<br>7.5YR | 7&3  | /1 and<br>/2 | clay mixed<br>with OM litter<br>~10% | 2,VF-<br>M,T  | mix of semi-decomposed leaf litter<br>and roots (dark brown) with light<br>grey clay. MORE LIGHT THAN<br>DARK                           | Cooler full<br>of mud/<br>water |
| 58 | II-F-2  | 15 | 30  | Be   | 7.5YR              | 7    | /2           | clay with<br>roots                   | 3,VF-<br>C,T  | clay with roots                                                                                                                         | Cooler full<br>of mud/<br>water |
| 59 | II-F-2  | 30 | 60  | Be   | 7.5YR              | 7    | /2           | clay mixed<br>with OM litter<br>!5%  | 1,M-<br>C,T   | dam/wet tan clay with roots, some visible leaves, poorly decompose                                                                      | Cooler full<br>of mud/<br>water |
| 60 | II-F-2  | 60 | 10( | Bi   | 10YR               | 7    | /3           | clay mixed<br>with OM litter<br>!5%  | 1,M-<br>C,T   | clay with roots, some visible<br>leaves, poorly decompose                                                                               | Cooler full<br>of mud/<br>water |
| 61 | II-OC-1 | 0  | 5   | 0    | 5YR                | 3    | /2           | silt                                 | 2,VF,T        | dark brown organics with common small roots. Fairly dry. No rocks                                                                       |                                 |

| 62 | II-OC-1 | 5  | 10 | 0         | 7.5YR | 5 | /3 | silt                                                                                                      | 2,VF,T         | Light brown organic soil with nu-<br>merous roots. Fairly dry, no rocks                                                                                                                                                                              |               |
|----|---------|----|----|-----------|-------|---|----|-----------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 63 | II-OC-2 | 0  | 3  | Oi –<br>A | 5YR   | 3 | /2 | Silt, <5%<br>small gravel                                                                                 | 2,F-C,T        | organic rich (~30-40%?), roots<br>and other small (<3cm) bits of<br>forest floor type OM (small twigs,<br>bits of leaves, etc). Lots of roots.<br>Regolith <10%, rounded to angu-<br>lar, indeterminate color. Soil color<br>is rich chocolate brown |               |
| 64 | II-OC-2 | 3  | 10 | Ar        | 5YR   | 5 | /4 | silt with ~20%<br>small gravel<br>(prob regolith)                                                         | 1-2, F,<br>T   | reddish brown soil with lots of<br>small gravel size regolith, regolith<br>~10-15%. roots and OM more like<br>10% or less                                                                                                                            |               |
| 65 | II-OC-3 | 0  | 5  | 0         | 7.5YR | 3 | /2 | silt                                                                                                      | 2,VF-<br>F,T   | medium brown soil with some thicker roots. Fairly dry. No rocks                                                                                                                                                                                      |               |
| 66 | II-OC-3 | 5  | 10 | A         | 5YR   | 4 | /6 | silt, up to<br>10% small<br>irregular an-<br>gular gravel                                                 | 1,F,T          | medium red brown                                                                                                                                                                                                                                     |               |
| 67 | II-OC-4 | 0  | 5  | OA        | 7.5YR | 4 | 12 | silt, some<br>clay, up to<br>15% or so<br>small gravel<br>(irregular amt<br>of<br>roundedness/<br>angles) | 2,F,T          | Grayish brown. Mix of medium<br>brown silty material (organic?)<br>and lighter tan more clay size in<br>aggregate clumps (small). Abun-<br>dant small roots. Regolith ~15%<br>at least. Small bits of OM <<1cm<br>~10%                               |               |
| 68 | II-OC-4 | 5  | 15 | A         | 7.5YR | 7 | /3 | silt/fine sand,<br>up to 10%<br>large rocks,<br>up to 3cm<br>long                                         | 1,VF,T         | light tan mineral soil with some<br>large rocks, fairly dry.                                                                                                                                                                                         |               |
| 69 | II-OC-4 | 15 | 20 | AB        | 10YR  | 8 | /2 | clay clumps<br>with small<br>twigs, scat-<br>tered gravel<br>~10%. Some<br>sand?                          | 1-2, F,<br>T   | pale off-white, small crumbled bits throughout.                                                                                                                                                                                                      |               |
| 70 | II-OC-5 | 0  | 3  | 0         | 5YR   | 4 | /1 | silt                                                                                                      | 2,VF,T         | grey silt with some fine roots, fairly dry                                                                                                                                                                                                           |               |
| 71 | II-OC-5 | 3  | 10 | AB        | 10YR  | 7 | /2 | mix of sand<br>and clay ma-<br>trix with ~15-<br>20% gravel                                               | 1-2,VF-<br>F,T | OM ~10%. Pale off white to grey<br>crumbled mess (sand with clay)<br>with irregular gravel and bits of<br>twigs and roots                                                                                                                            |               |
| 72 | II-OC-5 | 10 | 20 | AB        | 2.5YR | 8 | /2 | mix of sand<br>and clay ma-<br>trix with ~15-<br>20% gravel                                               | 1-2,VF-<br>F,T | OM ~10%. Pale off white to white-<br>tan crumbled mess (sand with<br>clay) with irregular gravel and bits<br>of twigs and roots                                                                                                                      | grey<br>rocks |
| 73 | II-OC-6 | 0  | 5  | OA        | 7.5YR | 3 | /2 | silt with <25%<br>pebbles                                                                                 | 3,F,T          | fluffy immature soil, medium<br>brown, regolith pebbles, twigs and<br>roots <2cm                                                                                                                                                                     |               |
| 74 | II-OC-6 | 5  | 15 | A         | 5YR   | 4 | /4 | Silt with 10% pebbles                                                                                     | 2,F,T          | medium red brown, regolith peb-<br>bles, twigs and roots <2cm                                                                                                                                                                                        |               |
| 75 | II-OC-6 | 15 | 20 | A         | 7.5YR | 6 | /4 | silt with <25%<br>pebbles, clay<br>10-20%                                                                 | 2,F,T          | medium gold- brown, regolith<br>pebbles, twigs and roots <2cm.<br>Slightly more clay than soil above,<br>more small micro-clumps                                                                                                                     | pink rocks    |

| 76 | II-OC-7  | 0  | 10  | Ot, i | 7.5YR         | 4     | /2           | silt to clay<br>size w/leaf<br>and twig litter<br><1cm                              | 2-3,F,T       | Dark brown.medium size clumps<br>of dark clay with abundant regolith<br>(~15%? Hard to say) and leaf and<br>twig litter <1cm          |            |
|----|----------|----|-----|-------|---------------|-------|--------------|-------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| 77 | II-OC-7  | 10 | 16  | AB    | 7.5YR         | 6     | /4           | silt to clay<br>size w/leaf<br>and twig litter<br><1cm                              | 2-3,M-<br>C,T | Tan version of soil stratigraphi-<br>cally above, but with more large<br>clay clumps and regolith                                     | pink rocks |
| 78 | II-OC-8  | 0  | 12  | 0     | 7.5YR         | 4     | /3           | silt to sand,<br>small pebbles<br><15%                                              | 3,VF,T        | medium brown, heterogenous and OM rich (~30%), but decomposed and uniform size <1cm                                                   |            |
| 79 | II-OC-8  | 12 | 15  | OA    | 7.5YR         | 4     | /3           | silt to sand,<br>small pebbles<br><15%                                              | 3,VF-<br>M,T  | regolith pebbles <2cm, OM, fluffy<br>brown, slightly more clay in above<br>stratigraphic layer. OM ~30%                               |            |
| 80 | II-OC-9  | 0  | 3   | 0     | 7.5YR         | 3     | /2           | silt                                                                                | 3,VF,T        | Very fluffy, more homogenous and<br>smaller particles of OM than<br>II_OC-8. Regolith pebbles <1cm<br>are more rare, OM, fluffy brown |            |
| 81 | II-OC-9  | 3  | 10  | OA    | 7.5YR         | 4     | /4           | silt                                                                                | 3,VF-<br>M,T  | regolith pebbles <2cm, OM, fluffy<br>brown, reddish color, more clay<br>right than above (more clumpy)                                |            |
| 82 | II-OC-9  | 10 | 15  | A     | 7.5YR         | 5     | /4           | silt                                                                                | 3,VF-<br>F,T  | regolith pebbles <2cm, OM, fluffy brown                                                                                               |            |
| 83 | II-OC-10 | 0  | 5   | Et    | 5YR           | 3     | /2           | Clay                                                                                | 1,VF,T        | dark brown clay with some small roots, fairly dry.                                                                                    |            |
| 84 | II-OC-10 | 5  | 8   | A     | 7.5YR         | 5     | /4           | clay with<br><20% silt and<br>large sand                                            | 2,VF-<br>F,T  | wet clay with some roots, silt, and large sand/small pebbles                                                                          |            |
| 85 | II-OC-11 | 0  | 5   | Aa    | 7.5YR         | 4     | /6           | clay with<br><20% silt                                                              | 2,F,T         | wet silty clay with roots                                                                                                             |            |
| 86 | II-OC-11 | 5  | 10  | В     | 7.5YR         | 5     | /4           | Clay <10%<br>silt                                                                   | 2,VF-<br>F,T  | wet clay, roots, not nodules                                                                                                          |            |
| 87 | IV-F-1   | 5  | 15  | OA    | 7.5YR         | 6     | /3           | silt, clay, and<br>pebbles<br><1.5cm <20%                                           | 3,VF-<br>M,T  | Mix of yellowish tan silt and clay<br>clumps with roots and small peb-<br>bles <1cm with medium brown<br>fine OM. OM ~25%             |            |
| 88 | IV-F-1   | 15 | 30  | A     | 10YR          | 7     | /3           | silt, clay, and<br>pebbles<br><1.5cm <20%                                           | 2,M,T         | yellowish tan silt and clay clumps<br>with roots and small pebbles<br><1cm                                                            |            |
| 89 | IV-F-1   | 30 | 60  | В     | 10YR<br>& 5YR | 7 & 8 | /3 and<br>/2 | Clay, <30%<br>silt/sand coat-<br>ing                                                | 1,VF-<br>F,T  | yellowish off-white sand and silt coating pinkish clay nodules.                                                                       |            |
| 90 | IV-F-1   | 60 | 10( | В     | 10YR<br>& 5YR | 7&8   | /3 and<br>/2 | Clay, <15%<br>silt/sand coat-<br>ing                                                | 1,F,T         | same as above but much more<br>clay content                                                                                           |            |
| 91 | I-OC-2   | 2  | 7   | OA    | 5YR           | 4     | /3           | silt and clay,<br>OM <1cm<br>particles                                              | 3,F,T         | red brown soil with regolith parti-<br>cles <1cm, a bit clumpy, OM<br><1cm. OM ~30%                                                   |            |
| 92 | I-OC-3   | 2  | 5   | A     | 5YR           | 3     | /3           | silty, minor/<br>moderate<br>clumping<br>(clay?), small<br>angular peb-<br>bles 10% | 2,VF,T        | medium brown clumpy silt/clay<br>with high organic content, small<br>particle size though. OM ~20-<br>25%?. Small regolith pebbles    |            |

| 93  | III-WL-1 | 15 | 30  | В  | 7.5YR | 5 | /3 | clay with<br><20% silt                                              | 2-3,F-<br>C,T | brown clay with OM ~20%                                                                                                                                                                        |  |
|-----|----------|----|-----|----|-------|---|----|---------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 94  | III-WL-1 | 30 | 60  | В  | 7.5YR | 6 | /4 | clay                                                                | 2,F,T         | tan clay, roots etc <5%                                                                                                                                                                        |  |
| 95  | III-WL-1 | 60 | 10( | В  | 5YR   | 7 | /3 | Clay                                                                | 2,F-M,T       | tan clay, less roots than above                                                                                                                                                                |  |
| 96  | IV-WL-3  | 0  | 5   | 0  | 7.5YR | 5 | /2 | silt and clay,<br>OM <1cm<br>particles                              | 3,F-C,T       | OM layer with mixed tan clay.<br>Fluffy, lots of roots, clumps. OM<br>~40%                                                                                                                     |  |
| 97  | IV-WL-3  | 5  | 15  | A  | 7.5YR | 6 | /2 | silt and clay,<br>OM <1cm<br>particles                              | 3,F-M,T       | more silt than above layer, still<br>lots of OM, includes some green<br>bits moss. OM ~35%                                                                                                     |  |
| 98  | IV-WL-3  | 15 | 30  | AB | 7.5YR | 6 | /3 | silt and clay<br>with medium<br>roots, scat-<br>tered sand<br>rare  | 2-3,F-<br>M,T | clay with silty content, OM ~15%                                                                                                                                                               |  |
| 99  | IV-WL-3  | 30 | 60  | В  | 7.5YR | 7 | /3 | Clay                                                                | 1,F,T         | clay clumps with roots                                                                                                                                                                         |  |
| 100 | IV-WL-3  | 60 | 10( | В  | 10YR  | 7 | /2 | Clay                                                                | 0             | clay with roots                                                                                                                                                                                |  |
| 101 | IV-F-1   | 0  | 5   | 0  | 7.5YR | 3 | /2 | silt; roots and fine leaf litter                                    | 3,F,T         | fluffy brown organic material,<br>mostly looks like partially decom-<br>posed fine root masses with finer<br>brown silty material, a few larger<br>roots. OM ~40% or more                      |  |
| 102 | I-F-2    | 0  | 5   | 0  | 7.5YR | 3 | /2 | silt to clay,<br>roots and fine<br>leaf litter                      | 3,VF-<br>F,T  | silty decomposed organics and<br>roots coating clay nodules, OM<br>~35%                                                                                                                        |  |
| 103 | I-F-2    | 5  | 15  | OA | 5YR   | 3 | /2 | silt to clay,<br>roots and fine<br>leaf litter                      | 3,VF-<br>M,T  | silty decomposed organics and<br>roots coating clay nodules, OM<br>~35%. More homogeneous than<br>layer above                                                                                  |  |
| 104 | I-F-2    | 15 | 30  | A  | 5YR   | 3 | /2 | silt to clay,<br>roots and fine<br>leaf litter                      | 3,VF-<br>F,T  | silty decomposed organics and<br>roots coating clay nodules, OM<br>~30%. More homogeneous than<br>layer above, more clay and larger<br>nodules (up to ~3cm). Clay nod-<br>ules are medium grey |  |
| 105 | I-F-2    | 30 | 60  | Ва | 10YR  | 7 | /3 | clay with silt<br><10%                                              | 1,VF,T        | large clay nodules (pale tan) with<br>dusting of brown organic silt ma-<br>terial                                                                                                              |  |
| 106 | I-F-2    | 60 | 10( | Ва | 10YR  | 7 | /3 | clay with silt<br><5%                                               | 0             | same as above with slightly less organics.                                                                                                                                                     |  |
| 107 | III-OC-3 | 0  | 5   | OA | 7.5YR | 4 | /3 | silt and clay<br>with angular<br>platy gravel<br>up to 3cm<br>(15%) | 2, VF-F,<br>T | stony medium brown organic rich heterogenous soil . OM ~35%?                                                                                                                                   |  |
| 108 | III-OC-3 | 5  | 9   | Oa | 7.5YR | 4 | /4 | silt and clay<br>with angular<br>platy gravel<br>up to 2cm<br>(5%)  | 2, VF-F,<br>T | stony medium brown organic rich heterogenous soil . OM ~35%?                                                                                                                                   |  |
| 109 | III-OC-6 | 0  | 5   | OA | 7.5YR | 5 | /4 | clay, sand,<br>pebbles,<br>gravel                                   | 2,F,T         | orangey brown, rocky soil with roots, organic litter. OM ~15%                                                                                                                                  |  |

| 110 | III-OC-6 | 5  | 9   | Ai   | 7.5YR | 6 | /6 | clay, sand,<br>pebbles,<br>gravel                                                    | 2,F,T              | same as above but more clay<br>content, slightly less obvious OM .<br>OM ~10-15%                                               |  |
|-----|----------|----|-----|------|-------|---|----|--------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 111 | III-OC-7 | 0  | 5   | 0    | 7.5YR | 5 | /4 | wet sand/clay<br>matrix with<br>copious peb-<br>bles, coarse<br>sand, gravel         | 2,F-M,T            | OM ~25%??. Dark brown, wet                                                                                                     |  |
| 112 | III-OC-7 | 5  | 10  | OA   | 7.5YR | 5 | /4 | wet clay/sand<br>matrix with<br>copious peb-<br>bles, coarse<br>sand, gravel         | 3,M,T              | same as above but fine matrix is more clay-rich                                                                                |  |
| 113 | IX-F-1   | 0  | 5   | Oi   | 7.5YR | 3 | /2 | Fine silt,<br>OM>30%                                                                 | 3+,F-<br>C,T       | fluffy brown web of roots and fine<br>organic soil. Very high OM. C%<br>>40% likely                                            |  |
| 114 | IX-F-1   | 5  | 15  | Оa   | 7.5YR | 3 | /2 | Fine silt,<br>OM>30%                                                                 | 2-3,<br>VF-M,<br>T | same as above but less of a root<br>web and more of the fluffy fine<br>brown soil                                              |  |
| 115 | IX-F-1   | 15 | 30  | Оa   | 5YR   | 3 | /2 | Fine silt,<br>OM>30%                                                                 | 2,VF-<br>M,T       | same as above but less of a root<br>web and more of the fluffy fine<br>brown soil                                              |  |
| 116 | IX-F-1   | 30 | 55  | OA   | 7.5YR | 3 | /3 | Fine silt,<br>OM>30%;<br>OM <1cm<br>pieces                                           | 1-2,VF-<br>M,T     | same as above but less of a root<br>web and more of the fluffy fine<br>brown soil. OM <1cm pieces                              |  |
| 117 | IX-F-1   | 55 | 100 | AB   | 7.5YR | 7 | /3 | Clay-rich,<br>with copious<br>coarse sand<br>to pebble-<br>sized angular<br>regolith | 2,F-C,T            | dark brown, organic rich but clay<br>dominated. Clay has angular rock<br>bits throughout                                       |  |
| 118 | III-WL-1 | 0  | 5   | OB   | 10YR  | 7 | /3 | Clay with OM                                                                         | 3,F-C,T            | clay with lots of roots and moss, saturated, OM >40%                                                                           |  |
| 119 | III-WL-1 | 5  | 15  | Bi   | 10YR  | 7 | /3 | Clay with OM                                                                         | 3,F-C,T            | clay with lots of roots and moss,<br>saturated, OM <30% (slightly less<br>than above)                                          |  |
| 120 | III-OC-1 | 0  | 5   | OA   | 5YR   | 4 | /2 | clay, silt,<br>sand, coarse<br>sand, peb-<br>bles, gravel                            | 1,F,T              | poorly sorted OC soil with me-<br>dium brown color, organic content<br>probably high (>15%?)                                   |  |
| 121 | III-OC-1 | 5  | 15  | OA   | 5YR   | 4 | /2 | clay, silt,<br>sand, coarse<br>sand, peb-<br>bles, gravel                            | 1,F,T              | poorly sorted OC soil with me-<br>dium brown color, organic content<br>probably high (>15%?). twigs, etc,<br>usually <3cm long |  |
| 122 | III-OC-2 | 0  | 8   | Oe-i | 7.5YR | 5 | /3 | silt to peb-<br>bles, angular<br>gravel                                              | 3,F-C,T            | partially decomp leaf and twig<br>litter <3cm long, ~35% or 45%?<br>mottled color. Partially decom-<br>posed wood chunks       |  |
| 123 | III-OC-2 | 8  | 15  | A    | 7.5YR | 6 | /4 | silt to peb-<br>bles, angular<br>gravel                                              | 1-2,F,T            | paler, less brown version of soil above it. Still poorly sorted, etc.                                                          |  |
| 124 | III-OC-5 | 0  | 5   | OA   | 7.5YR | 6 | /2 | clay with silt,<br>sand, peb-<br>bles, gravel,<br>etc                                | 3,M-<br>C,T        | Clay-rich with OM >25%, also<br>includes poorly sorted angular<br>rock fragments, etc                                          |  |

| 125 | III-OC-5 | 5  | 10  | OA | 10YR  | 7 | /3 | clay with silt,<br>sand, peb-<br>bles, gravel,<br>etc                 | 3,M-<br>C,T        | Clay-rich with OM >25%, also<br>includes poorly sorted angular<br>rock fragments, etc                                                                                |  |
|-----|----------|----|-----|----|-------|---|----|-----------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 126 | I-F-1    | 0  | 5   | 0  | 10YR  | 4 | /4 | silt and OM,<br>other sizes<br>indetermin-<br>able before<br>grinding | 3+,F-<br>C,T       | mossy root web, OM <40%                                                                                                                                              |  |
| 127 | I-F-1    | 5  | 15  | 0  | 10YR  | 4 | /4 | silt and OM,<br>other sizes<br>indetermin-<br>able before<br>grinding | 3,F-C,T            | mossy root web, OM <30%. Less<br>comprehensive root web than<br>sample above                                                                                         |  |
| 128 | I-F-1    | 15 | 30  | AB | 7.5YR | 5 | /3 | clay though<br>gravel                                                 | 2,M,T              | more clay rich than layers above, transitioning into clay soil                                                                                                       |  |
| 129 | I-F-1    | 30 | 60  | В  | 7.5YR | 6 | /4 | clay, coarse sand included                                            | 1,M.T              | clay with coating of brown silty OM                                                                                                                                  |  |
| 130 | I-F-1    | 60 | 10( | В  | 7.5YR | 6 | /4 | clay, coarse<br>sand included                                         | 0                  | clay, includes coarse sand to pebble fragments                                                                                                                       |  |
| 131 | II-WL-2  | 0  | 5   | 0  | 10YR  | 3 | /3 | silty clay sand                                                       | 3,F-C,T            | clayey sand with OM ~45%                                                                                                                                             |  |
| 132 | II-WL-2  | 5  | 15  | OA | 7.5YR | 4 | /3 | clay, sand,<br>etc                                                    | 3,F-C,T            | clayey sand with OM ~40%                                                                                                                                             |  |
| 7   | II-WL-2  | 15 | 30  | AB | 7.5YR | 6 | /3 | clay, minor<br>sand                                                   | 2,C,T              | dark brown sandy clay with roots                                                                                                                                     |  |
| 134 | II-WL-2  | 30 | 60  | В  | 7.5YR | 7 | /3 | clay studded<br>with sparse<br>small pebbles                          | 1,M-<br>C,T        | reddish color hard clay studded<br>with angular coarse sand to small<br>pebbles, coating of brown OM                                                                 |  |
| 135 | II-WL-2  | 60 | 10( | В  | 7.5YR | 8 | /4 | clay studded<br>with sparse<br>small pebbles                          | 0                  | reddish color hard clay studded<br>with angular coarse sand to small<br>pebbles, coating of brown OM                                                                 |  |
| 136 | I-WL-1   | 0  | 5   | OA | 7.5YR | 6 | /3 | sand and clay                                                         | 3,VF-<br>C,T       | Sand+clay+organic matter (~30%)                                                                                                                                      |  |
| 137 | I-WL-1   | 5  | 15  | E  | 7.5YR | 6 | /3 | Sand, <40%<br>finer particles                                         | 1,VF,T             | extremely sandy clay, includes bits of minor OM                                                                                                                      |  |
| 138 | I-WL-1   | 15 | 30  | EB | 10YR  | 7 | /2 | Clay 50%,<br>sand and silt<br>40\$, 10%<br>larger                     | 1, VF-F,<br>T      | clumpy sandy clay with small pebbles                                                                                                                                 |  |
| 139 | I-WL-1   | 30 | 60  | Е  | 10YR  | 8 | /2 | Sand , some finer material                                            | 1,M,T              | saturated grayish sand, minor clay and finer content. Cuts nicely                                                                                                    |  |
| 140 | I-WL-1   | 60 | 10( | Е  | 10YR  | 8 | /2 | Sand , some finer material                                            | 1,M,T              | same as above but less com-<br>pletely saturated                                                                                                                     |  |
| 141 | I-OC-1   | 0  | 5   | 0  | 10YR  | 4 | /2 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~40% | 3,VF-<br>M,T       | unsorted mix, clay through small<br>angular pebbles, OM ~40%.<br>Clumpy. Immature, organic rich,<br>medium brown                                                     |  |
| 142 | I-OC-1   | 5  | 15  | Oa | 10YR  | 6 | /4 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~30% | 2-3,<br>VF-M,<br>T | unsorted mix, clay through small<br>angular pebbles, OM ~30%.<br>Immature and poorly sorted, OM<br>partially decomposed. Slightly<br>less wet than layer above.brown |  |

| 143 | IV-OC-2 | 0  | 5   | OA  | 7.5YR | 6 | /3 | silt, sand,<br>minor clay,<br>angular<br>coarse sand<br>to pebbles     | 3,F-M,T       | OM ~30%. Sandy but just as<br>poorly sorted . Clumpy sand.<br>Thoroughly damp.                      |                                                       |
|-----|---------|----|-----|-----|-------|---|----|------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 144 | IV-OC-2 | 5  | 10  | OA  | 7.5YR | 5 | /3 | silt, clay and<br>sand, angular<br>coarse sand<br>to pebbles           | 2,F-M,T       | same as above but more wet                                                                          |                                                       |
| 145 | IV-OC-3 | 0  | 5   | OA  | 7.5YR | 5 | /4 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~35%. | 3,F-C,T       | unsorted, heterogenous, organic<br>bits <1cm large, semi-<br>decomposed and clumpy. Wet.<br>OM ~40% |                                                       |
| 146 | IV-OC-3 | 5  | 15  | Ae  | 7.5YR | 7 | /6 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~10%. | 1-2, F,<br>T  | less wet, reddish version of soil<br>above with less OM. OM ~10%                                    |                                                       |
| 147 | IV-OC-4 | 0  | 5   | 0   | 7.5YR | 5 | /3 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~35%. | 3,F-C,T       | unsorted, heterogenous, organic<br>bits <1cm large, semi-<br>decomposed and clumpy. Wet.<br>OM ~40% |                                                       |
| 148 | IV-OC-4 | 5  | 12  | A   | 7.5YR | 6 | /6 | unsorted mix,<br>clay through<br>small angular<br>pebbles, OM<br>~10%. | 2,F-C,T       | less wet, reddish version of soil<br>above with less OM. OM ~15%                                    |                                                       |
| 149 | IV-WL-4 | 0  | 5   | ABE | 7.5YR | 7 | /2 | clay with silt<br>and                                                  | 2,C,T         | grey, wet, OM (~20%) chunks in sandy clay                                                           |                                                       |
| 150 | IV-WL-4 | 5  | 15  | ABE | 7.5YR | 7 | /2 | clay with silt<br>and                                                  | 2,F-C,T       | grey, wet, OM (~10%) chunks in sandy clay                                                           |                                                       |
| 151 | IV-WL-4 | 15 | 30  | В   | 7.5YR | 7 | /2 | Clay                                                                   | 1,F,T         | grey, wet, OM (~3%) chunks in<br>clay with slight sand/silt content                                 |                                                       |
| 152 | IV-WL-4 | 30 | 60  | В   | 7.5YR | 6 | /2 | clay, some<br>larger bits (up<br>to coarse<br>sand)                    | 1,F,T         | grey, wet, OM (~5%) chunks in<br>clay clumps                                                        |                                                       |
| 153 | IV-WL-4 | 60 | 100 | В   | 7.5YR | 6 | /2 | clay, some<br>larger bits (up<br>to coarse<br>sand)                    | 1,F,T         | grey, wet, OM (~5%) chunks in<br>clay clumps                                                        |                                                       |
| 154 | V-WL-2  | 20 | 40  | 0   | 7.5YR | 4 | /4 | ? fine-grained soup                                                    | 3,F,T         | dark brown organic soup                                                                             | precipi-<br>tate on<br>protruding<br>organic<br>bits? |
| 155 | V-WL-2  | 40 | 70  | 0   | 7.5YR | 4 | /5 | ? fine-grained soup                                                    | 2, VF-F,<br>T | dark brown organic soup                                                                             |                                                       |
| 156 | V-WL-2  | 70 | 100 | В   | 5YR   | 7 | /3 | Clay                                                                   | 0             | pinkish grey clay                                                                                   |                                                       |
| 157 | V-WL-3  | 0  | 10  | AE  | 5YR   | 6 | /3 | organics with sand/clay                                                | 3,M,T         | soupy clay with organics ~15%                                                                       |                                                       |
| 158 | V-WL-3  | 10 | 50  | AE  | 5YR   | 6 | /3 | organics with sand/clay                                                | 3,F-C,T       | slightly less soupy clay with abundant organics ~25%                                                |                                                       |

| 159 | V-WL-3 | 50 | 80  | E  | 10YR          | 7     | /3           | Sand with some clay content                                                            | 1,M,T         | wet hard sand                                                                                  |                                                       |
|-----|--------|----|-----|----|---------------|-------|--------------|----------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 160 | V-WL-3 | 80 | 10( | EB | 10YR<br>& 5YR | 7 & 6 | /3 and<br>/4 | sand mixed<br>with clay                                                                | 1,M,T         | wet hard sand (yellowish grey )<br>with reddish and tan clay                                   |                                                       |
| 161 | V-F-2  | 80 | 90  | E  | 10YR<br>& 5YR | 7     | /4           | clay nodules<br>covered in<br>sand                                                     | 1,F,T         | tan sand, covering reddish clay<br>nodules up to 5cm long, down to<br>few mm                   |                                                       |
| 162 | V-F-2  | 10 | 11( | E  | 10YR          | 7     | /4           | sand (minor<br>clay)                                                                   | 1,VF,T        | clumpy yellowish sand with minor<br>clay content. Crumbly                                      |                                                       |
| 163 | V-WL-1 | 0  | 5   | 0  | 7.5YR         | 7     | /3           | silty wet OM                                                                           | 3,F-C,T       | dark colored organic rich wet<br>mass. Roots and leaves. Looks<br>like wet land stuff. OM ~45% |                                                       |
| 164 | V-WL-1 | 5  | 15  | 0  | 7.5YR         | 4     | /4           | silty wet OM                                                                           | 2-3,F-<br>C,T | dark colored organic rich wet<br>mass. Roots and leaves. Looks<br>like wet land stuff. OM ~45% |                                                       |
| 165 | V-WL-1 | 15 | 30  | 0  | 5YR           | 4     | /4           | clay silt sand<br>small peb-<br>bles?                                                  | 3,F-C,T       | Rich-looking dark wet OM soil                                                                  |                                                       |
| 166 | V-WL-1 | 30 | 60  | 0  | 5YR           | 4     | /4           | clay silt sand<br>small peb-<br>bles?                                                  | 2,F-C,T       | Rich-looking dark wet OM soil                                                                  |                                                       |
| 167 | V-WL-1 | 60 | 80  | 0  | 5YR           | 6     | /3           | fine dusty silt/<br>clay with OM<br>bit                                                | 2,M,T         | soup OM                                                                                        |                                                       |
| 168 | V-WL-2 | 0  | 5   | 0  | 7.5YR         | 5     | /4           | fine dusty silt/<br>clay with OM<br>bit                                                | 3,VF-<br>M,T  | soup OM, lots of moss roots. OM ~40%                                                           | precipi-<br>tate on<br>protruding<br>organic<br>bits? |
| 169 | V-WL-2 | 5  | 20  | 0  | 7.5YR         | 5     | /4           | silt and up                                                                            | 2,M,T         | soup OM, lots of moss roots. OM ${\sim}40\%$                                                   |                                                       |
| 170 | V-F-1  | 0  | 5   | 0  | 5YR           | 3     | /2           | silt or clay,<br>OM litter                                                             | 3,VF-<br>M,T  | unsorted, heterogenous, organic<br>bits <1cm large, semi-<br>decomposed and clumpy. OM<br>~40% |                                                       |
| 171 | V-F-1  | 5  | 15  | OA | 5YR           | 4     | /2           | silt, clay with<br>angular bits<br>of rock<br>coarse sand<br>to small peb-<br>ble size | 2-3,F-<br>C,T | tan clay nodules covered in me-<br>dium silty brown OM sediment,<br>leaf and root litter,      |                                                       |
| 172 | V-F-1  | 15 | 30  | AB | 5YR           | 5     | /2           | clay with<br>angular bits<br>of rock<br>coarse sand<br>to small peb-<br>ble size       | 2,F,T         | same as above but more clay<br>nodules                                                         |                                                       |
| 173 | V-F-1  | 30 | 50  | В  | 5YR           | 6     | /2           | clay with<br>angular bits<br>of rock<br>coarse sand<br>to small peb-<br>ble size       | 1,F,T         | same as above but even more<br>clay vs organics                                                |                                                       |

| 174 | V-F-1  | 50 | 10( | В  | 5YR   | 6 | /3 | clay with<br>angular bits<br>of rock<br>coarse sand<br>to small peb-<br>ble size | 1,F,T              | same as above but even more clay vs organics                                                                                                                                     |  |
|-----|--------|----|-----|----|-------|---|----|----------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 175 | V-F-2  | 0  | 10  | 0  | 5YR   | 4 | /2 | silt to angular<br>pebble                                                        | 3+,F-<br>C,T       | fluffy web of brown fine roots and decomposed OM, heterogenous grain size                                                                                                        |  |
| 176 | V-F-2  | 10 | 20  | A  | 7.5YR | 6 | /3 | Sand with<br>some clay<br>content                                                | 1-2,F-C            | tan finely clumpy mineral soil with OM roots and twigs sparsely                                                                                                                  |  |
| 177 | V-F-2  | 20 | 50  | AE | 7.5YR | 7 | /3 | Sand with<br>some clay<br>content                                                | 1-2,F-C            | tan finely clumpy mineral soil with OM roots and twigs sparsely                                                                                                                  |  |
| 178 | V-F-2  | 50 | 80  | AE | 10YR  | 7 | /3 | Sand with<br>some clay<br>content                                                | 1-2,F-C            | tan finely clumpy mineral soil with OM roots and twigs sparsely                                                                                                                  |  |
| 179 | V-OC-1 | 0  | 5   | A  | 7.5YR | 7 | /6 | silt sand clay<br>pebbles                                                        | 2,M-<br>C,T        | red soil with lots of small gravel<br>and smaller rock parts, heteroge-<br>nous OM (~15%), etc. Clumpy.                                                                          |  |
| 180 | V-OC-1 | 5  | 15  | A  | 7.5YR | 6 | /4 | silt sand clay pebbles                                                           | 2,M-<br>C,T        | slightly less OM, slightly lighter color                                                                                                                                         |  |
| 181 | V-OC-2 | 0  | 5   | 0  | 7.5YR | 5 | /3 | silt to angular<br>pebble                                                        | 2-3,<br>VF-M,<br>T | heterogenous OM clay sand silt pebbles etc                                                                                                                                       |  |
| 182 | V-OC-2 | 5  | 15  | Е  | 10YR  | 7 | /3 | sand                                                                             | 0                  | sand, wet, with some clay con-<br>tent, tan color.                                                                                                                               |  |
| 183 | V-OC-2 | 15 | 25  | E  | 7.5YR | 7 | /3 | Sand with<br>some clay<br>content                                                | 1, VF-F,<br>T      | slightly more clay than above layer, more brown/red mottle color                                                                                                                 |  |
| 184 | V-OC-2 | 25 | 35  | EB | 10YR  | 7 | /3 | Sand with<br>some clay<br>content                                                | 0                  | sand with some clay content, scattered pebbles (angular)                                                                                                                         |  |
| 185 | V-OC-3 | 0  | 5   | 0  | 7.5YR | 4 | /3 | silt, clay,<br>larger (het-<br>erogenous<br>mix)(                                | 3,F-M,T            | organic rich (~30-40%?), roots<br>and other small (<3cm) bits of OM<br>(small twigs, bits of leaves, etc).<br>Lots of roots. Pebbles. Wet. Soil<br>color is rich chocolate brown |  |
| 186 | V-OC-3 | 5  | 15  | OA | 7.5YR | 4 | /4 | Sand with<br>some clay<br>content                                                | 2,F,T              | reddish brown wet clay-sand,<br>roots/OM                                                                                                                                         |  |
| 187 | V-OC-3 | 15 | 25  | В  | 10YR  | 4 | /6 | Sand with some clay content                                                      | 1,VF,T             | reddish brown soil with minor mossy roots                                                                                                                                        |  |
| 188 | V-OC-4 | 0  | 5   | 0  | 7.5YR | 4 | /3 | silt and OM,<br>other sizes<br>indetermin-<br>able before<br>grinding            | 3,VF-<br>M,T       | brown clumpy organic layer, semi-<br>decomposed wood pieces and<br>moss roots                                                                                                    |  |
| 189 | V-OC-4 | 5  | 15  | AB | 10YR  | 7 | /3 | Clay ~50%,<br>otherwise silt/<br>sand. Less<br>OM                                | 2,M-<br>C,T        | Clay-rich sediment with bits of<br>roots and twigs ~10%. dull<br>brownish tan. Damp but not su-<br>persaturated                                                                  |  |

| 190 | V-OC-4       | 15 | 30 | AB | 7.5YR | 7     | /3           | Clay ~50%,<br>otherwise silt/<br>sand. Less<br>OM                                                                               | 1,M,T        | Clay-rich sediment with bits of<br>roots and twigs ~10%. reddish<br>brown tan. Damp but not super-<br>saturated                                                                    |  |
|-----|--------------|----|----|----|-------|-------|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 191 | V-OC-5       | 0  | 5  | OA | 7.5YR | 4 & 7 | /2 and<br>/3 | clay/silt/sand/<br>pebbles/small<br>gravel                                                                                      | 3,VF-<br>F,T | tan clay-rich balls (<5mm,<br>clay+silt+sand) mixed with angu-<br>lar pebbles and small gravel and<br>medium dull brown OM ~25%                                                    |  |
| 192 | V-OC-5       | 5  | 10 | A  | 7.5YR | 6     | /4           | clay/silt/sand/<br>pebbles/small<br>gravel                                                                                      | 2,M-<br>C,T  | same as above but not much<br>brown color, mostly golden tan<br>color. Twigs and roots are very<br>abundant though.                                                                |  |
| 193 | V-OC-6       | 0  | 5  | OA | 7.5YR | 5     | /3           | Clay-rich<br>outcrop soil.<br>Clay ~40-<br>50%                                                                                  | 3,VF-<br>M,T | OM ~25%? Wet, not supersatu-<br>rated, medium brown color with<br>lots of roots, some small pebbles<br>and angular small gravel but<br>mostly finer particles (sand/silt/<br>clay) |  |
| 194 | V-OC-6       | 5  | 15 | A  | 7.5YR | 6     | /3           | gravel domi-<br>nated with<br>smaller parti-<br>cles down to<br>silt/clay                                                       | 3,C,T        | angular gravel dominated outcrop soil                                                                                                                                              |  |
| 195 | VI-WL-<br>1A | 0  | 5  | AE | 10YR  | 6     | /3           | sand mostly                                                                                                                     | 2,F,T        | damp/wet sand-dominated sedi-<br>ment with lots of roots.                                                                                                                          |  |
| 196 | VI-WL-<br>1A | 5  | 10 | A  | 2.5Y  | 8     | /3           | gravel domi-<br>nated with<br>smaller parti-<br>cles down to<br>silt/clay                                                       | 1,M,T        | rounded gravel and smaller en-<br>crusted with clay/silt in pale yel-<br>lowish color                                                                                              |  |
| 197 | VI-WL-<br>1B | 0  | 5  | A  | 2.5Y  | 7     | /2           | mostly sand/<br>silt                                                                                                            | 2,M,T        | wet smeared sandy/silty sediment with lot of fine roots                                                                                                                            |  |
| 198 | VI-WL-<br>1B | 5  | 10 | A  | 10YR  | 6     | /1           | mostly sand/<br>silt with more<br>clay than<br>above unit                                                                       | 3,F-M,T      | wet, same as above but higher clay content                                                                                                                                         |  |
| 199 | VI-WL-<br>1B | 10 | 30 | В  | 7.5YR | 5     | /2           | mostly clay,<br>some silt/<br>sand                                                                                              | 1,F-M,T      | damp dark brown, more clay-rich<br>than above layer, in nodules so<br>less wet                                                                                                     |  |
| 200 | VI-WL-<br>1B | 30 | 60 | В  | 7.5YR | 7     | /2           | mostly clay,<br>less silt/sand<br>than above                                                                                    | 0-1,F,T      | same as above but less rots                                                                                                                                                        |  |
| 201 | VI-WL-<br>1B | 60 | 80 | В  | 10YR  | 8     | /2           | mostly clay                                                                                                                     |              | drier version of above                                                                                                                                                             |  |
| 202 | VI-OC-4      | 0  | 5  | OA | 7.5YR | 5     | /3           | silt with clay content                                                                                                          | 2,VF,T       | dark brown, damp organic rich clumpy clay/silt                                                                                                                                     |  |
| 203 | VI-OC-4      | 5  | 10 | OA | 7.5YR | 5     | /3           | silt with clay content                                                                                                          | 2,VF-<br>M,T | dark brown, damp organic rich clumpy clay/silt                                                                                                                                     |  |
| 204 | VI-F-4       | 0  | 5  | Oa | 7.5YR | 3     | /2           | silt sand etc,<br>some pebbles<br>possible, lots<br>of organics<br>(well-<br>decomposed<br>mostly except<br>for extant<br>roots | 3,VF-<br>M,T | organics, dark brown, slightly<br>damp with lots of roots. OM ~40%                                                                                                                 |  |

| 205 | VI-F-4  | 5  | 10  | 0  | 7.5YR | 3 | /2 | silt sand etc,<br>some pebbles<br>possible, lots<br>of organics<br>(well-<br>decomposed<br>mostly except<br>for extant<br>roots | 3,VF-<br>M,T | organics, dark brown, slightly<br>damp with lots of roots. OM ~40%                                                                                              |  |
|-----|---------|----|-----|----|-------|---|----|---------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 206 | VI-F-4  | 10 | 30  | E  | 10YR  | 7 | /3 | sand                                                                                                                            | 1,F,T        | sand. Looked exactly like golden<br>brown sugar when first laid out.<br>Dry it is more of a normal tan<br>color. Includes some fine sand<br>that clumps nicely. |  |
| 207 | VI-F-4  | 30 | 60  | E  | 10YR  | 7 | /3 | sand                                                                                                                            | 1,F,T        | sand. Looked exactly like golden<br>brown sugar when first laid out.<br>Dry it is more of a normal tan<br>color. Includes some fine sand<br>that clumps nicely. |  |
| 208 | VI-F-4  | 60 | 10( | E  | 10YR  | 7 | /3 | sand,                                                                                                                           | 1,F,T        | sand. Looked exactly like golden<br>brown sugar when first laid out.<br>Dry it is more of a normal tan<br>color. Includes some fine sand<br>that clumps nicely. |  |
| 209 | VI-OC-1 | 0  | 5   | 0  | 7.5YR | 3 | /2 | mix of silt clay sand pebbles                                                                                                   | 3,VF-<br>M,T | heterogenous mix of OM, clay up<br>to small pebbles. OM ~30%,over-<br>all finely clumped.                                                                       |  |
| 210 | VI-OC-1 | 5  | 15  | OA | 7.5YR | 5 | /2 | rocky angular<br>pebbles and<br>small gravel,<br>silt, sand,<br>clay                                                            | 3,VF-<br>C,T | more rocky, less OM rich version<br>of soil above, slightly lighter color.<br>Lots of angular pebbles. OM<br>~15%                                               |  |
| 211 | VI-OC-2 | 0  | 5   | OA | 7.5YR | 5 | /2 | silt                                                                                                                            | 2,VF,T       | very wet silt with fine roots                                                                                                                                   |  |
| 212 | VI-OC-2 | 5  | 10  | 0  | 7.5YR | 5 | /3 | silt                                                                                                                            | 1,VF,T       | soup OM                                                                                                                                                         |  |
| 213 | VI-F-2  | 50 | 60  | A  | 7.5YR | 4 | /2 | sand, silt,<br>pebbles                                                                                                          | 2,VF,T       | dark brown sandy material with<br>clay clumps and roots, very differ-<br>ent from layer above it and below,<br>OM ~25%                                          |  |
| 214 | VI-F-2  | 60 | 80  | E  | 7.5YR | 5 | /3 | coarse sand,<br>15% pebbles                                                                                                     | 0            | Mottled color. Medium tan to light<br>brown sand, looking close quite a<br>variation in color across coarse<br>sand and pebble grains (some<br>pink etc)        |  |
| 215 | VI-F-2  | 80 | 85  | Be | 7.5YR | 6 | /2 | clay nodules<br>70% 30%<br>sand coating                                                                                         | 0            | reddish clay nodules, oblong up to<br>7cm long, with the medium brown/<br>tan sand encrusted and around<br>(looks like sand in layer above<br>this one).        |  |
| 216 | VI-F-3  | 0  | 5   | 0  | 7.5YR | 4 | /3 | silt and sand                                                                                                                   | 3,VF-<br>F,T | medium reddish brown damp OM soil with fine roots, OM ~30%                                                                                                      |  |
| 217 | VI-F-3  | 5  | 15  | E  | 7.5YR | 6 | /4 | Sand, ~15%<br>gravel and<br>pebbles<br>(semi-<br>rounded)                                                                       |              | tan sand with rounded to sub-<br>angular pebbles                                                                                                                |  |

| 218 | VI-F-3  | 15 | 25  | E  | 10YR  | 7   | /4           | Sand, <10%<br>rounded peb-<br>bles |                | tan sand                                                                                                                                                       |  |
|-----|---------|----|-----|----|-------|-----|--------------|------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 219 | VI-F-3  | 25 | 45  | E  | 10YR  | 7   | /4           | Sand, <10%<br>rounded peb-<br>bles |                | tan sand                                                                                                                                                       |  |
| 220 | VI-F-3  | 45 | 55  | E  | 10YR  | 7   | /4           | Sand, <10%<br>rounded peb-<br>bles |                | tan sand with rounded pebbles                                                                                                                                  |  |
| 221 | VI-F-3  | 55 | 80  | Е  | 10YR  | 7   | /4           | sand                               |                | sand                                                                                                                                                           |  |
| 222 | VI-F-1  | 0  | 5   | 0  | 7.5YR | 3   | /3           | silt                               | 3+,F-<br>M,T   | root webs supporting silty OM,<br>well-decomposed (OM ~45% or<br>more)                                                                                         |  |
| 223 | VI-F-1  | 5  | 20  | OB | 7.5YR | 3&6 | /2 and<br>/3 | silt, with clay<br>lumps           | 2-3,VF-<br>F,T | small clay lumps covered in silty<br>decomposed OM in a sea of silty<br>OM and roots. OM ~40%                                                                  |  |
| 224 | VI-F-1  | 20 | 30  | В  | 7.5YR | 6   | /3           | clay, minor<br>silt                | 1, VF-F,<br>T  | mix of medium colors of clay in<br>nuggets covered in silty black OM<br>layer (clumpy)                                                                         |  |
| 225 | VI-F-1  | 30 | 60  | В  | 7.5YR | 6   | /3           | Clay                               | 1, VF-F,<br>T  | mix of 3 colors of clay, some clumps with OM coatings. Clumpy                                                                                                  |  |
| 226 | VI-F-1  | 60 | 90  | В  | 10YR  | 7   | /3           | Clay                               | 0-1, VF,<br>T  | reddish brown pale clay, minor fine roots. Smoosh/smoothy                                                                                                      |  |
| 227 | VI-F-2  | 0  | 5   | OA | 10YR  | 4   | /2           | sand/silt                          | 3,VF-<br>F,T   | dark silty OM clumpy stuff with roots, OM ~40%                                                                                                                 |  |
| 228 | VI-F-2  | 5  | 10  | OA | 10YR  | 5   | /2           | sand                               | 2,VF-<br>F,T   | dark colored sand and silt mix<br>with roots, speckles of tan sand<br>~2% throughout spread evenly.<br>OM ~35%                                                 |  |
| 229 | VI-F-2  | 10 | 30  | E  | 7.5YR | 6   | /3           | sand                               | 0-1, VF,<br>T  | tan sand with scattered silty black OM clumpy bits with fine roots $\sim 5\%$                                                                                  |  |
| 230 | VI-F-2  | 30 | 50  | E  | 7.5YR | 5   | /2           | sand                               | 0              | light brown sand (darker than<br>above)with more dark clumpy OM<br>bits than unit above (~7%)                                                                  |  |
| 231 | VI-OC-3 | 0  | 5   | 0  | 7.5YR | 4   | /3           | Silt with 10% pebbles              | 3,VF-<br>M,T   | dark silty sand with fine OM, peb-<br>bles, lots of roots. OM well-<br>decomposed, content ~30%                                                                |  |
| 232 | VI-OC-3 | 5  | 10  | A  | 7.5YR | 5   | /4           | Silt with 10% pebbles              | 3,F-M,T        | more reddish version of soil above, OM ~20%                                                                                                                    |  |
| 233 | VI-OC-5 | 0  | 5   | OA | 7.5YR | 4   | /4           | silt with ~40%<br>clay             | 3,F,T          | medium reddish-brown                                                                                                                                           |  |
| 234 | VI-OC-5 | 5  | 10  | A  | 7.5YR | 5   | /4           | silty clay,                        | 2,M,T          | fully saturated, reddish brown, roots                                                                                                                          |  |
| 235 | VI-OC-5 | 10 | 20  | AB | 7.5YR | 5   | /3           | silty clay                         | 1,F,T          | fully saturated smeary mud, me-<br>dium brown                                                                                                                  |  |
| 236 | VII-F-2 | 60 | 70  | В  | 7.5YR | 6   | /2 and<br>/3 | clay to silt                       |                | Slightly mottled soil of discrete<br>clay nugget clumps <3cm (pale<br>pinkish tan) covered in less pink<br>silt/clay. Clumps go down to a few<br>cms. 25%>1cm. |  |
| 237 | VII-F-2 | 70 | 10( | ΒE | 7.5YR | 6   | /3           | Clay >50%,<br>up to fine<br>sand   | 1,F,T          | crumbly clay-rich sediment to fine sand.                                                                                                                       |  |

| 238 | VII-WL-1 | 0  | 10  | 0  | 10YR               | 4   | /3           | silt and clay<br>with OM<br><1cm                                                                | 3,VF-<br>C,T  | medium brown brown organic<br>soupy mess. OM ~50%                                                                       |  |
|-----|----------|----|-----|----|--------------------|-----|--------------|-------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|--|
| 239 | VII-WL-1 | 10 | 30  | 0  | 10YR               | 4   | /2           | silt and clay<br>with OM<br><1cm                                                                | 3,VF-<br>F,T  | dark brown organic soupy mess,<br>OM ~50%                                                                               |  |
| 240 | VII-WL-1 | 30 | 55  | OA | 10YR               | 4   | /2           | silt and clay<br>with OM<br><1cm                                                                | 3,VF-<br>F,T  | dark brown organic soupy mess,<br>OM ~50%                                                                               |  |
| 241 | VII-WL-1 | 55 | 10( | AB | 10YR               | 4   | /2           | clay to silt                                                                                    | 2,VF,T        | Clay-rich organic soupy mess.<br>OM ~15%                                                                                |  |
| 242 | VII-OC-1 | 0  | 5   | OA | 10YR               | 5   | /2           | Pebbles to<br>gravel ~10%,<br>silty material<br>~50%, rest is<br>in-between                     | 3,F-M,T       | rocky medium brown OC soil,<br>rounded pebbles. OM ~20%                                                                 |  |
| 243 | VII-OC-1 | 5  | 10  | A  | 7.5YR              | 5   | /4           | 50% gravel<br>and pebbles,<br>rest is smaller<br>with dominant<br>sand and silt                 | 2,F,T         | OM <10%                                                                                                                 |  |
| 244 | VII-OC-1 | 10 | 35  | A  | 7.5YR              | 6   | /4           | ~55% small<br>rounded<br>gravel, the<br>rest is a het-<br>erogenous<br>mix down to<br>silt size | 2,F-C,T       | tan mix of small gravel and every-<br>thing smaller. Some rots                                                          |  |
| 245 | VII-F-1  | 0  | 5   | 0  | 5YR                | 3   | /2           | silt, some<br>larger frag-<br>ments                                                             | 3,F-C,T       | Fine roots and OM ~45%                                                                                                  |  |
| 246 | VII-F-1  | 5  | 20  | OA | 7.5YR              | 3   | /2           | silt                                                                                            | 3,F,T         | finely crumbly silty dark brown<br>organic rich mineral soil (OM<br>~20%? 35%?)                                         |  |
| 247 | VII-F-1  | 20 | 30  | AB | 7.5YR              |     | /3 and<br>/2 | clay with<br>~40% silt                                                                          | 2,F-M,T       | ~3cm clay nuggets with dark<br>brown silty OM coating (~10%)                                                            |  |
| 248 | VII-F-1  | 30 | 60  | В  | 7.5YR              | 8&3 | /3 and<br>/2 | clay with<br>~10% silt                                                                          | 1,F-M,T       | same as last but less OM coating $(\sim 5\%)$                                                                           |  |
| 249 | VII-F-1  | 60 | 10( | В  | 7.5YR              | 7&3 | /3 and<br>/2 | clay with ~8%<br>silt                                                                           | 1,F-M,T       | same as last but less OM coating $(\sim 5\%)$                                                                           |  |
| 250 | VII-F-2  | 0  | 5   | 0  | 10YR               | 4   | /2           | silty and clay                                                                                  | 3+,VF-<br>M,T | fluffy root mass with trapped silty clay size sediment                                                                  |  |
| 251 | VII-F-2  | 5  | 15  | AB | 10YR               | 7   | /3           | clay with<br>~40% silt                                                                          | 2,M,T         | Tan Clay-rich discrete clumpy soil,<br>minor OM <5%, clumps <1cm                                                        |  |
| 252 | VII-F-2  | 15 | 30  | В  | 10YR               | 7   | /2           | clay with<br>~30% silt                                                                          | 1,F-M,T       | Tan Clay-rich discrete clumpy soil,<br>minor OM <5%, clumps <1cm                                                        |  |
| 253 | VII-F-2  | 30 | 60  | В  | 10YR<br>&<br>7.5YR | 7   | /3 and<br>/4 | clay with<br>~20% silt                                                                          | 1,F,T         | Tan Clay-rich discrete clumpy soil,<br>minor OM <5%, clumps <3cm.<br>The insides of the large clumps<br>gradate to pink |  |
| 254 | VII-OC-2 | 0  | 5   | OA | 7.5YR              | 3   | /2           | silt with ~30%<br>clay content<br>for clumping                                                  | 3,F,T         | medium brown clumpy soils with<br>silty clay and lots of fine roots,<br>some angular rocks thrown in.<br>OM ~20%?       |  |

| 255 | VII-OC-2 | 5  | 15 | A  | 7.5YR | 4   | /2 | silt with ~30%<br>clay content<br>for clumping                                       | 3,F,T        | same as last but more rocks (~10-15%?), clumping is finer                                        |  |
|-----|----------|----|----|----|-------|-----|----|--------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------|--|
| 256 | VII-OC-3 | 0  | 5  | 0  | 5YR   | 2.5 | /2 | silt                                                                                 | 3,VF-<br>F,T | dark dark brown, organic rick<br>clumpy soil, looks like new potting<br>soil but with more roots |  |
| 257 | VII-OC-3 | 5  | 15 | OA | 5YR   | 4   | /3 | silt with ~25%<br>clay content,<br><10% angular<br>pebbles and<br>small gravel       |              | medium brown silty soil with OM <20%, clay content in soil making it clumpy, minor angular rocks |  |
| 258 | VII-OC-4 | 0  | 5  | OA | 5YR   | 4   | /3 | silt with ~20%<br>clay content,<br>25% angular<br>pebbles and<br>gravel              | 3,M,T        | medium brown, very rocky, OM ~<br>25-35%                                                         |  |
| 259 | VII-OC-4 | 5  | 10 | A  | 5YR   | 5   | /4 | silt with ~15%<br>clay, small<br>gravel and<br>pebbles<br>~20%                       | 2,M,T        | reddish brown, similar texture as<br>soil above, OM ~15% or less                                 |  |
| 260 | VII-OC-5 | 0  | 5  | OA | 7.5YR | 4   | /3 | mix of silt and clay60/40                                                            | 3,F-M,T      | medium brown, very rocky, OM ~ 25-35%                                                            |  |
| 261 | VII-OC-6 | 0  | 5  | OA | 7.5YR | 4   | /2 | silt with ~15%<br>pebbles and<br>small gravel,<br>25% clay                           | 3,F,T        | medium brown, very rocky, OM ~<br>25-35%                                                         |  |
| 262 | VII-OC-6 | 5  | 10 | A  | 5YR   | 5   | /2 | silt with ~20%<br>clay nodules<br><1cm and<br>dispersed<br>paler clay,<br>some rocks | 3,F,T        | medium brown mottled with specks of tan                                                          |  |
| 263 | VII-OC-7 | 0  | 5  | OA | 7.5YR | 5   | /3 | silt with ~20%<br>clay contents,<br><10% peb-<br>bles                                | 3,VF,T       | medium brown, very rocky, OM ~<br>25-35%                                                         |  |
| 264 | VII-OC-7 | 5  | 10 | OA | 7.5YR | 6   | /3 | Clay 30% silt                                                                        | 2,F,T        | silty clay, medium brown, small<br>roots, specks of reddish dirt here<br>and there. OM~15%       |  |
| 265 | VII-OC-8 | 0  | 5  | 0  | 5YR   | 4   | /2 | silt                                                                                 | 3,VF,T       | OM ~40%. relatively homogenous for an outcrop soil                                               |  |
| 266 | VII-OC-8 | 5  | 15 | OA | 7.5YR | 6   | /3 | Silt-clay-sand                                                                       | 3,F,T        | clumpy silty soil with small roots, OM~20%. Medium brown                                         |  |
| 267 | VII-OC-8 | 15 | 25 | Α  | 7.5YR | 6   | /3 | clay, silt/fine<br>sand ~40%                                                         | 2,M,T        | more clay rich than layers above, OM ~15%. Medium brown                                          |  |
| 268 | VII-OC-9 | 0  | 5  | 0  | 7.5YR | 6   | /3 | Silt-clay-sand                                                                       | 3,F,T        | clumpy silty soil with small roots, OM~20%. Medium brown                                         |  |
| 269 | VII-OC-9 | 5  | 15 | OA | 7.5YR | 6   | /3 | Silt-clay-sand                                                                       | 3,F,T        | clumpy silty soil with small roots, OM~20%. Medium brown                                         |  |
| 270 | VII-OC-9 | 15 | 30 | A  | 7.5YR | 6   | /4 | Silt, <20%<br>clay, some<br>sand?                                                    | 3,F,T        | reddish silt/clay, medium brown<br>red color, large lumps, fine roots.<br>OM ~50%                |  |
| 271 | VIII-F-2 | 0  | 5  | 0  | 7.5YR | 5   | /2 | silt. Mostly roots.                                                                  | 3+,F-<br>M,T | root web with grayish brown OM                                                                   |  |

| 272 | VIII-F-2  | 5  | 15 | 0  | 7.5YR | 6   | /3           | silt                                                         | 3,F-M,T       | lots of fluffy roots, semi-<br>decomposed forest floor OM<br>~45%. medium brown                                              |  |
|-----|-----------|----|----|----|-------|-----|--------------|--------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|--|
| 273 | VIII-F-2  | 15 | 30 | 0  | 7.5YR | 4   | /2           | silt                                                         | 3+,F-<br>M,T  | lots of fluffy roots, semi-<br>decomposed forest floor OM<br>~45%. slightly less undecom-<br>posed twig/leaf/pinecone litter |  |
| 274 | VIII-F-2  | 30 | 60 | AB | 7.5YR | 5   | /2           | Clay                                                         | 1,F,T         | clay clumps coated in silty black OM                                                                                         |  |
| 275 | VIII-F-3  | 0  | 5  | AB | 7.5YR | 6   | /3           | Clay, 40%<br>sand+silt                                       | 2,F,T         | clumpy clay-rich tan sediment<br>with crumbly texture from silt sand<br>content                                              |  |
| 276 | VIII-F-3  | 5  | 15 | AB | 10YR  | 8   | /2           | Clay, 30%<br>sand+ silt                                      | 1,M,T         | same as last but most clay,<br>slightly lighter color, bit less OM<br>cover (<5%)                                            |  |
| 277 | VIII-F-3  | 15 | 30 | В  | 10YR  | 8   | /2           | Clay, 20%<br>sand + silt                                     | 1,M,T         | tan to reddish tan clay with slight sandy silt texture                                                                       |  |
| 278 | VIII-F-3  | 30 | 60 | В  | 10YR  | 8   | /2           | Clay, 20%<br>sand + silt                                     | 0             | same as last                                                                                                                 |  |
| 279 | VIII-OC-5 | 0  | 10 | 0  | 7.5YR | 5   | /2           | silt with a few rocks                                        | 3,F,T         | OM fine roots with silty dark brown material. OM ~30%                                                                        |  |
| 280 | VIII-OC-5 | 10 | 15 | 0  | 7.5YR | 5   | /2           | silt with a few rocks                                        | 3,F-M,T       | OM fine roots with silty dark<br>brown material. OM ~30%                                                                     |  |
| 281 | VIII-OC-6 | 0  | 5  | 0  | 7.5YR | 5   | /2           | silt with a few rocks                                        | 1,F,T         | OM fine roots with silty dark brown material. OM ~30%                                                                        |  |
| 282 | VIII-OC-6 | 5  | 10 | OA | 7.5YR | 5   | /3           | silt with a few rocks                                        | 2,F-M,T       | OM fine roots with silty dark brown material. OM ~20%                                                                        |  |
| 283 | VIII-F-1  | 0  | 5  | 0  | 7.5YR | 5   | /1           | silt                                                         | 3+,F-<br>M,T  | immature organic soil, OM >50%, some live moss still. Tons of roots                                                          |  |
| 284 | VIII-F-1  | 5  | 15 | 0  | 7.5YR | 3   | /3           | silt                                                         | 2-3,F-<br>M,T | organic rich brown soil OM ~40%                                                                                              |  |
| 285 | VIII-F-1  | 15 | 30 | 0  | 7.5YR | 4   | /3           | silt                                                         | 3,F-M,T       | organic rich brown soil OM ~40%,<br>lots of roots and wood. Slight<br>mottle of grey clay                                    |  |
| 286 | VIII-F-1  | 30 | 60 | AB | 7.5YR | 5&3 | /1 and<br>/2 | Clay, 20% silt                                               | 1,M,T         | grey clay nuggets covered in dark brown organic silt                                                                         |  |
| 287 | VIII-F-1  | 60 | 70 | В  | 7.5YR | 5   | /1           | Clay                                                         | 0             | grey saturated clay                                                                                                          |  |
| 288 | VIII-OC-1 | 0  | 5  | OA | 5YR   | 4   | /3           | silt with mixed<br>sand/clay,<br>pebbles                     | 1,F,T         | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                     |  |
| 289 | VIII-OC-1 | 5  | 10 | A  | 5YR   | 5   | /3           | silt with mixed<br>sand/clay,<br>pebbles.<br>Pebbles<br>~10% | 2,M,T         | same as above but lighter brown color and more pebbles                                                                       |  |
| 290 | VIII-OC-2 | 0  | 5  | 0  | 7.5YR | 3   | /3           | silt with mixed<br>sand/clay,<br>pebbles.<br>Pebbles<br>~10% | 2,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                     |  |

| 291 | VIII-OC-2 | 5  | 10  | 0  | 7.5YR | 4   | /3           | silt with mixed<br>sand/clay,<br>pebbles.<br>Pebbles<br>~10%         | 3,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                           |  |
|-----|-----------|----|-----|----|-------|-----|--------------|----------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 292 | VIII-OC-2 | 10 | 20  | OA | 7.5YR | 4   | /3           | silt with mixed<br>sand/clay,<br>pebbles.<br>Pebbles<br>~10%         | 3,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                           |  |
| 293 | VIII-OC-3 | 0  | 5   | 0  | 7.5YR | 4   | /2           | silt with mixed<br>sand/clay,<br>pebbles                             | 3,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                           |  |
| 294 | VIII-OC-3 | 5  | 10  | 0  | 7.5YR | 5   | /3           | silt with mixed<br>sand/clay,<br>pebbles                             | 3,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                           |  |
| 295 | VIII-OC-4 | 0  | 5   | 0  | 7.5YR | 4   | /2           | silt with mixed<br>sand/clay,<br>pebbles                             | 3,F-M,T       | Semi-homogenous organic rich<br>outcrop soil (includes angular<br>pebbles <1cm), OM ~30%                                           |  |
| 296 | VIII-OC-4 | 5  | 20  | A  | 7.5YR | 4   | /6           | silt with mixed<br>sand/clay,<br>pebbles. An-<br>gluar gravel<br>15% | 1,M,T         | Semi-homogenous reddish brown<br>outcrop soil (includes angular<br>pebbles <1cm), OM <15%                                          |  |
| 297 | VIII-F-4  | 0  | 5   | 0  | 7.5YR | 3   | /2           | silt with mixed<br>sand/clay,<br>pebbles                             | 3,F-C,T       | Semi-homogenous organic rich<br>soil OM ~35%                                                                                       |  |
| 298 | VIII-F-4  | 5  | 15  | 0  | 7.5YR | 3   | /2           | silt with mixed<br>sand/clay,<br>pebbles, clay<br>30%                | 2,F-C,T       | Semi-homogenous organic rich<br>soil OM ~25%                                                                                       |  |
| 299 | VIII-F-4  | 15 | 30  | 0  | 7.5YR | 5   | /2           | silty OM clay                                                        | 3,M-<br>C,T   | mix of brown OM and clay. OM ~20%? has some roots etc                                                                              |  |
| 300 | VIII-F-4  | 30 | 60  | В  | 7.5YR | 7   | /2           | Clay                                                                 | 0             | tan saturated clay                                                                                                                 |  |
| 301 | VIII-F-4  | 60 | 90  | В  | 7.5YR | 7   | /2           | Clay                                                                 | 0             | tan saturated clay                                                                                                                 |  |
| 302 | VIII-F-5  | 0  | 5   | В  | 7.5YR | 6   | /2           | clay with<br><30%<br>sand+silt                                       | 2,F,T         | tan saturated clay, clumpy and hard                                                                                                |  |
| 303 | VIII-F-5  | 5  | 15  | В  | 7.5YR | 7   | /2           | clay with<br><30%<br>sand+silt                                       | 1-2, F,<br>T  | tan saturated clay, clumpy and hard                                                                                                |  |
| 304 | VIII-F-5  | 15 | 30  | В  | 7.5YR | 7   | /4 and<br>/2 | clay with<br><30%<br>sand+silt                                       | 0-1, VF,<br>T | tan saturated clay, clumpy with<br>sand and other particle content,<br>pink and tan                                                |  |
| 305 | VIII-F-5  | 30 | 60  | В  | 7.5YR | 7   | /4 and<br>/2 | clay with<br><30%<br>sand+silt                                       | 0             | tan saturated clay, clumpy with<br>sand and other particle content.<br>Tan, pinkish, and a few specks of<br>orangey pink (5YR 6/6) |  |
| 306 | VIII-WL-2 | 30 | 60  | В  | 7.5YR | 7&4 | /2           | Clay                                                                 | 1,F,T         | tan clay with blackish traces of silty OM                                                                                          |  |
| 307 | VIII-WL-2 | 60 | 10( | В  | 7.5YR | 7&4 | /2           | Clay with OM                                                         | 0             | Tan Clay-rich discrete clumpy soil,<br>minor OM <5%, clumps <1cm                                                                   |  |
| 308 | VIII-F-5  | 60 | 10( | В  | 7.5YR | 8&7 | /2 and<br>/4 | clay with<br><30%<br>sand+silt                                       | 0             | tan clay with some pink clay, has<br>some sand material or silt mate-<br>rial making it easier to break up                         |  |

| 309 | VIII-WL-1 | 0  | 5   | 0  | 7.5YR | 3 | /3 | silty clay and OM                  | 3+,F-<br>C,T | brown mess of 50% om and silty clay                          |  |
|-----|-----------|----|-----|----|-------|---|----|------------------------------------|--------------|--------------------------------------------------------------|--|
| 310 | VIII-WL-1 | 5  | 15  | 0  | 7.5YR | 3 | /3 | silty clay and OM                  | 3,F-C,T      | brown mess of 30% om and silty clay                          |  |
| 311 | VIII-WL-1 | 15 | 30  | OA | 7.5YR | 3 | /3 | silty clay and<br>OM               | 2,F-C,T      | brown mess of 30% om and silty clay                          |  |
| 312 | VIII-WL-1 | 30 | 60  | OA | 7.5YR | 3 | /3 | silty clay and OM                  | 2,F-M,T      | brown mess of 30% om and silty clay                          |  |
| 313 | VIII-WL-1 | 60 | 100 | В  | 10YR  | 8 | /2 | Clay                               | 0            | tan saturated clay                                           |  |
| 314 | VIII-WL-2 | 0  | 5   | 0  | 7.5YR | 4 | /2 | silty clay and OM                  | 3+,F-<br>C,T | brown mess of 50% om and silty clay                          |  |
| 315 | VIII-WL-2 | 5  | 15  | В  | 5YR   | 5 | /2 | clay and<br>~45% silt              | 3,F-C,T      | mix of greyish clay and dark<br>brown clay/silt with OM ~20% |  |
| 316 | VIII-WL-2 | 15 | 30  | В  | 5YR   | 5 | /2 | Clay                               | 1,F-M,T      | mix of tan and dark brown semi-<br>saturated clay            |  |
| 317 | IX-OC-1   | 0  | 5   | 0  | 7.5YR | 6 | /4 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil,<br>brown, OM ~35%                |  |
| 318 | IX-OC-1   | 5  | 15  | A  | 10YR  | 8 | /3 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, tan, sandier, OM<20%             |  |
| 319 | IX-OC-2   | 0  | 3   | 0  | 7.5YR | 4 | /2 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, dark<br>brown, OM ~35%           |  |
| 320 | IX-OC-2   | 3  | 10  | A  | 7.5YR | 7 | /3 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, tan, sandier, OM<20%             |  |
| 321 | IX-OC-2   | 10 | 25  | A  | 7.5YR | 8 | /3 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, tan,<br>sandier, OM<20%          |  |
| 322 | IX-OC-3   | 0  | 5   | 0  | 7.5YR | 3 | /3 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil,<br>chocolate brown, OM ~35%      |  |
| 323 | IX-OC-3   | 5  | 10  | A  | 5YR   | 4 | /4 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, rusty color, sandier, OM<20%     |  |
| 324 | IX-OC-4   | 0  | 6   | 0  | 7.5YR | 3 | /1 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil,<br>ddark greysih brown, OM ~35%  |  |
| 325 | IX-OC-4   | 6  | 15  | A  | 7.5YR | 7 | /3 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, tan, sandier, OM<20%             |  |
| 326 | IX-OC-4   | 15 | 20  | A  | 7.5YR | 6 | /4 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, tan,<br>sandier, OM<20%          |  |
| 327 | IX-OC-5   | 0  | 7   | 0  | 5YR   | 3 | /1 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, dark<br>rich brown, OM ~35%      |  |
| 328 | IX-OC-5   | 7  | 15  | A  | 5YR   | 4 | /4 | assorted clay<br>through<br>gravel | 3,F-M,T      | rocky heterogenous OC soil, rusty color, sandier, OM<20%     |  |

| 329 | IX-F-3  | 0  | 5  | 0    | 5YR   | 3 | /1   | assorted clay<br>through<br>gravel                                             | 3+,F-<br>C,T  | leaf and forest floor litter, un-<br>evenly decomposed, fluffy, brown.<br>Small pinecone. Lots of roots. OM<br>~50%          |  |
|-----|---------|----|----|------|-------|---|------|--------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------|--|
| 330 | IX-F-3  | 5  | 15 | E    | 10YR  | 8 | /2.5 | sand/silt                                                                      | 2,F-M,T       | dry sand/silt. Some powder, some clumps.                                                                                     |  |
| 331 | IX-F-3  | 15 | 30 | E    | 10YR  | 8 | /2.5 | sand/silt                                                                      | 1,F-M,T       | very dry sand/silt. Mostly pow-<br>dery, a bit clumpy                                                                        |  |
| 332 | IX-F-3  | 30 | 60 | Е    | 10YR  | 8 | /2   | sand/silt                                                                      |               | very dry sand/silt. Powdery.                                                                                                 |  |
| 333 | IX-F-3  | 60 | 10 | E    | 10YR  | 8 | /2   | sand/silt                                                                      | 0             | very dry sand/silt. Powdery.                                                                                                 |  |
| 334 | II-F-1  | 0  | 5  | OAB  | 5YR   | 6 | /3   | silty OM,<br>roots, clay                                                       | 3,F-C,T       | brown OM silty material (45%),<br>lots of roots, minor clay                                                                  |  |
| 335 | II-F-1  | 5  | 15 | Ва   | 7.5YR | 6 | /3   | clay with silty<br>OM coating                                                  | 1-2, F,<br>T  | clay with silty OM coating (~5%)                                                                                             |  |
| 336 | II-F-1  | 15 | 30 | В    | 7.5YR | 6 | /3   | clay with silty<br>OM coating                                                  | 1,F,T         | clay with silty OM coating (~3%)                                                                                             |  |
| 337 | II-F-1  | 30 | 60 | В    | 7.5YR | 7 | /4   | Clay                                                                           | 0             | pinkish tan clay                                                                                                             |  |
| 338 | II-F-1  | 60 | 10 | В    | 7.5YR | 7 | /4   | Clay                                                                           | 0             | pinkish tan clay                                                                                                             |  |
| 339 | IV-WL-5 | 0  | 5  | OA e | 7.5YR | 7 | /3   | silt, half<br>sand+clay                                                        | 3+,VF-<br>C,T | lots of roots. OM is somewhat<br>well-decomposed other than<br>roots. Clumpy. Organics ~20%                                  |  |
| 340 | IV-WL-5 | 5  | 15 | A    | 7.5YR | 7 | /3   | Clay<br><40%,silt,<br>sand, silt                                               | 3,VF-<br>C,T  | roots, clumpy brown soil, some<br>OM <15%                                                                                    |  |
| 341 | IV-WL-5 | 15 | 30 | A    | 7.5YR | 6 | /3   | Clay <50%,<br>sand, silt                                                       | 2,VF-<br>F,T  | same, slight increase in grain compaction. Clumy                                                                             |  |
| 342 | IV-WL-5 | 30 | 60 | AB   | 5YR   | 6 | /3   | Clay (~20%<br>coarser up to<br>coarse sand)                                    | 2, VF-F,<br>T | same but much more clay. Hard                                                                                                |  |
| 343 | IV-WL-5 | 60 | 10 | Be   | 10YR  | 7 | /1   | sandy clay                                                                     | 1, VF-F,<br>T | clumpy and hard, similar to above layer but LESS clay content, more sandy.                                                   |  |
| 344 | IV-F-2  | 0  | 5  | 0    | 7.5YR | 5 | /3   | fine dusty silt<br>to wood chips<br>1"                                         | 3,M,T         | OM ~45%. big fluffy root clumps,<br>dusty brown soil, partially well-<br>decomposed. Medium brown                            |  |
| 345 | IV-F-2  | 5  | 20 | OA   | 7.5YR | 3 | /3   | fine dusty silt<br>to wood chips<br>1"                                         | 2,F-M,T       | OM ~45%. less clumps than in<br>layer before. Like potting soil<br>except medium brown and bits of<br>undecomp OM            |  |
| 346 | IV-F-2  | 20 | 30 | A    | 7.5YR | 6 | /3   | coarse silt to<br>sand up to<br>angular small<br>pebbles                       | 1,C,T         | brownish tan sandy silty het-<br>erogenous grain size soil with<br>~10% clumps. OM ~5%                                       |  |
| 347 | IV-F-2  | 30 | 60 | E    | 10YR  | 7 | /3   | coarse silt to<br>sand up to<br>angular small<br>pebbles, clay-<br>rich clumps | 0             | Yellowish tan sandy silty het-<br>erogenous grain size soil with<br>~10% clumps. Looks like more<br>clay content than above. |  |
| 348 | IV-F-2  | 60 | 10 | E    | 10YR  | 7 | /3   | coarse silt to<br>sand up to<br>angular small<br>pebbles, clay-<br>rich clumps | 0             | Yellowish tan sandy silty het-<br>erogenous grain size soil with<br>~10% clumps.                                             |  |

| - |     |                |    |    |     |       |       |              |                                                                   |              |                                                                                                                                      |  |
|---|-----|----------------|----|----|-----|-------|-------|--------------|-------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
|   | 349 | Stockpile<br>1 |    |    | N/A | 10YR  | 7     | /1           | dust to gravel                                                    | 0            | greyish dust up to copious angu-<br>lar gravel.                                                                                      |  |
|   | 350 | Stockpile<br>2 |    |    | N/A | 10YR  | 7     | /1           | dust to gravel                                                    | 0            | greyish dust up to copious angu-<br>lar gravel.                                                                                      |  |
|   | 351 | Stockpile<br>3 |    |    | N/A | 10YR  | 7     | /1           | dust to gravel                                                    | 0            | greyish dust up to copious angu-<br>lar gravel.                                                                                      |  |
|   | 352 | Stockpile<br>4 |    |    | N/A | 10YR  | 7     | /1           | dust to gravel                                                    | 0            | greyish dust up to copious angu-<br>lar gravel.                                                                                      |  |
|   | 353 | Stockpile<br>5 |    |    | N/A | 10YR  | 7     | /2           | dust to gravel                                                    | 0            | greyish dust up to copious angu-<br>lar gravel. Slightly more yellow than other stockpile samples                                    |  |
|   | 354 | III-OC-8       | 0  | 5  | 0   | 7.5YR | 7     | /3           | Clay (<40%)<br>to coarse<br>angular<br>pebbes                     | 3,F-M,T      | OM ~35%. Clay-rich clumping.<br>Medium flat brown                                                                                    |  |
|   | 355 | III-OC-8       | 5  | 15 | OA  | 7.5YR | 7     | /3           | Clay (<40%)<br>to coarse<br>angular<br>pebbes and<br>small gravel | 3,F-M,T      | OM ~35%. Clay-rich clumping.<br>Medium flat brown                                                                                    |  |
|   | 356 | III-F-1        | 0  | 5  | 0   | 7.5YR | 4 & 6 | /2 and<br>/3 | silty OM ma-<br>terial, clay<br><20%, lots of<br>roots            | 3,VF-<br>C,T | mix of fluffy brown organic dust in<br>root clumps with smaller and<br>harder (but not super hard)<br>clumps of tan-ish mineral soil |  |
|   | 357 | III-OC-8       | 5  | 15 | A   | 7.5YR | 6     | /3           | Clay <35%,<br>silt, sand                                          | 1,VF,T       | looks like tannish clumps from<br>above layer with some slightly<br>lighter clumps, still some root<br>clusters. Lighter colors      |  |
|   | 358 | III-OC-8       | 15 | 30 | E   | 10YR  | 6     | /4           | Clay <30%,<br>silt, sand,<br>gravel                               | 0            | golden brown with clay clumping<br>(Clay<40%), sandy, some gravel<br>possibly                                                        |  |
|   | 359 | III-OC-8       | 30 | 70 | E   | 10YR  | 6     | /3           | Clay <30%,<br>silt, sand,<br>gravel                               | 0            | golden brown with clay clumping<br>(Clay<40%), sandy, some gravel<br>possibly                                                        |  |

#### Appendix VIII: Sample Photographs

See electronic supplemental material. Sample photographs were taken after samples were laid out to dry in the ASU lab, preserving some sense of relative locations of drying samples and original sample condition.

## Appendix IX: SEM Photographs

Additional SEM photographs can be shared upon request in an electronic format.

### Appendix X: Additional MLA data

The following appendix includes selected additional tables of MLA data, including duplicate co-variance statistics for gangue minerals. Supplemental electronic files with more information can be supplied upon request. The following two tables show the covariance statistics for phases not included in the MLA QA/QC section in the main body of the report.

| Gold             | Sam                             | As                          |               | As s       | ulfide     |      | Fe            | oxide      | s with     | As   | Or            | ganics     | s with     | As   | F             | e-As-C     | Ca∕Mn      | oxide | AI-           | Mn-Fe      | -As ox     | ide  |
|------------------|---------------------------------|-----------------------------|---------------|------------|------------|------|---------------|------------|------------|------|---------------|------------|------------|------|---------------|------------|------------|-------|---------------|------------|------------|------|
| er<br>Sam<br>ple | pie                             | µg/g<br>(mea<br>s-<br>ured) | area<br>(µm²) | grain<br>s |            | %CV   | area<br>(µm²) | grain<br>s |            | %CV  |
| IVWL<br>2-d      | 010<br>dup                      | 3400                        | 22.5          | 6          | area       | 7.1  | 1E+0          | 5825       | area       | 7.2  | 8790          | 1409       | area       | 2.4  | 6193          | 1020       | area       | 1.3   | 2.1           | 2          | area       | 141  |
| IVWL<br>2-d      | 10                              | 3400                        | 20.3          | 4          | grain<br>s | 28.3 | 9728          | 5460       | grain<br>s | 4.6  | 8491          | 1494       | grain<br>s | 4.1  | 6078          | 9697       | grain<br>s | 3.6   | 0.0           | 0          | grain<br>s | 141  |
| lIIF2-<br>b      | 028<br>dup                      | 840                         | 0.0           | 0          | area       | 0.0  | 157           | 10         | area       | 12.3 | 2160          | 190        | area       | 24.2 | 8693          | 355        | area       | 21.4  | 65.5          | 5          | area       | 94.3 |
| lIIF2-<br>b      | 28                              | 840                         | 0.0           | 0          | grain<br>s | 0.0  | 187           | 16         | grain<br>s | 32.6 | 3052          | 350        | grain<br>s | 41.9 | 6405          | 444        | grain<br>s | 15.8  | 13.1          | 3          | grain<br>s | 35.4 |
| IIOC<br>5-a      | 070_<br>1                       | 1700                        | 0.0           | 0          | area       | 0.0  | 5254          | 1691       | area       | 18.5 | 3E+0          | 5879       | area       | 50.7 | 1E+0          | 3821       | area       | 57.1  | 232           | 11         | area       | 32.4 |
| IIOC<br>5-a      | 70                              | 1700                        | 0.0           | 0          | grain<br>s | 0.0  | 4037          | 1320       | grain<br>s | 17.4 | 1E+0          | 4475       | grain<br>s | 19.2 | 4338          | 3350       | grain<br>s | 9.3   | 369           | 8          | grain<br>s | 22.3 |
| IIOC<br>5-b      | 071<br>redo                     | 1300                        | 0.0           | 0          | area       | 0.0  | 1536          | 39         | area       | 4.4  | 7342          | 223        | area       | 124  | 4598          | 120        | area       | 59.5  | 3889          | 23         | area       | 99.7 |
| IIOC<br>5-b      | 071_<br>1                       | 1300                        | 0.0           | 0          | grain<br>s | 0.0  | 1636          | 39         | grain<br>s | 0.0  | 1E+0          | 657        | grain<br>s | 69.7 | 1128          | 282        | grain<br>s | 57.0  | 2248          | 229        | grain<br>s | 116  |
| IIOC<br>11-b     | 086<br>dup                      | 7800                        | 0.0           | 0          | area       | 0.0  | 7371          | 166        | area       | 43.6 | 8771          | 2292       | area       | 31.5 | 5580          | 1797       | area       | 66.6  | 2E+0          | 1254       | area       | 45.2 |
| IIOC<br>11-b     | 86                              | 7800                        | 0.0           | 0          | grain<br>s | 0.0  | 1394          | 430        | grain<br>s | 62.6 | 1E+0          | 3067       | grain<br>s | 20.5 | 2E+0          | 2987       | grain<br>s | 35.2  | 3E+0          | 1175       | grain<br>s | 4.6  |
| IIIOC<br>2-b     | 123<br>dup                      | 1300                        | 0.0           | 0          | area       | 0.0  | 1083          | 37         | area       | 128  | 9020          | 299        | area       | 39.3 | 4017          | 927        | area       | 72.8  | 7476          | 162        | area       | 51.7 |
| IIIOC<br>2-b     | 123                             | 1300                        | 0.0           | 0          | grain<br>s | 0.0  | 56.1          | 4          | grain<br>s | 114  | 5095          | 217        | grain<br>s | 22.5 | 1286          | 400        | grain<br>s | 56.2  | 3471          | 88         | grain<br>s | 41.9 |
| IVOC<br>4-b      | 148<br>dup                      | 5100                        | 0.0           | 0          | area       | 0.0  | 3776          | 156        | area       | 43.4 | 1E+0          | 4179       | area       | 75.1 | 8278          | 4245       | area       | 67.7  | 6416          | 41         | area       | 39.5 |
| IVOC<br>4-b      | 148                             | 5100                        | 0.0           | 0          | grain<br>s | 0.0  | 7115          | 377        | grain<br>s | 58.6 | 4E+0          | 8839       | grain<br>s | 50.6 | 2E+0          | 1022       | grain<br>s | 58.4  | 1139          | 64         | grain<br>s | 31.0 |
| VWL<br>2-b       | 169<br>dup                      | 1100                        | 0.0           | 0          | area       | 0.0  | 4748          | 245        | area       | 5.4  | 7125          | 480        | area       | 3.7  | 1934          | 1415       | area       | 14.1  | 1933          | 97         | area       | 52.7 |
| VWL<br>2-b       | 169                             | 1100                        | 0.0           | 0          | grain<br>s | 0.0  | 5122          | 228        | grain<br>s | 5.1  | 6757          | 383        | grain<br>s | 15.9 | 1583          | 1001       | grain<br>s | 24.2  | 883           | 29         | grain<br>s | 76.3 |
| VIWL<br>1A-b     | 196<br>dup                      | 420                         | 167           | 31         | area       | 30.5 | 0.0           | 0          | area       | 141  | 2086          | 74         | area       | 37.7 | 6397          | 137        | area       | 19.9  | 0.0           | 0          | area       | 0.0  |
| VIWL<br>1A-b     | 196                             | 420                         | 259           | 32         | grain<br>s | 2.2  | 24.8          | 5          | grain<br>s | 141  | 1208          | 39         | grain<br>s | 43.8 | 4821          | 102        | grain<br>s | 20.7  | 0.0           | 0          | grain<br>s | 0.0  |
| VIOC<br>4-b      | 203                             | 1300                        | 0.0           | 0          | area       | 0.0  | 104           | 9          | area       | 1.0  | 7147          | 217        | area       | 2.4  | 9362          | 413        | area       | 11.0  | 4314          | 684        | area       | 29.2 |
| VIOC<br>4-b      | 203<br>dup<br>**XB<br>SES<br>TD | 1300                        | 0.0           | 0          | grain<br>s | 0.0  | 106           | 6          | grain<br>s | 28.3 | 7393          | 187        | grain<br>s | 10.5 | 1094          | 278        | grain<br>s | 27.6  | 2836          | 673        | grain<br>s | 1.1  |

| Gold<br>er<br>Sam<br>ple | Sam<br>ple       | Silicate<br>gangue |      | Carbonate<br>gangue |      | oxide<br>gangue |      | sulfide<br>gangue |      | organic<br>gangue |      | unknowns  |      | low counts |      |
|--------------------------|------------------|--------------------|------|---------------------|------|-----------------|------|-------------------|------|-------------------|------|-----------|------|------------|------|
|                          |                  | Area<br>%          | %CV  | Area<br>%           | %CV  | Area<br>%       | %CV  | Area<br>%         | %CV  | Area<br>%         | %CV  | Area<br>% | %CV  | Area<br>%  | %CV  |
| IVW<br>L2-d              | 010<br>dup       | 88.7               | 1.4  | 6.11                | 18.1 | 0.63            | 13.5 | 0.23              | 15.6 | 1.43              | 0.3  | 2.29      | 12.1 | 0.05       | 14.9 |
|                          | 10               | 87.0               | -    | 7.91                | -    | 0.77            | -    | 0.28              | -    | 1.44              | -    | 1.93      | -    | 0.04       | -    |
| IIIF2                    | 028<br>dup       | 90.3               | 3.3  | 0.34                | 34.3 | 0.16            | 1.1  | 0                 | 122  | 5.86              | 23.6 | 0.34      | 31.8 | 2.61       | 120  |
| d-                       | 28               | 94.5               | -    | 0.55                | -    | 0.16            | -    | 0                 | -    | 4.18              | -    | 0.22      | -    | 0.21       | -    |
| IIOC                     | 070_<br>1        | 73.4               | 14.2 | 0.01                | 35.0 | 0.91            | 7.3  | 0.01              | 45.6 | 20                | 92.8 | 1.83      | 73.5 | 0.49       | 137  |
| 5-a                      | 70               | 60.0               | -    | 0.01                | -    | 0.82            | -    | 0.01              | -    | 4.16              | -    | 0.58      | -    | 33         | -    |
| lioc                     | 071<br>redo      | 97.4               | 5.4  | 0.01                | 6.6  | 0.33            | 3.0  | 0                 | 25.7 | 0.16              | 133  | 0.12      | 88.3 | 1.92       | 22.1 |
| 5-b                      | 071_<br>1        | 90.2               | -    | 0.01                | -    | 0.32            | -    | 0                 | -    | 5.58              | -    | 0.53      | -    | 2.63       | -    |
| lioc                     | 086<br>dup       | 90.8               | 24.6 | 0                   | 83.0 | 0.73            | 34.5 | 0                 | 52.1 | 5.57              | 80.5 | 1.03      | 24.3 | 0.93       | 121  |
| 11-D                     | 86               | 63.9               | -    | 0.01                | -    | 1.2             | -    | 0                 | -    | 20.3              | -    | 0.73      | -    | 12.2       | -    |
|                          | 123<br>dup       | 96.9               | 0.1  | 0                   | 80.7 | 0.46            | 18.8 | 0                 | 70.6 | 1.35              | 10.4 | 0.43      | 7.8  | 0.72       | 23.3 |
| 02-0                     | 123              | 96.7               | -    | 0.01                | -    | 0.6             | -    | 0                 | -    | 1.16              | -    | 0.38      | -    | 1.01       | -    |
| IVO                      | 148<br>dup       | 87.4               | 11.4 | 0.05                | 106  | 0.8             | 117  | 0                 | 92.6 | 3.24              | 15.5 | 0.56      | 5.2  | 7.19       | 27.9 |
| 04-0                     | 148              | 74.3               | -    | 0.01                | -    | 8.43            | -    | 0                 | -    | 4.04              | -    | 0.52      | -    | 10.7       | -    |
| VWL                      | 169<br>dup       | 92.2               | 0.9  | 0.04                | 105  | 1.49            | 11.2 | 0.04              | 16.2 | 1.87              | 27.2 | 0.47      | 40.8 | 3.69       | 3.1  |
| 2-0                      | 169              | 93.4               | -    | 0.01                | -    | 1.27            | -    | 0.05              | -    | 1.27              | -    | 0.26      | -    | 3.53       | -    |
| VIW<br>L1A-<br>b         | 196<br>dup       | 82.9               | 0.6  | 13.9                | 0.3  | 0.77            | 5.2  | 0.23              | 24.5 | 0.63              | 5.5  | 0.6       | 13.9 | 0.84       | 105  |
|                          | 196              | 83.6               | -    | 13.8                | -    | 0.83            | -    | 0.33              | -    | 0.68              | -    | 0.49      | -    | 0.13       | -    |
|                          | 203              | 77.5               | 4.0  | 0                   | 33.3 | 2.58            | 7.1  | 0                 | 63.2 | 3.59              | 2.7  | 0.43      | 11.0 | 15.7       | 25.2 |
| VIO<br>C4-b              | 203<br>dup<br>** | 82.0               | -    | 0.01                | -    | 2.85            | -    | 0                 | -    | 3.46              | -    | 0.5       | -    | 10.9       | -    |

Table: Covariance statistics for gangue mineral categories in GXMAP runs

| Gold<br>er<br>Sam<br>ple                                                                                                                                                                                                                                                                                                                                                                                 | Sam<br>ple | Silicate<br>gangue |     | Carbonate<br>gangue |     | oxide<br>gangue |     | sulfide<br>gangue |     | organic<br>gangue |     | unknowns  |     | low counts |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|-----|---------------------|-----|-----------------|-----|-------------------|-----|-------------------|-----|-----------|-----|------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                          |            | Area<br>%          | %CV | Area<br>%           | %CV | Area<br>%       | %CV | Area<br>%         | %CV | Area<br>%         | %CV | Area<br>% | %CV | Area<br>%  | %CV |
| Notes: Gangue mineral categories include sums of all minerals in in the library and modal mineralogy, with the exception of phosphates (monazite and apatite). Organic gangue includes carbon and the "or-<br>ganics w/ Feox, no As" phase. Any big variations in the organics gangue duplicates come from the car-<br>bon phase.<br>**The duplicate for sample 203 was run as an XBSE_STD, not a GXMAP. |            |                    |     |                     |     |                 |     |                   |     |                   |     |           |     |            |     |

| Table:      | Table: Area % Modal Mineralogy for all GXMAP runs (simplified, no phosphates) |        |                |                             |                                  |                          |                          |               |           |                 |          |          |  |
|-------------|-------------------------------------------------------------------------------|--------|----------------|-----------------------------|----------------------------------|--------------------------|--------------------------|---------------|-----------|-----------------|----------|----------|--|
| #           | As <sub>2</sub> O <sub>3</sub>                                                | Aspy   | As-<br>sulfide | Fe Ox-<br>ides -<br>with As | Organics<br>w/<br>As,Fe,Ca<br>Ox | Fe-As-<br>Ca/Mn<br>oxide | Al-Mn-<br>Fe-As<br>oxide | ROs?          | Silicates | carbon-<br>ates | sulfides | organics |  |
| 2           | 0.0007                                                                        | 0.1822 | 0              | 0.317                       | 0.0218                           | 0.0774                   | 0                        | Yes,<br>260+  | 77.837    | 17.148          | 0.289    | 1.0046   |  |
| 3           | 0.0001                                                                        | 0.0431 | 0              | 0.0348                      | 0.0021                           | 0.0122                   | 0.0001                   | Yes,<br>50+   | 94.877    | 1.8388          | 0.0309   | 2.1178   |  |
| 8           | 3E-06                                                                         | 0.0033 | 0.0001         | 0.0129                      | 0.0037                           | 0.02                     | 0                        | yes           | 97.697    | 1.2905          | 0.0216   | 0.2817   |  |
| 9           | 0                                                                             | 0.0074 | 0              | 0.0419                      | 0.0063                           | 0.0729                   | 0                        | yes           | 94.181    | 2.9724          | 0.0682   | 0.794    |  |
| 10          | 0.0002                                                                        | 0.0332 | 0.0001         | 0.3237                      | 0.0283                           | 0.2023                   | 0                        | Yes,<br>200++ | 86.972    | 7.9062          | 0.2836   | 1.438    |  |
| 010<br>dup  | 0.0005                                                                        | 0.0257 | 0.0001         | 0.2674                      | 0.0218                           | 0.1538                   | 5E-06                    | Yes,<br>200++ | 88.716    | 6.109           | 0.2273   | 1.4326   |  |
| 11          | 0.0009                                                                        | 0.0364 | 0.0001         | 0.1414                      | 0.051                            | 0.1138                   | 6E-06                    | Yes,<br>100++ | 88.813    | 6.5722          | 0.1905   | 1.6273   |  |
| 17          | 0.046                                                                         | 0      | 0              | 0.0144                      | 0.334                            | 0.1792                   | 0.2547                   | yes           | 82.017    | 0.0354          | 0.0006   | 6.5296   |  |
| 18          | 0.0031                                                                        | 0      | 0              | 0.0291                      | 0.4363                           | 0.3431                   | 0.1248                   | none<br>found | 79.229    | 0.0019          | 0.0013   | 18.209   |  |
| 27          | 0.0623                                                                        | 0.0004 | 0              | 0.0056                      | 0.0059                           | 0.0144                   | 0.0019                   | Yes           | 93.365    | 0.3001          | 0.005    | 2.6552   |  |
| 28          | 0.0114                                                                        | 0      | 0              | 0.0004                      | 0.0071                           | 0.0149                   | 3E-05                    | Yes           | 94.548    | 0.5504          | 0.0002   | 4.179    |  |
| 028<br>dup  | 0.008                                                                         | 0.0006 | 0              | 0.0004                      | 0.0049                           | 0.0198                   | 0.0001                   | Yes           | 90.256    | 0.3354          | 0.0027   | 5.8556   |  |
| 70          | 0.5247                                                                        | 0.0019 | 0              | 0.1774                      | 0.5276                           | 0.1906                   | 0.0016                   | Yes,<br>87+   | 59.969    | 0.013           | 0.0059   | 4.1562   |  |
| 070_1       | 0.6159                                                                        | 0.0015 | 0              | 0.2934                      | 1.4192                           | 0.5701                   | 0.0013                   | Yes           | 73.371    | 0.0079          | 0.0116   | 20.024   |  |
| 71          | 0.0172                                                                        | 0      | 0              | 0.0052                      | 0.3578                           | 0.0356                   | 0.0711                   | Yes           | 90.239    | 0.01            | 0.001    | 5.5747   |  |
| 071<br>redo | 0.0032                                                                        | 0.0003 | 0              | 0.0037                      | 0.0178                           | 0.0111                   | 0.0094                   | Yes           | 97.404    | 0.0091          | 0.0014   | 0.1643   |  |
| 72          | 0                                                                             | 0.0001 | 0              | 0.0036                      | 0.0247                           | 0.0177                   | 0.0333                   | none<br>found | 98.271    | 0.0098          | 0.0005   | 0.2097   |  |
| 80          | 0.0156                                                                        | 0      | 0              | 0.0328                      | 0.0778                           | 0.2039                   | 0.0022                   | none<br>found | 68.518    | 0.0058          | 0.0015   | 28.669   |  |
| 081_2       | 0                                                                             | 2E-05  | 0              | 0.0104                      | 0.0556                           | 0.0736                   | 0.0009                   | none<br>found | 95.168    | 0.0438          | 0.0006   | 2.9877   |  |
| Table:     | Area %                         | Modal  | Mineralogy for all GXMAP runs (simplified, no phosphates) |                             |                                  |                          |                          |               |           |                 |          |          |  |
|------------|--------------------------------|--------|-----------------------------------------------------------|-----------------------------|----------------------------------|--------------------------|--------------------------|---------------|-----------|-----------------|----------|----------|--|
| #          | As <sub>2</sub> O <sub>3</sub> | Aspy   | As-<br>sulfide                                            | Fe Ox-<br>ides -<br>with As | Organics<br>w/<br>As,Fe,Ca<br>Ox | Fe-As-<br>Ca/Mn<br>oxide | Al-Mn-<br>Fe-As<br>oxide | ROs?          | Silicates | carbon-<br>ates | sulfides | organics |  |
| 82         | 0                              | 0      | 0                                                         | 0.0029                      | 0.0584                           | 0.0613                   | 0.0093                   | none<br>found | 85.198    | 0.0058          | 0.0012   | 10.706   |  |
| 83         | 0.147                          | 0      | 9E-06                                                     | 0.3115                      | 4.1952                           | 2.4849                   | 0.3687                   | Yes,<br><50   | 55.147    | 0.008           | 0.0033   | 29.465   |  |
| 84         | 0.0027                         | 0.0002 | 0                                                         | 0.0981                      | 0.7373                           | 0.5841                   | 0.2364                   | Yes           | 90.001    | 0.0068          | 0.0007   | 6.034    |  |
| 85         | 0.1642                         | 0      | 0                                                         | 0.0397                      | 1.7903                           | 0.4881                   | 0.3656                   | Yes,<br><15   | 77.91     | 0.0104          | 0.0004   | 16.286   |  |
| 86         | 0.0315                         | 0      | 0                                                         | 0.0328                      | 0.3245                           | 0.3643                   | 0.73                     | Yes           | 63.874    | 0.0083          | 0.0019   | 20.288   |  |
| 086<br>dup | 0.0232                         | 0      | 0                                                         | 0.0214                      | 0.2551                           | 0.1623                   | 0.4659                   | Yes           | 90.805    | 0.0021          | 0.0009   | 5.5665   |  |
| 93         | 0.0025                         | 0.0176 | 0.0118                                                    | 0.0102                      | 0.1539                           | 0.8098                   | 0                        | Yes           | 83.459    | 1.3382          | 0.1704   | 9.6139   |  |
| 118        | 0.0012                         | 0.0113 | 0.0044                                                    | 0.0055                      | 0.0209                           | 0.0487                   | 0                        | Yes           | 91.285    | 0.2106          | 0.0122   | 5.5908   |  |
| 119        | 0.0002                         | 0.0049 | 0.0031                                                    | 0.0028                      | 0.0062                           | 0.0419                   | 0                        | Yes           | 89.982    | 0.8983          | 0.0255   | 3.1495   |  |
| 122        | 0.0894                         | 0      | 0                                                         | 0.0115                      | 0.077                            | 0.2435                   | 0.092                    | Yes           | 85.751    | 0.1983          | 0.0017   | 7.9099   |  |
| 123        | 0.0005                         | 0      | 0                                                         | 0.0001                      | 0.0085                           | 0.0214                   | 0.0058                   | none<br>found | 96.715    | 0.0058          | 0.0015   | 1.161    |  |
| 123<br>dup | 0.0032                         | 0.0001 | 0                                                         | 0.0018                      | 0.0153                           | 0.0683                   | 0.0127                   | none<br>found | 96.864    | 0.0016          | 0.0005   | 1.345    |  |
| 124        | 0.0014                         | 0      | 0                                                         | 0.0132                      | 0.5912                           | 0.9304                   | 0.0186                   | none<br>found | 84.733    | 0.0782          | 0.0009   | 4.9131   |  |
| 125        | 0.0002                         | 0.0002 | 0                                                         | 0.0055                      | 0.5549                           | 0.3493                   | 0.217                    | none<br>found | 80.436    | 0.0054          | 0.0002   | 6.1691   |  |
| 147        | 0.0486                         | 0      | 0                                                         | 0.0253                      | 0.7079                           | 0.8435                   | 0.0004                   | Yes           | 47.905    | 0.0078          | 0.0006   | 3.45     |  |
| 148        | 0.0002                         | 0      | 0                                                         | 0.0187                      | 1.1802                           | 0.6179                   | 0.03                     | none<br>found | 74.3      | 0.0077          | 0.0003   | 4.0442   |  |
| 148<br>dup | 0.0072                         | 0.0002 | 0                                                         | 0.0124                      | 0.4495                           | 0.2711                   | 0.021                    | none<br>found | 87.377    | 0.0543          | 0.0015   | 3.2437   |  |
| 169        | 0.0003                         | 0.0242 | 0                                                         | 0.0145                      | 0.0191                           | 0.0448                   | 0.0025                   | none<br>found | 93.41     | 0.0062          | 0.0537   | 1.2676   |  |
| 169<br>dup | 0.0001                         | 0.0003 | 0                                                         | 0.0138                      | 0.0207                           | 0.0562                   | 0.0056                   | none<br>found | 92.225    | 0.0423          | 0.0427   | 1.8718   |  |
| 179        | 0.0007                         | 0      | 0                                                         | 0.0031                      | 0.0495                           | 0.0407                   | 0.0177                   | none<br>found | 92.004    | 0.0021          | 0.0004   | 1.0694   |  |
| 180        | 0                              | 0      | 0                                                         | 0.0005                      | 0.0051                           | 0.0063                   | 0.0009                   | none<br>found | 97.799    | 0.021           | 0.0006   | 0.2144   |  |
| 181        | 0.0054                         | 0      | 0                                                         | 0.0072                      | 0.1128                           | 0.1715                   | 0.2297                   | Yes           | 83.799    | 0.0183          | 0.0011   | 1.472    |  |
| 195        | 0                              | 0.0104 | 0.0016                                                    | 2E-06                       | 0.047                            | 0.3096                   | 0                        | Yes           | 54.51     | 32.886          | 0.059    | 8.3122   |  |
| 196        | 0                              | 0.0085 | 0.0004                                                    | 0                           | 0.0017                           | 0.0068                   | 0                        | none<br>found | 83.595    | 13.838          | 0.3318   | 0.6767   |  |
| 196<br>dup | 0                              | 0.0161 | 0.0002                                                    | 0                           | 0.003                            | 0.0091                   | 0                        | none<br>found | 82.944    | 13.891          | 0.2338   | 0.6262   |  |

| Table:     | Table: Area % Modal Mineralogy for all GXMAP runs (simplified, no phosphates) |        |                |                             |                                  |                          |                          |                |           |                 |          |          |
|------------|-------------------------------------------------------------------------------|--------|----------------|-----------------------------|----------------------------------|--------------------------|--------------------------|----------------|-----------|-----------------|----------|----------|
| #          | As <sub>2</sub> O <sub>3</sub>                                                | Aspy   | As-<br>sulfide | Fe Ox-<br>ides -<br>with As | Organics<br>w/<br>As,Fe,Ca<br>Ox | Fe-As-<br>Ca/Mn<br>oxide | Al-Mn-<br>Fe-As<br>oxide | ROs?           | Silicates | carbon-<br>ates | sulfides | organics |
| 197        | 0.0001                                                                        | 0.028  | 0.0028         | 0                           | 0.0021                           | 0.0208                   | 0                        | none<br>found  | 57.168    | 23.349          | 0.1969   | 13.256   |
| 198        | 0.0002                                                                        | 0.0785 | 0.0022         | 0.0005                      | 0.0004                           | 0.0043                   | 0                        | none<br>found  | 78.048    | 9.8687          | 0.1978   | 6.1176   |
| 199        | 0                                                                             | 0.0194 | 0.0036         | 0.0001                      | 0.0003                           | 0.0014                   | 0                        | none<br>found  | 80.533    | 7.4798          | 0.5731   | 7.9015   |
| 202        | 0.0013                                                                        | 0      | 0              | 0.0013                      | 0.0201                           | 0.0162                   | 0.1442                   | Yes            | 55.127    | 0.0679          | 0.0006   | 31.67    |
| 203        | 7E-06                                                                         | 7E-06  | 0              | 0.0003                      | 0.0175                           | 0.0229                   | 0.1055                   | none<br>found  | 77.48     | 0.0033          | 0.0001   | 3.5937   |
| 203<br>dup | 0.0003                                                                        | 0.0002 | 0              | 0.0003                      | 0.019                            | 0.0282                   | 0.073                    | none<br>found  | 82.022    | 0.0054          | 0.0003   | 3.458    |
| 295        | 0.0103                                                                        | 0      | 0              | 0.0552                      | 0.0302                           | 0.1473                   | 0.0589                   | Yes,<br><30    | 64.124    | 0.0318          | 0.0133   | 2.0982   |
| 296        | 0.0002                                                                        | 0      | 0              | 0.0012                      | 0.0031                           | 0.0076                   | 0.0011                   | none<br>found  | 88.714    | 0.0996          | 0.0007   | 1.8936   |
| 319        | 0.1298                                                                        | 0.0334 | 0              | 0.3153                      | 0.0506                           | 0.1048                   | 0.0125                   | Yes,<br>200+++ | 76.187    | 1.758           | 0.1142   | 2.1856   |
| 320        | 0.0051                                                                        | 0      | 0              | 0.0058                      | 0.0022                           | 0.0252                   | 0.0001                   | none<br>found  | 98.576    | 0.0145          | 0.0007   | 0.3446   |
| 324        | 0.2523                                                                        | 0.0151 | 0              | 0.1317                      | 0.0665                           | 0.1558                   | 0.0812                   | Yes,<br>50+    | 82.696    | 2.182           | 0.1213   | 11.041   |
| 324<br>dup | 0.164                                                                         | 0.0189 | 0              | 0.0653                      | 0.0654                           | 0.0853                   | 0.0449                   | Yes            | 41.655    | 5.3154          | 0.0762   | 38.86    |
| 325        | 0.0019                                                                        | 0.001  | 0              | 0.003                       | 0.0262                           | 0.0666                   | 0.0002                   | Yes            | 92.698    | 2.3713          | 0.0079   | 0.9183   |
| 326        | 0                                                                             | 0      | 0              | 0.0009                      | 0.0224                           | 0.0495                   | 0.0002                   | Yes            | 96.799    | 0.0271          | 0.0018   | 0.5099   |
| 344        | 0.2836                                                                        | 0      | 0              | 0.0033                      | 0.0344                           | 0.0103                   | 0                        | Yes            | 42.633    | 0.104           | 0.0032   | 1.5701   |
| 345        | 0.054                                                                         | 0.0004 | 0              | 0.0011                      | 0.0067                           | 0.0018                   | 0                        | Yes            | 24.459    | 0.0753          | 0.0011   | 6.2839   |
| 354        | 0                                                                             | 0      | 0              | 0.01                        | 0.0179                           | 0.0291                   | 0.0061                   | none<br>found  | 83.106    | 0.0234          | 0.001    | 4.1916   |
| 354<br>dup | 0                                                                             | 0      | 0              | 0.0033                      | 0.0235                           | 0.0266                   | 0.0042                   | Yes, 1         | 83.525    | 0.0076          | 0.0023   | 4.4872   |

## Appendix XI: Additional Maps



FINAL REPORT: CHARACTERIZATION OF SOIL SAMPLES AT GIANT MINE, NWT (2014 Regional Sampling)



FINAL REPORT: CHARACTERIZATION OF SOIL SAMPLES AT GIANT MINE, NWT (2014 Regional Sampling)



The pie charts compare relative As concentrations between soil horizons for each sample site. Total As concentrations between sample sites are not represented on this map. "As\_" is the top horizon, "As\_b" the one below, and so on. Anomalous samples with highest As concentrations in deeper soil horizons pop out clearly this way, regardless of absolute total As concentrations across the property. Note: Lease boundary

FINAL REPORT: CHARACTERIZATION OF SOIL SAMPLES AT GIANT MINE, NWT (2014 Regional Sampling)







Arsenic elemental distribution by sample site and geographic location, calculated with 1 wt% As for Feoxides with As, Fe-As-Mn/Ca oxides, Organics with As, and Al-Mn-Fe-As oxides. Pie chart symbol size is proportional to total As concentration (µg/g) for each sample.





**ASSESSMENT OF REGIONAL SOIL QUALITY - GIANT MINE** 

# APPENDIX B

**Soil Descriptions** 



#### **Soil Descriptions**

| Cito   | Depth        |            |                                                                                                                                                                               |
|--------|--------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site   | from<br>(cm) | to<br>(cm) | Basic description                                                                                                                                                             |
| I-OC-1 | 0            | 5          | Unsorted mix, clay through small angular pebbles, OM ~40%. Clumpy. Immature, organic rich, medium brown                                                                       |
| I-OC-1 | 5            | 15         | Unsorted mix, clay through small angular pebbles, OM ~30%. Immature and poorly sorted, OM partially decomposed. Slightly less wet than layer above. brown                     |
| I-OC-2 | 2            | 7          | Red brown soil with regolith particles <1cm, clumpy, OM <1cm. OM ~30%                                                                                                         |
| I-OC-3 | 2            | 5          | Medium brown clumpy silt/clay with high organic content, small particle size.<br>OM ~20-25%. Small regolith pebbles                                                           |
| I-F-1  | 0            | 5          | Mossy root web, OM <40%                                                                                                                                                       |
| I-F-1  | 5            | 15         | Mossy root web, OM <30%. Less comprehensive root web than sample above                                                                                                        |
| I-F-1  | 15           | 30         | More clay rich than layers above, transitioning into clay soil                                                                                                                |
| I-F-1  | 30           | 60         | Clay with coating of brown silty OM                                                                                                                                           |
| I-F-1  | 60           | 100        | Clay, includes coarse sand to pebble fragments                                                                                                                                |
| I-F-2  | 0            | 5          | Silty decomposed organics and roots coating clay nodules, OM ~35%                                                                                                             |
| I-F-2  | 5            | 15         | Silty decomposed organics and roots coating clay nodules, OM ~35%. More homogeneous than layer above                                                                          |
| I-F-2  | 15           | 30         | Silty decomposed organics and roots coating clay nodules, OM ~30%. More homogeneous than layer above, more clay and larger nodules (up to ~3cm). Clay nodules are medium grey |
| I-F-2  | 30           | 60         | Large clay nodules (pale tan) with dusting of brown organic silt material                                                                                                     |
| I-F-2  | 60           | 100        | As above with slightly less organics.                                                                                                                                         |
| I-WL-1 | 0            | 5          | Sand, clay, organic matter (~30%)                                                                                                                                             |
| I-WL-1 | 5            | 15         | Extremely sandy clay, includes bits of minor OM                                                                                                                               |
| I-WL-1 | 15           | 30         | Clumpy sandy clay with small pebbles                                                                                                                                          |
| I-WL-1 | 30           | 60         | Saturated greyish sand, minor clay and finer content. Cuts nicely                                                                                                             |
| I-WL-1 | 60           | 100        | As above, less saturated                                                                                                                                                      |
| I-WL-2 | 0            | 5          | Dark brown, OM>40% with clay, saturate                                                                                                                                        |
| I-WL-2 | 5            | 15         | Clay with small roots, saturated                                                                                                                                              |
| I-WL-2 | 15           | 30         | Clay, saturated, minor roots                                                                                                                                                  |
| I-WL-2 | 30           | 60         | Mix of pale yellow casted tan and slightly more red, darker tan. Saturated. Clay.                                                                                             |
| I-WL-2 | 60           | 100        | Mix of pale yellow casted tan and slightly more red, darker tan. Saturated. Clay.                                                                                             |
| II-F-1 | 0            | 5          | Brown OM silty material (45%), abundant roots, minor clay                                                                                                                     |
| II-F-1 | 5            | 15         | Clay with silty OM coating (~5%)                                                                                                                                              |
| II-F-1 | 15           | 30         | Clay with silty OM coating (~3%)                                                                                                                                              |
| II-F-1 | 30           | 60         | Pinkish tan clay                                                                                                                                                              |
| II-F-1 | 60           | 100        | Pinkish tan clay                                                                                                                                                              |
| II-F-2 | 0            | 5          | Mix of semi-decomposed leaf litter and roots (dark brown) with light grey clay.                                                                                               |
| II-F-2 | 5            | 15         | Mix of semi-decomposed leaf litter and roots (dark brown) with light grey clay.                                                                                               |
| II-F-2 | 15           | 30         | Clay with roots                                                                                                                                                               |
| II-F-2 | 30           | 60         | Moist clay with roots, leaves, poorly decomposed                                                                                                                              |
| II-F-2 | 60           | 100        | Clay with roots, leaves, poorly decomposed                                                                                                                                    |
| II-F-3 | 0            | 5          | Mix of tan clay and minor brown silty OM                                                                                                                                      |

|          | Depth        |            |                                                                                                                                                                                                                                             |
|----------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site     | from<br>(cm) | to<br>(cm) | Basic description                                                                                                                                                                                                                           |
| II-F-3   | 5            | 15         | Yellow cast tan fine silt (possible clay)y, crumbly, <5mm, small roots                                                                                                                                                                      |
| II-F-3   | 15           | 30         | Yellow cast tan fine silt (possible clay), crumbly, small roots                                                                                                                                                                             |
| II-F-3   | 30           | 60         | Yellow cast tan, fine silt (possible clay), crumbly, small roots, small round to angular regolith up to 2cm                                                                                                                                 |
| II-F-3   | 60           | 90         | Yellow cast tan silt to clay (actual chunks present) crumbly, small roots, small round to angular regolith up to 2cm                                                                                                                        |
| II-OC-1  | 0            | 5          | Dark brown organics with common small roots. Fairly dry, no rocks                                                                                                                                                                           |
| II-OC-1  | 5            | 10         | Light brown organic soil with numerous roots. Fairly dry, no rocks                                                                                                                                                                          |
| II-OC-2  | 0            | 3          | Organic rich (~30- 40%), roots and other small (<3cm) bits of forest floor type OM (small twigs, bits of leaves, etc.). High root concentration. Regolith <10%, rounded to angular, indeterminate color. Soil color is rich chocolate brown |
| II-OC-2  | 3            | 10         | Reddish brown soil with small gravel size regolith, regolith ~10-15%. roots and OM more like 10% or less                                                                                                                                    |
| II-OC-3  | 0            | 5          | Medium brown soil with some thicker roots. Fairly dry. No rocks                                                                                                                                                                             |
| II-OC-3  | 5            | 10         | Medium red brown                                                                                                                                                                                                                            |
| II-OC-4  | 0            | 5          | Greyish brown. Mix of medium brown silty material and lighter tan, clay size in aggregate clumps (small). Abundant small roots. Regolith ~15% at least. Small bits of OM <<1cm ~10%                                                         |
| II-OC-4  | 5            | 15         | Light tan mineral soil with large rocks, fairly dry.                                                                                                                                                                                        |
| II-OC-4  | 15           | 20         | Pale off-white, small crumbled bits throughout.                                                                                                                                                                                             |
| II-OC-5  | 0            | 3          | Grey silt with fine roots, fairly dry                                                                                                                                                                                                       |
| II-OC-5  | 3            | 10         | OM ~10%. Pale off white to grey sand with clay with irregular gravel and bits of twigs and roots                                                                                                                                            |
| II-OC-5  | 10           | 20         | OM ~10%. Pale off white to white-tan sand with clay with irregular gravel and bits of twigs and roots                                                                                                                                       |
| II-OC-6  | 0            | 5          | Medium brown, regolith pebbles, twigs and roots <2cm                                                                                                                                                                                        |
| II-OC-6  | 5            | 15         | Medium red brown, regolith pebbles, twigs and roots <2cm                                                                                                                                                                                    |
| II-OC-6  | 15           | 20         | Medium gold- brown, regolith pebbles, twigs and roots <2cm. Slightly more clay than soil above                                                                                                                                              |
| II-OC-7  | 0            | 10         | Dark brown. Medium size clumps of dark clay with abundant regolith (~15%? Hard to say) and leaf and twig litter <1cm                                                                                                                        |
| II-OC-7  | 10           | 16         | Tan version of soil stratigraphically above, more large clay clumps and regolith                                                                                                                                                            |
| II-OC-8  | 0            | 12         | Medium brown, heterogeneous and OM rich (~30%), but decomposed and uniform size <1cm                                                                                                                                                        |
| II-OC-8  | 12           | 15         | Regolith pebbles <2cm, OM, fluffy brown, slightly more clay in above stratigraphic layer. OM ~30%                                                                                                                                           |
| II-OC-9  | 0            | 3          | Homogenous and small particles. Regolith pebbles <1cm are more rare, OM, fluffy brown                                                                                                                                                       |
| II-OC-9  | 3            | 10         | Regolith pebbles <2cm, OM, reddish color, more clay right than above (more clumpy)                                                                                                                                                          |
| II-OC-9  | 10           | 15         | Regolith pebbles <2cm, OM, fluffy brown                                                                                                                                                                                                     |
| II-OC-10 | 0            | 5          | Dark brown clay with some small roots, fairly dry.                                                                                                                                                                                          |
| II-OC-10 | 5            | 8          | Wet clay with some roots, silt, and large sand/small pebbles                                                                                                                                                                                |
| II-OC-11 | 0            | 5          | Wet silty clay with roots                                                                                                                                                                                                                   |

|          | Depth        |            |                                                                                                                        |
|----------|--------------|------------|------------------------------------------------------------------------------------------------------------------------|
| Site     | from<br>(cm) | to<br>(cm) | Basic description                                                                                                      |
| II-OC-11 | 5            | 10         | Wet clay, roots                                                                                                        |
| II-WL-2  | 0            | 5          | Clayey sand with OM ~45%                                                                                               |
| II-WL-2  | 5            | 15         | Clayey sand with OM ~40%                                                                                               |
| II-WL-2  | 15           | 30         | Dark brown sandy clay with roots                                                                                       |
| II-WL-2  | 30           | 60         | Reddish color hard clay with angular coarse sand to small pebbles, coating of brown OM                                 |
| II-WL-2  | 60           | 100        | Reddish color hard clay with angular coarse sand to small pebbles, coating of brown OM                                 |
| III-F-1  | 0            | 5          | Organic dust in root clumps with smaller and harder clumps of tan mineral soil                                         |
| III-F-2  | 0            | 5          | Mix of medium brown silty/clay size silt particles clumped with roots and OM, some light clay                          |
| III-F-2  | 5            | 15         | As above, higher clay content                                                                                          |
| III-F-2  | 15           | 30         | As above, higher clay content                                                                                          |
| III-F-2  | 30           | 55         | Clay clumps with roots                                                                                                 |
| III-F-2  | 55           | 100        | Reddish tan clay                                                                                                       |
| III-OC-1 | 0            | 5          | Poorly sorted OC soil with medium brown color, organic content probably high (>15 %?)                                  |
| III-OC-1 | 5            | 15         | Poorly sorted OC soil with medium brown color, organic content probably high (>15 %). twigs, usually <3cm long         |
| III-OC-2 | 0            | 8          | Partially decomposed leaf and twig litter <3cm long, ~35 -45%. Mottled color. Partially decomposed wood chunks         |
| III-OC-2 | 8            | 15         | Paler, less brown version of soil above. Still poorly sorted, etc.                                                     |
| III-OC-3 | 0            | 5          | Stony medium brown organic rich heterogeneous soil. OM ~35%?                                                           |
| III-OC-3 | 5            | 9          | Stony medium brown organic rich heterogeneous soil. OM ~35%?                                                           |
| III-OC-5 | 0            | 5          | Clay-rich with OM >25%, includes poorly sorted angular rock fragments, etc.                                            |
| III-OC-5 | 5            | 10         | Clay-rich with OM >25%, includes poorly sorted angular rock fragments, etc.                                            |
| III-OC-6 | 0            | 5          | Orangey brown, rocky soil with roots, organic litter. OM ~15%                                                          |
| III-OC-6 | 5            | 9          | As above but more clay content, slightly less obvious OM. OM ~10-15%                                                   |
| III-OC-7 | 0            | 5          | OM ~25%. Dark brown, wet                                                                                               |
| III-OC-7 | 5            | 10         | As above but fine matrix is more clay-rich                                                                             |
| III-OC-8 | 0            | 5          | OM ~35%. Clay-rich clumping. Medium flat brown                                                                         |
| III-OC-8 | 5            | 15         | OM ~35%. Clay-rich clumping. Medium flat brown                                                                         |
| III-OC-8 | 5            | 15         | Tannish clumps from above layer with some slightly lighter clumps, still some root clusters. Lighter colors            |
| III-OC-8 | 15           | 30         | Golden brown with clay clumping (Clay<40%), sandy, some gravel possibly                                                |
| III-OC-8 | 30           | 70         | Golden brown with clay clumping (Clay<40%), sandy, some gravel possibly                                                |
| III-WL-1 | 15           | 30         | Brown clay with OM ~20%                                                                                                |
| III-WL-1 | 30           | 60         | Tan clay, roots etc. <5%                                                                                               |
| III-WL-1 | 60           | 100        | Tan clay, less roots than above                                                                                        |
| III-WL-1 | 0            | 5          | Clay with roots and moss, saturated, OM >40%                                                                           |
| III-WL-1 | 5            | 15         | Clay with roots and moss, saturated, OM <30% (slightly less than above)                                                |
| IV-F-1   | 5            | 15         | Mix of yellowish tan silt and clay clumps with roots and small pebbles <1cm with medium brown fine OM. OM ${\sim}25\%$ |

|         | Depth        |            |                                                                                                                                    |
|---------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Site    | from<br>(cm) | to<br>(cm) | Basic description                                                                                                                  |
| IV-F-1  | 15           | 30         | Yellowish tan silt and clay clumps with roots and small pebbles <1cm                                                               |
| IV-F-1  | 30           | 60         | Yellowish off-white sand and silt coating pinkish clay nodules.                                                                    |
| IV-F-1  | 60           | 100        | As above, higher clay content                                                                                                      |
| IV-F-1  | 0            | 5          | Brown organic material, partially decomposed fine root masses with finer brown silty material, a few larger roots. OM ~40% or more |
| IV-F-2  | 0            | 5          | OM ~45%. Big fluffy root clumps, dusty brown soil, partially well-decomposed. Medium brown                                         |
| IV-F-2  | 5            | 20         | OM ~45%. Less clumps, medium brown and bits of undecomposed OM                                                                     |
| IV-F-2  | 20           | 30         | Brownish tan sandy silty heterogeneous grain size soil with ~10% clumps. OM ${\sim}5\%$                                            |
| IV-F-2  | 30           | 60         | Yellowish tan sandy silty heterogeneous grain size soil with ~10% clumps. Looks like more clay content than above.                 |
| IV-F-2  | 60           | 100        | Yellowish tan sandy silty heterogeneous grain size soil with ~10% clumps.                                                          |
| IV-F-3A | 0            | 5          | Extremely wet, bits of moss, etc. OM ~40-50%                                                                                       |
| IV-F-3A | 5            | 15         | Very wet, etc. OM ~40-50%                                                                                                          |
| IV-F-3A | 15           | 35         | Saturated clay with OM fine roots mostly <20%                                                                                      |
| IV-F-3B | 0            | 5          | Reasonably well-decomposed OM and roots, fairly dry, very clumpy with micro root clusters. Medium dark brown                       |
| IV-F-3B | 5            | 15         | As above but less clumpy, slightly redder, hints of tan clay                                                                       |
| IV-F-3B | 15           | 30         | As above but more hints of tan clay                                                                                                |
| IV-F-3B | 30           | 60         | Pale grey-tan Clay with <30% medium brown silt                                                                                     |
| IV-F-3B | 60           | 100        | Medium reddish tan color silt and clay covering gravel, minor fine roots                                                           |
| IV-OC-1 | 0            | 5          | Saturated (dark brown when wet, medium when dry) clay with OM, fine roots throughout, OM ${\sim}15\%$                              |
| IV-OC-1 | 5            | 10         | Saturated (dark brown when wet, medium when dry) crumbly silty clay with OM, fine roots throughout, OM ~15-20%                     |
| IV-OC-2 | 0            | 5          | OM ~30%. Sandy but poorly sorted. Clumpy sand. Thoroughly damp.                                                                    |
| IV-OC-2 | 5            | 10         | As above but more saturated                                                                                                        |
| IV-OC-3 | 0            | 5          | Unsorted, heterogeneous, organic bits <1cm large, semi-decomposed and clumpy. Wet. OM ~40%                                         |
| IV-OC-3 | 5            | 15         | Reddish version of soil above with less OM. OM ~10%                                                                                |
| IV-OC-4 | 0            | 5          | Unsorted, heterogeneous, organic bits <1cm large, semi-decomposed and clumpy. Wet. OM ~40%                                         |
| IV-OC-4 | 5            | 12         | Reddish version of soil above with less OM. OM ~15%                                                                                |
| IV-WL-1 | 0            | 5          | Dark brown to grey (mottled) clay with significant OM/roots throughout, semi-<br>saturated. OM ~30-40%                             |
| IV-WL-1 | 5            | 15         | Medium/light brown to grey (mottled) clay with significant OM/roots throughout, semi-saturated. OM ~15-20%                         |
| IV-WL-1 | 15           | 30         | Tan/light brown to grey (mottled) clay with OM/roots throughout unevenly, semi-<br>saturated. OM ~5-10%                            |
| IV-WL-1 | 30           | 60         | Tan/light brown to grey clay with OM/roots throughout unevenly, semi-saturated. OM ~3-5%.                                          |
| IV-WL-1 | 60           | 100        | Tan/light brown to grey clay with OM/roots throughout unevenly, semi-saturated. OM ~3-5%.                                          |

| 0.4     | Depth        |            |                                                                                                                                                                        |
|---------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site    | from<br>(cm) | to<br>(cm) | Basic description                                                                                                                                                      |
| IV-WL-2 | 0            | 5          | Saturated medium tan brown clay                                                                                                                                        |
| IV-WL-2 | 5            | 15         | Saturated medium tan brown clay                                                                                                                                        |
| IV-WL-2 | 15           | 30         | Saturated medium tan brown clay                                                                                                                                        |
| IV-WL-2 | 30           | 60         | Semi-saturated medium brown clay                                                                                                                                       |
| IV-WL-2 | 60           | 100        | Very saturated medium grey brown clay                                                                                                                                  |
| IV-WL-3 | 0            | 5          | OM layer with mixed tan clay. Abundant roots, clumps. OM ~40%                                                                                                          |
| IV-WL-3 | 5            | 15         | More silt than above layer, high OM, includes some green bits of moss. OM ~35%                                                                                         |
| IV-WL-3 | 15           | 30         | Clay with silty content, OM ~15%                                                                                                                                       |
| IV-WL-3 | 30           | 60         | Clay clumps with roots                                                                                                                                                 |
| IV-WL-3 | 60           | 100        | Clay with roots                                                                                                                                                        |
| IV-WL-4 | 0            | 5          | Grey, wet, OM (~20%) chunks in sandy clay                                                                                                                              |
| IV-WL-4 | 5            | 15         | Grey, wet, OM (~10%) chunks in sandy clay                                                                                                                              |
| IV-WL-4 | 15           | 30         | Grey, wet, OM (~3%) chunks in clay with slight sand/silt content                                                                                                       |
| IV-WL-4 | 30           | 60         | Grey, wet, OM (~5%) chunks in clay clumps                                                                                                                              |
| IV-WL-4 | 60           | 100        | Grey, wet, OM (~5%) chunks in clay clumps                                                                                                                              |
| IV-WL-5 | 0            | 5          | Abundant roots. OM is well-decomposed. Clumpy. Organics ~20%                                                                                                           |
| IV-WL-5 | 5            | 15         | Roots, clumpy brown soil, some OM <15%                                                                                                                                 |
| IV-WL-5 | 15           | 30         | As above, slight increase in grain compaction. Clumpy                                                                                                                  |
| IV-WL-5 | 30           | 60         | As above, higher clay content. Hard                                                                                                                                    |
| IV-WL-5 | 60           | 100        | Clumpy and hard, similar to above layer but LESS clay content, more sandy.                                                                                             |
| V-OC-1  | 0            | 5          | Red soil with abundant small gravel and smaller rock parts, heterogeneous OM (~15%), etc. Clumpy.                                                                      |
| V-OC-1  | 5            | 15         | Slightly less OM, slightly lighter color                                                                                                                               |
| V-OC-2  | 0            | 5          | Heterogeneous OM clay sand silt pebbles etc.                                                                                                                           |
| V-OC-2  | 5            | 15         | Sand, wet, with some clay content, tan color.                                                                                                                          |
| V-OC-2  | 15           | 25         | Slightly more clay than above layer, more brown/red mottle color                                                                                                       |
| V-OC-2  | 25           | 35         | Sand with some clay content, scattered pebbles (angular)                                                                                                               |
| V-OC-3  | 0            | 5          | Organic rich (~30-40 %), roots and other small (<3cm) bits of OM (small twigs, bits of leaves, etc.). Abundant roots. Pebbles. Wet. Soil color is rich chocolate brown |
| V-OC-3  | 5            | 15         | Reddish brown wet clay-sand, roots/OM                                                                                                                                  |
| V-OC-3  | 15           | 25         | Reddish brown soil with minor mossy roots                                                                                                                              |
| V-OC-4  | 0            | 5          | Brown clumpy organic layer, semi-decomposed wood pieces and moss roots                                                                                                 |
| V-OC-4  | 5            | 15         | Clay-rich sediment with roots and twigs ~10%. Dull brownish tan. Damp but not supersaturated                                                                           |
| V-OC-4  | 15           | 30         | Clay-rich sediment with roots and twigs ~10%. Reddish brown tan. Damp but not supersaturated                                                                           |
| V-OC-5  | 0            | 5          | Tan clay-rich balls (<5mm, clay+silt+sand) mixed with angular pebbles and small gravel and medium dull brown OM ~25%                                                   |
| V-OC-5  | 5            | 10         | As above. Abundant twigs and roots                                                                                                                                     |
| V-OC-6  | 0            | 5          | OM ~25%? Wet, not supersaturated, medium brown color with abundant roots, some small pebbles and angular small gravel but mostly finer particles                       |

| Site    | Depth        |            | Basic description                                                                                    |  |  |  |
|---------|--------------|------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Site    | from<br>(cm) | to<br>(cm) | Basic description                                                                                    |  |  |  |
|         |              |            | (sand/silt/clay)                                                                                     |  |  |  |
| V-OC-6  | 5            | 15         | Angular gravel dominated outcrop soil                                                                |  |  |  |
| V-F-1   | 0            | 5          | Unsorted, heterogeneous, organic bits <1cm large, semi-decomposed and clumpy. OM ~40%                |  |  |  |
| V-F-1   | 5            | 15         | Tan clay nodules covered in medium silty brown OM sediment, leaf and root litter,                    |  |  |  |
| V-F-1   | 15           | 30         | As above but more clay nodules                                                                       |  |  |  |
| V-F-1   | 30           | 50         | As above but even more clay vs organics                                                              |  |  |  |
| V-F-1   | 50           | 100        | As above but even more clay vs organics                                                              |  |  |  |
| V-F-2   | 80           | 90         | Tan sand, covering reddish clay nodules up to 5cm long, down to few mm                               |  |  |  |
| V-F-2   | 100          | 110        | Clumpy yellowish sand with minor clay content. Crumbly                                               |  |  |  |
| V-F-2   | 0            | 10         | Brown fine roots and decomposed OM, heterogeneous grain size                                         |  |  |  |
| V-F-2   | 10           | 20         | Tan finely clumpy mineral soil with OM roots and twigs sparsely                                      |  |  |  |
| V-F-2   | 20           | 50         | Tan finely clumpy mineral soil with OM roots and twigs sparsely                                      |  |  |  |
| V-F-2   | 50           | 80         | Tan finely clumpy mineral soil with OM roots and twigs sparsely                                      |  |  |  |
| V-WL-1  | 0            | 5          | Dark colored organic rich wet mass. Roots and leaves. Looks like wet land stuff. OM ${\sim}45\%$     |  |  |  |
| V-WL-1  | 5            | 15         | Dark colored organic rich wet mass. Roots and leaves. Looks like wet land stuff. OM ${\sim}45\%$     |  |  |  |
| V-WL-1  | 15           | 30         | Rich-looking dark wet OM soil                                                                        |  |  |  |
| V-WL-1  | 30           | 60         | Rich-looking dark wet OM soil                                                                        |  |  |  |
| V-WL-1  | 60           | 80         | Organic matter                                                                                       |  |  |  |
| V-WL-2  | 20           | 40         | Dark brown organic                                                                                   |  |  |  |
| V-WL-2  | 40           | 70         | Dark brown organic                                                                                   |  |  |  |
| V-WL-2  | 70           | 100        | Pinkish grey clay                                                                                    |  |  |  |
| V-WL-2  | 0            | 5          | Organic matter, moss roots. OM ~40%                                                                  |  |  |  |
| V-WL-2  | 5            | 20         | Organic matter, moss roots. OM ~40%                                                                  |  |  |  |
| V-WL-3  | 0            | 10         | Clay with organics ~15%                                                                              |  |  |  |
| V-WL-3  | 10           | 50         | Less saturated clay with abundant organics ~25%                                                      |  |  |  |
| V-WL-3  | 50           | 80         | Wet hard sand                                                                                        |  |  |  |
| V-WL-3  | 80           | 100        | Wet hard sand (yellowish grey ) with reddish and tan clay                                            |  |  |  |
| VI-OC-1 | 0            | 5          | Heterogeneous mix of OM, clay up to small pebbles. OM ~30%, overall finely clumped.                  |  |  |  |
| VI-OC-1 | 5            | 15         | Rocky, less OM rich version of soil above, slightly lighter color. Abundant angular pebbles. OM ~15% |  |  |  |
| VI-OC-2 | 0            | 5          | Very wet silt with fine roots                                                                        |  |  |  |
| VI-OC-2 | 5            | 10         | Organic matter                                                                                       |  |  |  |
| VI-OC-3 | 0            | 5          | Dark silty sand with fine OM, pebbles, abundant roots. OM well-decomposed, content ~30%              |  |  |  |
| VI-OC-3 | 5            | 10         | Reddish version of soil above, OM ~20%                                                               |  |  |  |
| VI-OC-4 | 0            | 5          | Dark brown, damp organic rich clumpy clay/silt                                                       |  |  |  |
| VI-OC-4 | 5            | 10         | Dark brown, damp organic rich clumpy clay/silt                                                       |  |  |  |
| VI-OC-5 | 0            | 5          | Medium reddish-brown                                                                                 |  |  |  |

|          | Depth        |            |                                                                                                                     |
|----------|--------------|------------|---------------------------------------------------------------------------------------------------------------------|
| Site     | from<br>(cm) | to<br>(cm) | - Basic description                                                                                                 |
| VI-OC-5  | 5            | 10         | Fully saturated, reddish brown, roots                                                                               |
| VI-OC-5  | 10           | 20         | Fully saturated smeary mud, medium brown                                                                            |
| VI-WL-1A | 0            | 5          | Damp/wet sand-dominated sediment with abundant roots.                                                               |
| VI-WL-1A | 5            | 10         | Rounded gravel and smaller encrusted with clay/silt in pale yellowish color                                         |
| VI-WL-1B | 0            | 5          | Wet smeared sandy/silty sediment with abundant fine roots                                                           |
| VI-WL-1B | 5            | 10         | Wet, as above but higher clay content                                                                               |
| VI-WL-1B | 10           | 30         | Damp dark brown, more clay-rich than above layer, in nodules so less wet                                            |
| VI-WL-1B | 30           | 60         | As above but less roots                                                                                             |
| VI-WL-1B | 60           | 80         | As above, less saturated                                                                                            |
| VI-F-1   | 0            | 5          | Root webs supporting silty OM, well-decomposed (OM ~45% or more)                                                    |
| VI-F-1   | 5            | 20         | Small clay lumps covered in silty decomposed OM in a sea of silty OM and roots. OM ${\sim}40\%$                     |
| VI-F-1   | 20           | 30         | Mix of medium colors of clay in nuggets covered in silty black OM layer (clumpy)                                    |
| VI-F-1   | 30           | 60         | Mix of 3 colors of clay, some clumps with OM coatings.                                                              |
| VI-F-1   | 60           | 90         | Reddish brown pale clay, minor fine roots.                                                                          |
| VI-F-2   | 50           | 60         | Dark brown sandy material with clay clumps and roots, very different from layer above it and below, OM ${\sim}25\%$ |
| VI-F-2   | 60           | 80         | Mottled color. Medium tan to light brown sand                                                                       |
| VI-F-2   | 80           | 85         | Reddish clay nodules, oblong up to 7cm long, with the medium brown/tan sand encrusted                               |
| VI-F-2   | 0            | 5          | Dark silty OM clumpy stuff with roots, OM ~40%                                                                      |
| VI-F-2   | 5            | 10         | Dark colored sand and silt mix with roots, speckles of tan sand ~2% throughout spread evenly. OM ~35%               |
| VI-F-2   | 10           | 30         | Tan sand with scattered silty black OM clumpy bits with fine roots ~<5%                                             |
| VI-F-2   | 30           | 50         | Light brown sand (darker than above) with darker clumpy OM                                                          |
| VI-F-3   | 0            | 5          | Medium reddish brown damp OM soil with fine roots, OM ~30%                                                          |
| VI-F-3   | 5            | 15         | Tan sand with rounded to sub angular pebbles                                                                        |
| VI-F-3   | 15           | 25         | Tan sand                                                                                                            |
| VI-E-3   | 25           | 20<br>45   | Tan sand                                                                                                            |
|          | 25<br>45     | 43<br>EE   | Top cond with rounded pebbles                                                                                       |
|          | 40           | 00         |                                                                                                                     |
|          | 55           | 60<br>E    | Sallu                                                                                                               |
|          | 0            | 5          | Organics, dark brown, slightly damp with abundant roots. OM ~40%                                                    |
|          | 5            | 10         |                                                                                                                     |
| VI-F-4   | 10           | 30         | Sand. Fine sand, clumps                                                                                             |
| VI-F-4   | 30           | 60         | Sand. Fine sand clumps                                                                                              |
| VI-F-4   | 60           | 100        | Sand. Looked exactly like golden brown sugar when first laid out. Includes some fine sand that clumps nicely.       |
| VII-OC-1 | 0            | 5          | Rocky medium brown OC soil, rounded pebbles. OM ~20%                                                                |
| VII-OC-1 | 5            | 10         | OM <10%                                                                                                             |
| VII-OC-1 | 10           | 35         | Tan mix of small gravel and everything smaller. Some roots                                                          |

|          | Depth        |            |                                                                                                                                                    |
|----------|--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Site     | from<br>(cm) | to<br>(cm) | Basic description                                                                                                                                  |
| VII-OC-2 | 0            | 5          | Medium brown clumpy soils with silty clay and abundant fine roots, some angular rocks thrown in. OM ~20%?                                          |
| VII-OC-2 | 5            | 15         | As above, with more rocks (~10-15%?), clumping is finer                                                                                            |
| VII-OC-3 | 0            | 5          | Dark brown, organic rick clumpy soil,                                                                                                              |
| VII-OC-3 | 5            | 15         | Medium brown silty soil with OM <20%, clay content in soil making it clumpy, minor angular rocks                                                   |
| VII-OC-4 | 0            | 5          | Medium brown, very rocky, OM ~ 25-35%                                                                                                              |
| VII-OC-4 | 5            | 10         | Reddish brown, similar texture as soil above, OM ~15% or less                                                                                      |
| VII-OC-5 | 0            | 5          | Medium brown, very rocky, OM ~ 25-35%                                                                                                              |
| VII-OC-6 | 0            | 5          | Medium brown, very rocky, OM ~ 25-35%                                                                                                              |
| VII-OC-6 | 5            | 10         | Medium brown mottled with specks of tan                                                                                                            |
| VII-OC-7 | 0            | 5          | Medium brown, very rocky, OM ~ 25-35%                                                                                                              |
| VII-OC-7 | 5            | 10         | Silty clay, medium brown, small roots, specks of reddish dirt here and there. OM~15%                                                               |
| VII-OC-8 | 0            | 5          | OM ~40%. relatively homogenous for an outcrop soil                                                                                                 |
| VII-OC-8 | 5            | 15         | Clumpy silty soil with small roots, OM~20%. Medium brown                                                                                           |
| VII-OC-8 | 15           | 25         | More clay rich than layers above, OM ~15%. Medium brown                                                                                            |
| VII-OC-9 | 0            | 5          | Clumpy silty soil with small roots, OM~20%. Medium brown                                                                                           |
| VII-OC-9 | 5            | 15         | Clumpy silty soil with small roots, OM~20%. Medium brown                                                                                           |
| VII-OC-9 | 15           | 30         | Reddish silt/clay, medium brown red color, large lumps, fine roots. OM ~50%                                                                        |
| VII-WL-1 | 0            | 10         | Medium brown organic. OM ~50%                                                                                                                      |
| VII-WL-1 | 10           | 30         | Dark brown organic, OM ~50%                                                                                                                        |
| VII-WL-1 | 30           | 55         | Dark brown organic, OM ~50%                                                                                                                        |
| VII-WL-1 | 55           | 100        | Clay-rich organic. OM ~15%                                                                                                                         |
| VII-F-1  | 0            | 5          | Fine roots and OM ~45%                                                                                                                             |
| VII-F-1  | 5            | 20         | Finely crumbly silty dark brown organic rich mineral soil (OM ~20%? 35 %?)                                                                         |
| VII-F-1  | 20           | 30         | ~3cm clay nuggets with dark brown silty OM coating (~10%)                                                                                          |
| VII-F-1  | 30           | 60         | Same as last but less OM coating (~5%)                                                                                                             |
| VII-F-1  | 60           | 100        | Same as last but less OM coating (~5%)                                                                                                             |
| VII-F-2  | 60           | 70         | Slightly mottled soil of discrete clay nugget clumps <3cm (pale pinkish tan) covered in less pink silt/clay. Clumps go down to a few cms. 25%>1cm. |
| VII-F-2  | 70           | 100        | Crumbly clay-rich sediment to fine sand.                                                                                                           |
| VII-F-2  | 0            | 5          | Root mass with trapped silty clay size sediment                                                                                                    |
| VII-F-2  | 5            | 15         | Tan Clay-rich discrete clumpy soil, minor OM <5%, clumps <1cm                                                                                      |
| VII-F-2  | 15           | 30         | Tan Clay-rich discrete clumpy soil, minor OM <5%, clumps <1cm                                                                                      |
| VII-F-2  | 30           | 60         | Tan Clay-rich discrete clumpy soil, minor OM <5%, clumps <3cm.                                                                                     |
| VIII-F-1 | 0            | 5          | Immature organic soil, OM >50%, some live moss still. Tons of roots                                                                                |
| VIII-F-1 | 5            | 15         | Organic rich brown soil OM ~40%                                                                                                                    |
| VIII-F-1 | 15           | 30         | Organic rich brown soil OM ~40%, abundant roots and wood. Slight grey mottle clay                                                                  |
| VIII-F-1 | 30           | 60         | Grey clay nuggets covered in dark brown organic silt                                                                                               |
| VIII-F-1 | 60           | 70         | Grey saturated clay                                                                                                                                |

| 0:4-      | Depth        |            | Desis description                                                                                                         |
|-----------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------|
| Site      | from<br>(cm) | to<br>(cm) | Basic description                                                                                                         |
| VIII-F-2  | 0            | 5          | Root web with greyish brown OM                                                                                            |
| VIII-F-2  | 5            | 15         | Abundant roots, semi-decomposed forest floor OM ~45%. medium brown                                                        |
| VIII-F-2  | 15           | 30         | Abundant roots, semi-decomposed forest floor OM ~45%. slightly less undecomposed twig/leaf/pinecone litter                |
| VIII-F-2  | 30           | 60         | Clay clumps coated in silty black OM                                                                                      |
| VIII-F-3  | 0            | 5          | Clay-rich tan sediment with crumbly texture from silt sand content                                                        |
| VIII-F-3  | 5            | 15         | As above, higher clay, slightly lighter color, bit less OM cover (<5%)                                                    |
| VIII-F-3  | 15           | 30         | Tan to reddish tan clay with slightly sandy silt texture                                                                  |
| VIII-F-3  | 30           | 60         | Tan to reddish tan clay with slightly sandy silt texture                                                                  |
| VIII-F-4  | 0            | 5          | Semi-homogenous organic rich soil OM ~35%                                                                                 |
| VIII-F-4  | 5            | 15         | Semi-homogenous organic rich soil OM ~25%                                                                                 |
| VIII-F-4  | 15           | 30         | Mix of brown OM and clay. OM ~20%? has some roots etc.                                                                    |
| VIII-F-4  | 30           | 60         | Tan saturated clay                                                                                                        |
| VIII-F-4  | 60           | 90         | Tan saturated clay                                                                                                        |
| VIII-F-5  | 0            | 5          | Tan saturated clay, clumpy and hard                                                                                       |
| VIII-F-5  | 5            | 15         | Tan saturated clay, clumpy and hard                                                                                       |
| VIII-F-5  | 15           | 30         | Tan saturated clay, clumpy with sand and other particle content, pink and tan                                             |
| VIII-F-5  | 30           | 60         | Tan saturated clay, clumpy with sand and other particle content. Tan, pinkish, and a few specks of orangey pink (5YR 6/6) |
| VIII-F-5  | 60           | 100        | Tan clay with some pink clay, has some sand material or silt material making it easier to break up                        |
| VIII-OC-1 | 0            | 5          | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-1 | 5            | 10         | As above, lighter brown color and more pebbles                                                                            |
| VIII-OC-2 | 0            | 5          | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-2 | 5            | 10         | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-2 | 10           | 20         | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-3 | 0            | 5          | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-3 | 5            | 10         | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-4 | 0            | 5          | Semi-homogenous organic rich outcrop soil (includes angular pebbles <1cm), OM ~30%                                        |
| VIII-OC-4 | 5            | 20         | Semi-homogenous reddish brown outcrop soil (includes angular pebbles <1cm), OM <15%                                       |
| VIII-OC-5 | 0            | 10         | OM fine roots with silty dark brown material. OM ~30%                                                                     |
| VIII-OC-5 | 10           | 15         | OM fine roots with silty dark brown material. OM ~30%                                                                     |
| VIII-OC-6 | 0            | 5          | OM fine roots with silty dark brown material. OM ~30%                                                                     |
| VIII-OC-6 | 5            | 10         | OM fine roots with silty dark brown material. OM ~20%                                                                     |
| VIII-WL-1 | 0            | 5          | Brown. 50% OM and silty clay                                                                                              |

| Sito      | Depth        |            | Pacia description                                                                                                                           |
|-----------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Sile      | from<br>(cm) | to<br>(cm) |                                                                                                                                             |
| VIII-WL-1 | 5            | 15         | Brown. 30% OM and silty clay                                                                                                                |
| VIII-WL-1 | 15           | 30         | Brown. 30% OM and silty clay                                                                                                                |
| VIII-WL-1 | 30           | 60         | Brown. 30% OM and silty clay                                                                                                                |
| VIII-WL-1 | 60           | 100        | Tan saturated clay                                                                                                                          |
| VIII-WL-2 | 30           | 60         | Tan clay with blackish traces of silty OM                                                                                                   |
| VIII-WL-2 | 60           | 100        | Tan Clay-rich discrete clumpy soil, minor OM <5%, clumps <1cm                                                                               |
| VIII-WL-2 | 0            | 5          | Brown 50% OM and silty clay                                                                                                                 |
| VIII-WL-2 | 5            | 15         | Mix of greyish clay and dark brown clay/silt with OM ~20%                                                                                   |
| VIII-WL-2 | 15           | 30         | Mix of tan and dark brown semi-saturated clay                                                                                               |
| IX-F-1    | 0            | 5          | Brown web of roots and fine organic soil. Very high OM. C% >40% likely                                                                      |
| IX-F-1    | 5            | 15         | As above, less root web and more fine brown soil                                                                                            |
| IX-F-1    | 15           | 30         | As above, less root web and more fine brown soil                                                                                            |
| IX-F-1    | 30           | 55         | As above, less root web and more fine brown soil. OM <1cm pieces                                                                            |
| IX-F-1    | 55           | 100        | Dark brown, organic rich but clay dominated. Clay has angular rock bits throughout                                                          |
| IX-F-2    | 0            | 5          | Clumps of micro-roots holding together medium brown OM silty particles and lighter tan clay to silt. Dominated by darker leaf litter color. |
| IX-F-2    | 5            | 15         | Rich organic soil, abundant small roots. OM are slightly clumpy. Well-developed                                                             |
| IX-F-2    | 15           | 30         | Rich organic soil, abundant micro roots, minor regolith. Well-developed                                                                     |
| IX-F-2    | 30           | 45         | Rich organic soil, abundant micro roots, slight mix of tan clay particles with darker brown. Well-developed                                 |
| IX-F-3    | 0            | 5          | Leaf and forest floor litter, unevenly decomposed, and brown. Small pinecone. Abundant roots. OM ~50%                                       |
| IX-F-3    | 5            | 15         | Dry sand/silt. Some powder, some clumps.                                                                                                    |
| IX-F-3    | 15           | 30         | Very dry sand/silt. Mostly powdery, a bit clumpy                                                                                            |
| IX-F-3    | 30           | 60         | Very dry sand/silt. Powdery.                                                                                                                |
| IX-F-3    | 60           | 100        | Very dry sand/silt. Powdery.                                                                                                                |
| IX-F-4    | 0            | 5          | Basically dark brown leaf litter, small pinecones, fir needles, etc. <5% mineral soil.                                                      |
| IX-F-4    | 5            | 15         | Crumbly, micro roots throughout, brownish grey with bits of poorly decomposed OM (~30%); regolith bits <10%                                 |
| IX-F-4    | 15           | 30         | Brown to pale grey (OM to clay basically), clay clumps, ~20% OM Roots and leaf litter partially decomposed                                  |
| IX-F-4    | 30           | 60         | Pale grey with brownish mottle (OM to clay basically), clay clumps, ~20% OM Roots and leaf litter partially decomposed                      |
| IX-F-4    | 60           | 85         | Pale brownish grey clay with OM traces, moderately dry                                                                                      |
| IX-F-4    | 85           | 100        | Very pale greyish white silicate clay, small <2cm pinecone part                                                                             |
| IX-OC-1   | 0            | 5          | Rocky heterogeneous OC soil, brown, OM ~35%                                                                                                 |
| IX-OC-1   | 5            | 15         | Rocky heterogeneous OC soil, tan, sandier, OM<20%                                                                                           |
| IX-OC-2   | 0            | 3          | Rocky heterogeneous OC soil, dark brown, OM ~35%                                                                                            |
| IX-OC-2   | 3            | 10         | Rocky heterogeneous OC soil, tan, sandier, OM<20%                                                                                           |
| IX-OC-2   | 10           | 25         | Rocky heterogeneous OC soil, tan, sandier, OM<20%                                                                                           |
| IX-OC-3   | 0            | 5          | Rocky heterogeneous OC soil, chocolate brown, OM ~35%                                                                                       |

| Site    | Depth        |            | Pasia description                                         |
|---------|--------------|------------|-----------------------------------------------------------|
|         | from<br>(cm) | to<br>(cm) | Basic description                                         |
| IX-OC-3 | 5            | 10         | Rocky heterogeneous OC soil, rusty color, sandier, OM<20% |
| IX-OC-4 | 0            | 6          | Rocky heterogeneous OC soil, dark grayish brown, OM ~35%  |
| IX-OC-4 | 6            | 15         | Rocky heterogeneous OC soil, tan, sandier, OM<20%         |
| IX-OC-4 | 15           | 20         | Rocky heterogeneous OC soil, tan, sandier, OM<20%         |
| IX-OC-5 | 0            | 7          | Rocky heterogeneous OC soil, dark rich brown, OM ~35%     |
| IX-OC-5 | 7            | 15         | Rocky heterogeneous OC soil, rusty color, sandier, OM<20% |
| IX-WL-1 | 0            | 5          | Saturated clay with silty sand fragments                  |
| IX-WL-1 | 5            | 15         | Saturated clay with less silty sand fragments             |
| IX-WL-1 | 15           | 30         | Saturated clay with minor roots                           |
| IX-WL-1 | 30           | 60         | Saturated clay                                            |
| IX-WL-1 | 60           | 100        | Saturated clay                                            |
| IX-WL-2 | 0            | 5          | Clay with roots, saturated                                |
| IX-WL-2 | 5            | 15         | Clay with roots, saturated                                |
| IX-WL-2 | 15           | 30         | Clay, minor roots, saturated                              |
| IX-WL-2 | 30           | 60         | Clay, semi-saturated                                      |
| IX-WL-2 | 60           | 100        | Clay, minor roots, saturated                              |



### **APPENDIX C**

Site Reconnaissance Photographs



#### **APPENDIX C** Site Reconnaissance Photographs



#### Photograph 1:

View of various terrain types across the Giant Mine Lease.

m West: (800) 386-7247 East: (800) 563-6266 Goldad Company:\_ Sample ID: 11-0C - 1 Date Sampled: 14 / 09 / 18 (yyyy/mm/dd) Project/Location: Gia

Photograph 2: Example of sample bag labeling.







Photograph 3:

View of forest sample location .



**Photograph 4:** View of forest sample location (II-F-3).





Photograph 5:



Photograph 6:

Example of forest soil profile (V-F-1).







Photograph 7:



Photograph 8: Example of outcrop sample location (II-OC-9).







#### Photograph 9:

Example of outcrop sampling location (III-OC-6).



**Photograph 10:** Example of outcrop sampling location (IV-OC-1).







Photograph 11: Example of outcrop sampling location (VIII-OC-5).



Photograph 12: Example of outcrop sampling location (VII-OC-8).







Photograph 13:

Example of wetland sampling location (I-WL-1).



**Photograph 14:** Example of wetland sampling location (II-WL-2).







Photograph 15:

Example of wetland sampling location (IV-WL-1).



Photograph 16: Example of wetland sampling location surface (IV-WL-4).



#### Photograph 17:

Example of wetland sampling location (VIII-WL-1).



**Photograph 18:** Field map with proposed sampling locations.



As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Africa Asia Australasia Europe

+ 27 11 254 4800 + 86 21 6258 5522

+ 61 3 8862 3500

+ 44 1628 851851

North America + 1 800 275 3281

South America + 56 2 2616 2000

Golder Associates Ltd. 16820 107 Avenue Edmonton, Alberta, T5P 4C3 Canada T: +1 (780) 483 3499

